1
|
Kaylor JJ, Frederiksen R, Bedrosian CK, Huang M, Stennis-Weatherspoon D, Huynh T, Ngan T, Mulamreddy V, Sampath AP, Fain GL, Travis GH. RDH12 allows cone photoreceptors to regenerate opsin visual pigments from a chromophore precursor to escape competition with rods. Curr Biol 2024; 34:3342-3353.e6. [PMID: 38981477 PMCID: PMC11303097 DOI: 10.1016/j.cub.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Capture of a photon by an opsin visual pigment isomerizes its 11-cis-retinaldehyde (11cRAL) chromophore to all-trans-retinaldehyde (atRAL), which subsequently dissociates. To restore light sensitivity, the unliganded apo-opsin combines with another 11cRAL to make a new visual pigment. Two enzyme pathways supply chromophore to photoreceptors. The canonical visual cycle in retinal pigment epithelial cells supplies 11cRAL at low rates. The photic visual cycle in Müller cells supplies cones with 11-cis-retinol (11cROL) chromophore precursor at high rates. Although rods can only use 11cRAL to regenerate rhodopsin, cones can use 11cRAL or 11cROL to regenerate cone visual pigments. We performed a screen in zebrafish retinas and identified ZCRDH as a candidate for the enzyme that converts 11cROL to 11cRAL in cone inner segments. Retinoid analysis of eyes from Zcrdh-mutant zebrafish showed reduced 11cRAL and increased 11cROL levels, suggesting impaired conversion of 11cROL to 11cRAL. By microspectrophotometry, isolated Zcrdh-mutant cones lost the capacity to regenerate visual pigments from 11cROL. ZCRDH therefore possesses all predicted properties of the cone 11cROL dehydrogenase. The human protein most similar to ZCRDH is RDH12. By immunocytochemistry, ZCRDH was abundantly present in cone inner segments, similar to the reported distribution of RDH12. Finally, RDH12 was the only mammalian candidate protein to exhibit 11cROL-oxidase catalytic activity. These observations suggest that RDH12 in mammals is the functional ortholog of ZCRDH, which allows cones, but not rods, to regenerate visual pigments from 11cROL provided by Müller cells. This capacity permits cones to escape competition from rods for visual chromophore in daylight-exposed retinas.
Collapse
Affiliation(s)
- Joanna J Kaylor
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Rikard Frederiksen
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Christina K Bedrosian
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Melody Huang
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - David Stennis-Weatherspoon
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Theodore Huynh
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Tiffany Ngan
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Varsha Mulamreddy
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Alapakkam P Sampath
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gordon L Fain
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gabriel H Travis
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA; University of California Los Angeles, Department of Biological Chemistry, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
3
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
4
|
Sajovic J, Meglič A, Glavač D, Markelj Š, Hawlina M, Fakin A. The Role of Vitamin A in Retinal Diseases. Int J Mol Sci 2022; 23:1014. [PMID: 35162940 PMCID: PMC8835581 DOI: 10.3390/ijms23031014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin A is an essential fat-soluble vitamin that occurs in various chemical forms. It is essential for several physiological processes. Either hyper- or hypovitaminosis can be harmful. One of the most important vitamin A functions is its involvement in visual phototransduction, where it serves as the crucial part of photopigment, the first molecule in the process of transforming photons of light into electrical signals. In this process, large quantities of vitamin A in the form of 11-cis-retinal are being isomerized to all-trans-retinal and then quickly recycled back to 11-cis-retinal. Complex machinery of transporters and enzymes is involved in this process (i.e., the visual cycle). Any fault in the machinery may not only reduce the efficiency of visual detection but also cause the accumulation of toxic chemicals in the retina. This review provides a comprehensive overview of diseases that are directly or indirectly connected with vitamin A pathways in the retina. It includes the pathophysiological background and clinical presentation of each disease and summarizes the already existing therapeutic and prospective interventions.
Collapse
Affiliation(s)
- Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Špela Markelj
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Schlegel DK, Ramkumar S, von Lintig J, Neuhauss SC. Disturbed retinoid metabolism upon loss of rlbp1a impairs cone function and leads to subretinal lipid deposits and photoreceptor degeneration in the zebrafish retina. eLife 2021; 10:71473. [PMID: 34668483 PMCID: PMC8585484 DOI: 10.7554/elife.71473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
The RLBP1 gene encodes the 36 kDa cellular retinaldehyde-binding protein, CRALBP, a soluble retinoid carrier, in the visual cycle of the eyes. Mutations in RLBP1 are associated with recessively inherited clinical phenotypes, including Bothnia dystrophy, retinitis pigmentosa, retinitis punctata albescens, fundus albipunctatus, and Newfoundland rod–cone dystrophy. However, the etiology of these retinal disorders is not well understood. Here, we generated homologous zebrafish models to bridge this knowledge gap. Duplication of the rlbp1 gene in zebrafish and cell-specific expression of the paralogs rlbp1a in the retinal pigment epithelium and rlbp1b in Müller glial cells allowed us to create intrinsically cell type-specific knockout fish lines. Using rlbp1a and rlbp1b single and double mutants, we investigated the pathological effects on visual function. Our analyses revealed that rlbp1a was essential for cone photoreceptor function and chromophore metabolism in the fish eyes. rlbp1a-mutant fish displayed reduced chromophore levels and attenuated cone photoreceptor responses to light stimuli. They accumulated 11-cis and all-trans-retinyl esters which displayed as enlarged lipid droplets in the RPE reminiscent of the subretinal yellow-white lesions in patients with RLBP1 mutations. During aging, these fish developed retinal thinning and cone and rod photoreceptor dystrophy. In contrast, rlbp1b mutants did not display impaired vision. The double mutant essentially replicated the phenotype of the rlbp1a single mutant. Together, our study showed that the rlbp1a zebrafish mutant recapitulated many features of human blinding diseases caused by RLBP1 mutations and provided novel insights into the pathways for chromophore regeneration of cone photoreceptors.
Collapse
Affiliation(s)
- Domino K Schlegel
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| |
Collapse
|
7
|
Kolesnikov AV, Kiser PD, Palczewski K, Kefalov VJ. Function of mammalian M-cones depends on the level of CRALBP in Müller cells. J Gen Physiol 2021; 153:211551. [PMID: 33216847 PMCID: PMC7685772 DOI: 10.1085/jgp.202012675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
Cone photoreceptors mediate daytime vision in vertebrates. The rapid and efficient regeneration of their visual pigments following photoactivation is critical for the cones to remain photoresponsive in bright and rapidly changing light conditions. Cone pigment regeneration depends on the recycling of visual chromophore, which takes place via the canonical visual cycle in the retinal pigment epithelium (RPE) and the Müller cell-driven intraretinal visual cycle. The molecular mechanisms that enable the neural retina to regenerate visual chromophore for cones have not been fully elucidated. However, one known component of the two visual cycles is the cellular retinaldehyde-binding protein (CRALBP), which is expressed both in the RPE and in Müller cells. To understand the significance of CRALBP in cone pigment regeneration, we examined the function of cones in mice heterozygous for Rlbp1, the gene encoding CRALBP. We found that CRALBP expression was reduced by ∼50% in both the RPE and retina of Rlbp1+/- mice. Electroretinography (ERG) showed that the dark adaptation of rods and cones is unaltered in Rlbp1+/- mice, indicating a normal RPE visual cycle. However, pharmacologic blockade of the RPE visual cycle revealed suppressed cone dark adaptation in Rlbp1+/- mice in comparison with controls. We conclude that the expression level of CRALPB specifically in the Müller cells modulates the efficiency of the retina visual cycle. Finally, blocking the RPE visual cycle also suppressed further cone dark adaptation in Rlbp1-/- mice, revealing a shunt in the classical RPE visual cycle that bypasses CRALBP and allows partial but unexpectedly rapid cone dark adaptation.
Collapse
Affiliation(s)
- Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translation Vision Research, School of Medicine, University of California, Irvine, Irvine, CA.,Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translation Vision Research, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Chemistry, School of Medicine, University of California, Irvine, Irvine, CA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
8
|
Vats S, Bansal R, Rana N, Kumawat S, Bhatt V, Jadhav P, Kale V, Sathe A, Sonah H, Jugdaohsingh R, Sharma TR, Deshmukh R. Unexplored nutritive potential of tomato to combat global malnutrition. Crit Rev Food Sci Nutr 2020; 62:1003-1034. [PMID: 33086895 DOI: 10.1080/10408398.2020.1832954] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, MS, India
| | - Pravin Jadhav
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Vijay Kale
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Atul Sathe
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
9
|
Abstract
The visual phototransduction cascade begins with a cis-trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established "dark" regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms.
Collapse
|
10
|
Xue Y, Razafsky D, Hodzic D, Kefalov VJ. Mislocalization of cone nuclei impairs cone function in mice. FASEB J 2020; 34:10242-10249. [PMID: 32539195 DOI: 10.1096/fj.202000568r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 11/11/2022]
Abstract
The nuclei of cone photoreceptors are located on the apical side of the outer nuclear layer (ONL) in vertebrate retinas. However, the functional role of this evolutionarily conserved localization of cone nuclei is unknown. We previously showed that Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) are essential for the apical migration of cone nuclei during development. Here, we developed an efficient genetic strategy to disrupt cone LINC complexes in mice. Experiments with animals from both sexes revealed that disrupting cone LINC complexes resulted in mislocalization of cone nuclei to the basal side of ONL in mouse retina. This, in turn, disrupted cone pedicle morphology, and appeared to reduce the efficiency of synaptic transmission from cones to bipolar cells. Although we did not observe other developmental or phototransduction defects in cones with mislocalized nuclei, their dark adaptation was impaired, consistent with a deficiency in chromophore recycling. These findings demonstrate that the apical localization of cone nuclei in the ONL is required for the timely dark adaptation and efficient synaptic transmission in cone photoreceptors.
Collapse
Affiliation(s)
- Yunlu Xue
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David Razafsky
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Didier Hodzic
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Kubota R, Calkins DJ, Henry SH, Linsenmeier RA. Emixustat Reduces Metabolic Demand of Dark Activity in the Retina. Invest Ophthalmol Vis Sci 2020; 60:4924-4930. [PMID: 31770432 DOI: 10.1167/iovs.19-28194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the dark, photoreceptor outer segments contain high levels of cyclic guanosine 3'-5' monophosphate (cGMP), which binds to ion channels, holding them open and allowing an influx of cations. Ion pumping activity, which balances cation influx, uses considerable amounts of adenosine triphosphate (ATP) and oxygen. Light reduces cation influx and thereby lowers metabolic demand. Blood vessels are compromised in the diabetic retina and may not be able to meet the higher metabolic demand in darkness. Emixustat is a visual cycle modulator (VCM) that reduces chromophore levels and, therefore, may mimic light conditions. We evaluated the effect of emixustat on oxygen consumption and cation influx in dark conditions. Methods Cation influx was measured in rats using Mn2+-magnetic resonance imaging (MEMRI). Retinal oxygen profiles were recorded to evaluate oxygen consumption. In the MEMRI protocol, animals were treated with either emixustat or vehicle. In the oxygen protocol, animals were untreated or treated with emixustat. Results In vehicle-treated animals, cation channel activity increased in the dark. Emixustat treatment reduced cation channel activity; activity was comparable to vehicle-treated controls in light conditions. In vehicle-treated animals, minimum retinal oxygen tension decreased as the retina recovered from a photobleach, indicating that more oxygen was being consumed. Emixustat treatment prevented the decrease in oxygen pressure after photobleach. Conclusions Emixustat reduced the cation influx and retinal oxygen consumption associated with dark conditions. VCMs are a promising potential treatment for ischemic retinal neovascularization, such as that in diabetic retinopathy.
Collapse
Affiliation(s)
- Ryo Kubota
- Acucela, Inc., Seattle, Washington, United States
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | | | - Robert A Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States.,Department of Neurobiology, Northwestern University, Evanston, Illinois, United States
| |
Collapse
|
12
|
Li Y, Wang H, Zhang Y, Martin C. Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? PLANT CELL REPORTS 2018; 37:1443-1450. [PMID: 29594330 PMCID: PMC6153642 DOI: 10.1007/s00299-018-2283-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 05/02/2023]
Abstract
Tomato has a relatively short growth cycle (fruit ready to pick within 65-85 days from planting) and a relatively high yield (the average for globe tomatoes is 3-9 kg fruit per plant rising to as much as 40 kg fruit per plant). Tomatoes also produce large amounts of important primary and secondary metabolites which can serve as intermediates or substrates for producing valuable new compounds. As a model crop, tomato already has a broad range of tools and resources available for biotechnological applications, either increased nutrients for health-promoting biofortified foods or as a production system for high-value compounds. These advantages make tomato an excellent chassis for the production of important metabolites. We summarize recent achievements in metabolic engineering of tomato and suggest new candidate metabolites which could be targets for metabolic engineering. We offer a scheme for how to establish tomato as a chassis for industrial-scale production of high-value metabolites.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Hsihua Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Cathie Martin
- Metabolic Biology Department, The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
13
|
Examining the Role of Cone-expressed RPE65 in Mouse Cone Function. Sci Rep 2018; 8:14201. [PMID: 30242264 PMCID: PMC6155087 DOI: 10.1038/s41598-018-32667-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/13/2018] [Indexed: 11/08/2022] Open
Abstract
Efficient chromophore supply is paramount for the continuous function of vertebrate cone photoreceptors. It is well established that isomerization of all-trans- to 11-cis- retinoid in the retinal pigmented epithelium by RPE65 is a key reaction in this process. Mutations in RPE65 result in a disrupted chromophore supply, retinal degeneration, and blindness. Interestingly, RPE65 has recently been found to also be expressed in cone photoreceptors in several species, including mouse and human. However, the functional role of cone-expressed RPE65 has remained unknown. Here, we used loss and gain of function approaches to investigate this issue. First, we compared the function of cones from control and RPE65-deficient mice. Although we found that deletion of RPE65 partially suppressed cone dark adaptation, the interpretation of this result was complicated by the abnormal cone structure and function caused by the chromophore deficiency in the absence of RPE65 in the pigmented epithelium. As an alternative approach, we generated transgenic mice to express human RPE65 in the cones of mice where RPE65 expression is normally restricted to the pigmented epithelium. Comparison of control (RPE65-deficient) and transgenic (RPE65-expressing) cones revealed no morphological or functional changes, with only a slight delay in dark adaptation, possibly caused by the buffering of retinoids by RPE65. Together, our results do not provide any evidence for a functional role of RPE65 in mouse cones. Future studies will have to determine whether cone-expressed RPE65 plays a role in maintaining the long-term homeostasis of retinoids in cones and their function and survival, particularly in humans.
Collapse
|
14
|
Du M, Phelps E, Balangue MJ, Dockins A, Moiseyev G, Shin Y, Kane S, Otalora L, Ma JX, Farjo R, Farjo KM. Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration. Invest Ophthalmol Vis Sci 2017; 58:4375–4383. [PMID: 28813718 PMCID: PMC5560100 DOI: 10.1167/iovs.17-22107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Transgenic mice overexpressing serum retinol-binding protein (RBP4-Tg) develop progressive retinal degeneration, characterized by microglia activation, yet the precise mechanisms underlying retinal degeneration are unclear. Previous studies showed RBP4-Tg mice have normal ocular retinoid levels, suggesting that degeneration is independent of the retinoid visual cycle or light exposure. The present study addresses whether retinal degeneration is light-dependent and RBP4-dependent by testing the effects of dark-rearing and pharmacological lowering of serum RBP4 levels, respectively. Methods RBP4-Tg mice reared on normal mouse chow in normal cyclic light conditions were directly compared to RBP4-Tg mice exposed to chow supplemented with the RBP4-lowering compound A1120 or dark-rearing conditions. Quantitative retinal histological analysis was conducted to assess retinal degeneration, and electroretinography (ERG) and optokinetic tracking (OKT) tests were performed to assess retinal and visual function. Ocular retinoids and bis-retinoid A2E were quantified. Results Dark-rearing RBP4-Tg mice effectively reduced ocular bis-retinoid A2E levels, but had no significant effect on retinal degeneration or dysfunction in RBP4-Tg mice, demonstrating that retinal degeneration is light-independent. A1120 treatment lowered serum RBP4 levels similar to wild-type mice, and prevented structural retinal degeneration. However, A1120 treatment did not prevent retinal dysfunction in RBP4-Tg mice. Moreover, RBP4-Tg mice on A1120 diet had significant worsening of OKT response and loss of cone photoreceptors compared to RBP4-Tg mice on normal chow. This may be related to the very significant reduction in retinyl ester levels in the retina of mice on A1120-supplemented diet. Conclusions Retinal degeneration in RBP4-Tg mice is RBP4-dependent and light-independent.
Collapse
Affiliation(s)
- Mei Du
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Eric Phelps
- EyeCRO LLC, Oklahoma City, Oklahoma, United States
| | | | | | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Shelley Kane
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Laura Otalora
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Rafal Farjo
- EyeCRO LLC, Oklahoma City, Oklahoma, United States
| | - Krysten M Farjo
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
15
|
Xue Y, Sato S, Razafsky D, Sahu B, Shen SQ, Potter C, Sandell LL, Corbo JC, Palczewski K, Maeda A, Hodzic D, Kefalov VJ. The role of retinol dehydrogenase 10 in the cone visual cycle. Sci Rep 2017; 7:2390. [PMID: 28539612 PMCID: PMC5443843 DOI: 10.1038/s41598-017-02549-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Pigment regeneration is critical for the function of cone photoreceptors in bright and rapidly-changing light conditions. This process is facilitated by the recently-characterized retina visual cycle, in which Müller cells recycle spent all-trans-retinol visual chromophore back to 11-cis-retinol. This 11-cis-retinol is oxidized selectively in cones to the 11-cis-retinal used for pigment regeneration. However, the enzyme responsible for the oxidation of 11-cis-retinol remains unknown. Here, we sought to determine whether retinol dehydrogenase 10 (RDH10), upregulated in rod/cone hybrid retinas and expressed abundantly in Müller cells, is the enzyme that drives this reaction. We created mice lacking RDH10 either in cone photoreceptors, Müller cells, or the entire retina. In vivo electroretinography and transretinal recordings revealed normal cone photoresponses in all RDH10-deficient mouse lines. Notably, their cone-driven dark adaptation both in vivo and in isolated retina was unaffected, indicating that RDH10 is not required for the function of the retina visual cycle. We also generated transgenic mice expressing RDH10 ectopically in rod cells. However, rod dark adaptation was unaffected by the expression of RDH10 and transgenic rods were unable to use cis-retinol for pigment regeneration. We conclude that RDH10 is not the dominant retina 11-cis-RDH, leaving its primary function in the retina unknown.
Collapse
Affiliation(s)
- Yunlu Xue
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shinya Sato
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - David Razafsky
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- MilliporeSigma, St. Louis, MO, 63103, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Susan Q Shen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Chloe Potter
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Joseph C Corbo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, USA
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Didier Hodzic
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| |
Collapse
|