1
|
Famiglietti EV. Mammalian Retinal Bipolar Cells: Morphological Identification and Systematic Classification in Rabbit Retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613998. [PMID: 39345639 PMCID: PMC11429971 DOI: 10.1101/2024.09.19.613998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Retinal bipolar cells (BCs) convey visual signals from photoreceptors to more than 50 types of rabbit retinal ganglion cells (Famiglietti, 2020). More than 40 years ago, 10-11 types of bipolar cell were recognized in rabbit and cat retinas (Famiglietti, 1981). Twenty years later 10 were identified in mouse, rat, and monkey (Gosh et al., 2004), while recent molecular genetic studies indicate that there are 15 types of bipolar cell in mouse retina (Shekhar et al., 2016). The present detailed study of more than 800 bipolar cells in ten Golgi-impregnated rabbit retinas indicates that there are 14-16 types of cone bipolar cell and one type of rod bipolar cell in rabbit retina. These have been carefully analyzed in terms of dendritic and axonal morphology, and axon terminal stratification with respect to fiducial starburst amacrine cells. In fortuitous proximity, several types of bipolar cell can be related to identified ganglion cells by stratification and by contacts suggestive of synaptic connection. These results are compared with other studies of rabbit bipolar cells. Homologies with bipolar cells of mouse and monkey are considered in functional terms.
Collapse
|
2
|
Sigulinsky CL, Pfeiffer RL, Jones BW. Retinal Connectomics: A Review. Annu Rev Vis Sci 2024; 10:263-291. [PMID: 39292552 DOI: 10.1146/annurev-vision-102122-110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.
Collapse
Affiliation(s)
- Crystal L Sigulinsky
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Rebecca L Pfeiffer
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Bryan William Jones
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
3
|
Patterson SS, Girresch RJ, Mazzaferri MA, Bordt AS, Piñon-Teal WL, Jesse BD, Perera DCW, Schlepphorst MA, Kuchenbecker JA, Chuang AZ, Neitz J, Marshak DW, Ogilvie JM. Synaptic Origins of the Complex Receptive Field Structure in Primate Smooth Monostratified Retinal Ganglion Cells. eNeuro 2024; 11:ENEURO.0280-23.2023. [PMID: 38290840 PMCID: PMC11078106 DOI: 10.1523/eneuro.0280-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Considerable progress has been made in studying the receptive fields of the most common primate retinal ganglion cell (RGC) types, such as parasol RGCs. Much less is known about the rarer primate RGC types and the circuitry that gives rise to noncanonical receptive field structures. The goal of this study was to analyze synaptic inputs to smooth monostratified RGCs to determine the origins of their complex spatial receptive fields, which contain isolated regions of high sensitivity called "hotspots." Interestingly, smooth monostratified RGCs co-stratify with the well-studied parasol RGCs and are thus constrained to receiving input from bipolar and amacrine cells with processes sharing the same layer, raising the question of how their functional differences originate. Through 3D reconstructions of circuitry and synapses onto ON smooth monostratified and ON parasol RGCs from central macaque retina, we identified four distinct sampling strategies employed by smooth and parasol RGCs to extract diverse response properties from co-stratifying bipolar and amacrine cells. The two RGC types differed in the proportion of amacrine cell input, relative contributions of co-stratifying bipolar cell types, amount of synaptic input per bipolar cell, and spatial distribution of bipolar cell synapses. Our results indicate that the smooth RGC's complex receptive field structure arises through spatial asymmetries in excitatory bipolar cell input which formed several discrete clusters comparable with physiologically measured hotspots. Taken together, our results demonstrate how the striking differences between ON parasol and ON smooth monostratified RGCs arise from distinct strategies for sampling a common set of synaptic inputs.
Collapse
Affiliation(s)
- Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, NewYork 14617
| | - Rebecca J Girresch
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103
| | - Marcus A Mazzaferri
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
| | - Andrea S Bordt
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
- Departments of Ophthalmology & Visual Science, McGovern Medical School, Houston, Texas 77030
| | - Wendy L Piñon-Teal
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103
| | - Brett D Jesse
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103
| | | | | | - James A Kuchenbecker
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
| | - Alice Z Chuang
- Departments of Ophthalmology & Visual Science, McGovern Medical School, Houston, Texas 77030
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
| | - David W Marshak
- Neurobiology and Anatomy, McGovern Medical School, Houston, Texas 77030
| | | |
Collapse
|
4
|
Mu S, Turner NL, Silversmith WM, Jordan CS, Kemnitz N, Sorek M, David C, Jones DL, Bland D, Moore M, Sterling AR, Seung HS. Special nuclear layer contacts between starburst amacrine cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1129463. [PMID: 38983098 PMCID: PMC11182129 DOI: 10.3389/fopht.2023.1129463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 07/11/2024]
Abstract
Starburst amacrine cells are a prominent neuron type in the mammalian retina that has been well-studied for its role in direction-selective information processing. One specific property of these cells is that their dendrites tightly stratify at specific depths within the inner plexiform layer (IPL), which, together with their unique expression of choline acetyltransferase (ChAT), has made them the most common depth marker for studying other retinal neurons in the IPL. This stratifying property makes it unexpected that they could routinely have dendrites reaching into the nuclear layer or that they could have somatic contact specializations, which is exactly what we have found in this study. Specifically, an electron microscopic image volume of sufficient size from a mouse retina provided us with the opportunity to anatomically observe both microscopic details and collective patterns, and our detailed cell reconstructions revealed interesting cell-cell contacts between starburst amacrine neurons. The contact characteristics differ between the respective On and Off starburst amacrine subpopulations, but both occur within the soma layers, as opposed to their regular contact laminae within the inner plexiform layer.
Collapse
Affiliation(s)
- Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Computer Science Department, Princeton University, Princeton, NJ, United States
| | - William M Silversmith
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Celia David
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Devon L Jones
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Merlin Moore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Amy Robinson Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Computer Science Department, Princeton University, Princeton, NJ, United States
| |
Collapse
|
5
|
Yu WQ, Swanstrom R, Sigulinsky CL, Ahlquist RM, Knecht S, Jones BW, Berson DM, Wong RO. Distinctive synaptic structural motifs link excitatory retinal interneurons to diverse postsynaptic partner types. Cell Rep 2023; 42:112006. [PMID: 36680773 PMCID: PMC9946794 DOI: 10.1016/j.celrep.2023.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Neurons make converging and diverging synaptic connections with distinct partner types. Whether synapses involving separate partners demonstrate similar or distinct structural motifs is not yet well understood. We thus used serial electron microscopy in mouse retina to map output synapses of cone bipolar cells (CBCs) and compare their structural arrangements across bipolar types and postsynaptic partners. Three presynaptic configurations emerge-single-ribbon, ribbonless, and multiribbon synapses. Each CBC type exploits these arrangements in a unique combination, a feature also found among rabbit ON CBCs. Though most synapses are dyads, monads and triads are also seen. Altogether, mouse CBCs exhibit at least six motifs, and each CBC type uses these in a stereotypic pattern. Moreover, synapses between CBCs and particular partner types appear biased toward certain motifs. Our observations reveal synaptic strategies that diversify the output within and across CBC types, potentially shaping the distinct functions of retinal microcircuits.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Rachael Swanstrom
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,The authors contributed equally
| | - Crystal L. Sigulinsky
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA,The authors contributed equally
| | - Richard M. Ahlquist
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195 WA, USA,The authors contributed equally
| | - Sharm Knecht
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Bryan W. Jones
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Rachel O. Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,Lead contact,Correspondence:
| |
Collapse
|
6
|
Goyal M, Bordt AS, Neitz J, Marshak DW. Trogocytosis of neurons and glial cells by microglia in a healthy adult macaque retina. Sci Rep 2023; 13:633. [PMID: 36635325 PMCID: PMC9837165 DOI: 10.1038/s41598-023-27453-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Microglial cells are the primary resident immune cells in the retina. In healthy adults, they are ramified; that is, they have extensive processes that move continually. In adult retinas, microglia maintain the normal structure and function of neurons and other glial cells, but the mechanism underlying this process is not well-understood. In the mouse hippocampus, microglia engulf small pieces of axons and presynaptic terminals via a process called trogocytosis. Here we report that microglia in the adult macaque retina also engulf pieces of neurons and glial cells, but not at sites of synapses. We analyzed microglia in a volume of serial, ultrathin sections of central macaque retina in which many neurons that ramify in the inner plexiform layer (IPL) had been reconstructed previously. We surveyed the IPL and identified the somas of microglia by their small size and scant cytoplasm. We then reconstructed the microglia and studied their interactions with other cells. We found that ramified microglia frequently ingested small pieces of each major type of inner retinal neuron and Müller glial cells via trogocytosis. There were a few instances where the interactions took place near synapses, but the synapses, themselves, were never engulfed. If trogocytosis by retinal microglia plays a role in synaptic remodeling, it was not apparent from the ultrastructure. Instead, we propose that trogocytosis enables these microglia to present antigens derived from normal inner retinal cells and, when activated, they would promote antigen-specific tolerance.
Collapse
Affiliation(s)
- Megan Goyal
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA
| | - Andrea S Bordt
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - David W Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
7
|
Bordt AS, Patterson SS, Kuchenbecker JA, Mazzaferri MA, Yearick JN, Yang ER, Ogilvie JM, Neitz J, Marshak DW. Synaptic inputs to displaced intrinsically-photosensitive ganglion cells in macaque retina. Sci Rep 2022; 12:15160. [PMID: 36071126 PMCID: PMC9452553 DOI: 10.1038/s41598-022-19324-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Ganglion cells are the projection neurons of the retina. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and also receive input from rods and cones via bipolar cells and amacrine cells. In primates, multiple types of ipRGCs have been identified. The ipRGCs with somas in the ganglion cell layer have been studied extensively, but less is known about those with somas in the inner nuclear layer, the "displaced" cells. To investigate their synaptic inputs, three sets of horizontal, ultrathin sections through central macaque retina were collected using serial block-face scanning electron microscopy. One displaced ipRGC received nearly all of its excitatory inputs from ON bipolar cells and would therefore be expected to have ON responses to light. In each of the three volumes, there was also at least one cell that had a large soma in the inner nuclear layer, varicose axons and dendrites with a large diameter that formed large, extremely sparse arbor in the outermost stratum of the inner plexiform layer. They were identified as the displaced M1 type of ipRGCs based on this morphology and on the high density of granules in their somas. They received extensive input from amacrine cells, including the dopaminergic type. The vast majority of their excitatory inputs were from OFF bipolar cells, including two subtypes with extensive input from the primary rod pathway. They would be expected to have OFF responses to light stimuli below the threshold for melanopsin or soon after the offset of a light stimulus.
Collapse
Affiliation(s)
- Andrea S Bordt
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Sara S Patterson
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | | | | | - Joel N Yearick
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Emma R Yang
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - David W Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
8
|
Bordt AS, Patterson SS, Girresch RJ, Perez D, Tseng L, Anderson JR, Mazzaferri MA, Kuchenbecker JA, Gonzales-Rojas R, Roland A, Tang C, Puller C, Chuang AZ, Ogilvie JM, Neitz J, Marshak DW. Synaptic inputs to broad thorny ganglion cells in macaque retina. J Comp Neurol 2021; 529:3098-3111. [PMID: 33843050 DOI: 10.1002/cne.25156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
In primates, broad thorny retinal ganglion cells are highly sensitive to small, moving stimuli. They have tortuous, fine dendrites with many short, spine-like branches that occupy three contiguous strata in the middle of the inner plexiform layer. The neural circuits that generate their responses to moving stimuli are not well-understood, and that was the goal of this study. A connectome from central macaque retina was generated by serial block-face scanning electron microscopy, a broad thorny cell was reconstructed, and its synaptic inputs were analyzed. It received fewer than 2% of its inputs from both ON and OFF types of bipolar cells; the vast majority of its inputs were from amacrine cells. The presynaptic amacrine cells were reconstructed, and seven types were identified based on their characteristic morphology. Two types of narrow-field cells, knotty bistratified Type 1 and wavy multistratified Type 2, were identified. Two types of medium-field amacrine cells, ON starburst and spiny, were also presynaptic to the broad thorny cell. Three types of wide-field amacrine cells, wiry Type 2, stellate wavy, and semilunar Type 2, also made synapses onto the broad thorny cell. Physiological experiments using a macaque retinal preparation in vitro confirmed that broad thorny cells received robust excitatory input from both the ON and the OFF pathways. Given the paucity of bipolar cell inputs, it is likely that amacrine cells provided much of the excitatory input, in addition to inhibitory input.
Collapse
Affiliation(s)
- Andrea S Bordt
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA.,Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, New York, USA
| | - Rebecca J Girresch
- Department of Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Diego Perez
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Luke Tseng
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - James R Anderson
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Marcus A Mazzaferri
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | | | | | - Ashley Roland
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Charis Tang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Christian Puller
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA.,Department of Neuroscience, Carl von Ossietzky University, Oldenburg, Germany
| | - Alice Z Chuang
- Department of Ophthalmology and Visual Science, McGovern Medical School, Houston, Texas, USA
| | | | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - David W Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
9
|
Famiglietti EV. Morphological identification and systematic classification of mammalian retinal ganglion cells. I. Rabbit retinal ganglion cells. J Comp Neurol 2020; 528:3305-3450. [PMID: 32725618 DOI: 10.1002/cne.24998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022]
Abstract
Retinal ganglion cells (RGCs) convey visual signals to 50 regions of the brain. For reasons of interest and convenience, they constitute an excellent system for the study of brain structure and function. There is general agreement that, absent a complete "parts list," understanding how the nervous system processes information will remain an elusive goal. Recent studies indicate that there are 30-50 types of ganglion cell in mouse retina, whereas only a few years ago it was still written that mice and the more visually oriented lagomorphs had less than 20 types of RGC. More than 30 years ago, I estimated that rabbits have about 40 types of RGC. The present study indicates that this number is much too low. I have employed the old but powerful method of Golgi-impregnation to rabbit retina, studying the range of component neurons in this already well-studied retinal system. Close quantitative and qualitative analyses of 1,142 RGCs in 26 retinas take into account cell body and dendritic field size, level(s) of dendritic stratification in the retina's inner plexiform layer, and details of dendritic branching. Ninety-one morphologies are recognized. Of these, at least 32 can be correlated with physiologically studied RGCs, dye-injected for morphological analysis. It is unlikely that rabbits have 91 types of RGC, but is argued here that this number lies between 60 and 70. The present study provides a "yardstick" for measuring the output of future molecular studies that may be more definitive in fixing the number of RGC types in rabbit retina.
Collapse
Affiliation(s)
- Edward V Famiglietti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, USA.,Division of Ophthalmology, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Patterson SS, Bordt AS, Girresch RJ, Linehan CM, Bauss J, Yeo E, Perez D, Tseng L, Navuluri S, Harris NB, Matthews C, Anderson JR, Kuchenbecker JA, Manookin MB, Ogilvie JM, Neitz J, Marshak DW. Wide-field amacrine cell inputs to ON parasol ganglion cells in macaque retina. J Comp Neurol 2020; 528:1588-1598. [PMID: 31845339 PMCID: PMC7153979 DOI: 10.1002/cne.24840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/31/2019] [Accepted: 11/24/2019] [Indexed: 11/07/2022]
Abstract
Parasol cells are one of the major types of primate retinal ganglion cells. The goal of this study was to describe the synaptic inputs that shape the light responses of the ON type of parasol cells, which are excited by increments in light intensity. A connectome from central macaque retina was generated by serial blockface scanning electron microscopy. Six neighboring ON parasol cells were reconstructed, and their synaptic inputs were analyzed. On average, they received 21% of their input from bipolar cells, excitatory local circuit neurons receiving input from cones. The majority of their input was from amacrine cells, local circuit neurons of the inner retina that are typically inhibitory. Their contributions to the neural circuit providing input to parasol cells are not well-understood, and the focus of this study was on the presynaptic wide-field amacrine cells, which provided 17% of the input to ON parasol cells. These are GABAergic amacrine cells with long, relatively straight dendrites, and sometimes also axons, that run in a single, narrow stratum of the inner plexiform layer. The presynaptic wide-field amacrine cells were reconstructed, and two types were identified based on their characteristic morphology. One presynaptic amacrine cell was identified as semilunar type 2, a polyaxonal cell that is electrically coupled to ON parasol cells. A second amacrine was identified as wiry type 2, a type known to be sensitive to motion. These inputs likely make ON parasol cells more sensitive to stimuli that are rapidly changing outside their classical receptive fields.
Collapse
Affiliation(s)
- Sara S Patterson
- Department of Ophthalmology, University of Washington, Seattle, Washington
- Neuroscience Graduate Program, University of Washington, Seattle, Washington
| | - Andrea S Bordt
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | | | - Conor M Linehan
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Jacob Bauss
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Eunice Yeo
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Diego Perez
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - Luke Tseng
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - Sriram Navuluri
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - Nicole B Harris
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - Chaiss Matthews
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - James R Anderson
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | | | - Michael B Manookin
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Judith M Ogilvie
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - David W Marshak
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| |
Collapse
|
11
|
Patterson SS, Kuchenbecker JA, Anderson JR, Neitz M, Neitz J. A Color Vision Circuit for Non-Image-Forming Vision in the Primate Retina. Curr Biol 2020; 30:1269-1274.e2. [PMID: 32084404 PMCID: PMC7141953 DOI: 10.1016/j.cub.2020.01.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) synchronize our biological clocks with the external light/dark cycle [1]. In addition to photoentrainment, they mediate the effects of light experience as a central modulator of mood, learning, and health [2]. This makes a complete account of the circuity responsible for ipRGCs' light responses essential to understanding their diverse roles in our well-being. Considerable progress has been made in understanding ipRGCs' melanopsin-mediated responses in rodents [3-5]. However, in primates, ipRGCs also have a rare blue-OFF response mediated by an unknown short-wavelength-sensitive (S)-cone circuit [6]. Identifying this S-cone circuit is particularly important because ipRGCs mediate many of the wide-ranging effects of short-wavelength light on human biology. These effects are often attributed to melanopsin, but there is evidence for an S-cone contribution as well [7, 8]. Here, we tested the hypothesis that the S-OFF response is mediated by the S-ON pathway through inhibitory input from an undiscovered S-cone amacrine cell. Using serial electron microscopy in the macaque retina, we reconstructed the neurons and synapses of the S-cone connectome, revealing a novel inhibitory interneuron, an amacrine cell, receiving excitatory glutamatergic input exclusively from S-ON bipolar cells. This S-cone amacrine cell makes highly selective inhibitory synapses onto ipRGCs, resulting in a blue-OFF response. Identification of the S-cone amacrine cell provides the missing component of an evolutionarily ancient circuit using spectral information for non-image forming visual functions.
Collapse
Affiliation(s)
- Sara S Patterson
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington, Seattle WA 98109, USA
| | | | - James R Anderson
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle WA 98109, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle WA 98109, USA.
| |
Collapse
|
12
|
Patterson SS, Kuchenbecker JA, Anderson JR, Bordt AS, Marshak DW, Neitz M, Neitz J. An S-cone circuit for edge detection in the primate retina. Sci Rep 2019; 9:11913. [PMID: 31417169 PMCID: PMC6695390 DOI: 10.1038/s41598-019-48042-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022] Open
Abstract
Midget retinal ganglion cells (RGCs) are the most common RGC type in the primate retina. Their responses have been proposed to mediate both color and spatial vision, yet the specific links between midget RGC responses and visual perception are unclear. Previous research on the dual roles of midget RGCs has focused on those comparing long (L) vs. middle (M) wavelength sensitive cones. However, there is evidence for several other rare midget RGC subtypes receiving S-cone input, but their role in color and spatial vision is uncertain. Here, we confirm the existence of the single S-cone center OFF midget RGC circuit in the central retina of macaque monkey both structurally and functionally. We investigated the receptive field properties of the S-OFF midget circuit with single cell electrophysiology and 3D electron microscopy reconstructions of the upstream circuitry. Like the well-studied L vs. M midget RGCs, the S-OFF midget RGCs have a center-surround receptive field consistent with a role in spatial vision. While spectral opponency in a primate RGC is classically assumed to contribute to hue perception, a role supporting edge detection is more consistent with the S-OFF midget RGC receptive field structure and studies of hue perception.
Collapse
Affiliation(s)
- Sara S Patterson
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98109, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | | | - James R Anderson
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Andrea S Bordt
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, 77030, USA
| | - David W Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, 77030, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|