1
|
Laux K, Teixeira MDM, Barker B. Love in the time of climate change: A review of sexual reproduction in the order Onygenales. Fungal Genet Biol 2023; 167:103797. [PMID: 37100376 DOI: 10.1016/j.fgb.2023.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
Life-threatening infections caused by fungi in the order Onygenales have been rising over the last few decades. Increasing global temperature due to anthropogenic climate change is one potential abiotic selection pressure that may explain the increase in infections. The generation of genetically novel offspring with novel phenotypes through the process of sexual recombination could allow fungi to adapt to changing climate conditions. The basic structures associated with sexual reproduction have been identified in Histoplasma, Blastomyces, Malbranchea, and Brunneospora. However, for Coccidioides and Paracoccidioides, the actual structural identification of these processes has yet to be identified despite having genetic evidence that suggests sexual recombination is occurring in these organisms. This review highlights the importance of assessing sexual recombination in the order Onygenales as a means of understanding the mechanisms these organisms might employ to enhance fitness in the face of a changing climate and provides details regarding the known reproductive mechanisms in the Onygenales.
Collapse
Affiliation(s)
- Klaire Laux
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA.
| | - Marcus de Melo Teixeira
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA; Nùcleo de Medicina Tropical, University of Brasilia, Universitário Darcy Ribeiro, s/n -Asa Norte, Brasília, DF 70910-900, Brazil
| | - Bridget Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA.
| |
Collapse
|
2
|
Abstract
AbstractThe order Onygenales is classified in the class Eurotiomycetes of the subphylum Pezizomycotina. Families in this order have classically been isolated from soil and dung, and two lineages contain causative agents of superficial, cutaneous and systemic infections in mammals. The ecology and habitat choices of the species are driven mainly by the keratin and cellulose degradation abilities. The present study aimed to investigate whether the ecological trends of the members of Onygenales can be interpreted in an evolutionary sense, linking phylogenetic parameters with habitat preferences, to achieve polyphasic definitions of the main taxonomic groups. Evolutionary processes were estimated by multiple gene genealogies and divergence time analysis. Previously described families, namely, Arthrodermataceae, Ajellomycetaceae, Ascosphaeraceae, Eremascaceae, Gymnoascaceae, Onygenaceae and Spiromastigoidaceae, were accepted in Onygenales, and two new families, Malbrancheaceae and Neogymnomycetaceae, were introduced. A number of species could not be assigned to any of the defined families. Our study provides a revised overview of the main lines of taxonomy of Onygenales, supported by multilocus analyses of ITS, LSU, TUB, TEF1, TEF3, RPB1, RPB2, and ribosomal protein 60S L10 (L1) (RP60S) sequences, combined with available data on ecology, physiology, morphology, and genomics.
Collapse
|
3
|
Rodríguez-Andrade E, Cano-Lira JF, Wiederhold N, Pérez-Cantero A, Guarro J, Stchigel AM. A revision of malbranchea-like fungi from clinical specimens in the United States of America reveals unexpected novelty. IMA Fungus 2021; 12:25. [PMID: 34493345 PMCID: PMC8422767 DOI: 10.1186/s43008-021-00075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
The fungi of the order Onygenales can cause important human infections; however, their taxonomy and worldwide occurrence is still little known. We have studied and identified a representative number of clinical fungi belonging to that order from a reference laboratory in the USA. A total of 22 strains isolated from respiratory tract (40%) and human skin and nails (27.2%) showed a malbranchea-like morphology. Six genera were phenotypically and molecularly identified, i.e. Auxarthron/Malbranchea (68.2%), Arachnomyces (9.1%), Spiromastigoides (9.1%), and Currahmyces (4.5%), and two newly proposed genera (4.5% each). Based on the results of the phylogenetic study, we synonymized Auxarthron with Malbranchea, and erected two new genera: Pseudoarthropsis and Pseudomalbranchea. New species proposed are: Arachnomyces bostrychodes, A. graciliformis, Currahmyces sparsispora, Malbranchea gymnoascoides, M. multiseptata, M. stricta, Pseudoarthropsis crassispora, Pseudomalbranchea gemmata, and Spiromastigoides geomycoides, along with a new combination for Malbranchea gypsea. The echinocandins showed the highest in vitro antifungal activity against the studied isolates, followed by terbinafine and posaconazole; in contrast, amphotericin B, fluconazole, itraconazole and 5-fluorocytosine were less active or lacked in vitro activity against these fungi.
Collapse
Affiliation(s)
- Ernesto Rodríguez-Andrade
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain
| | - José F Cano-Lira
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain.
| | - Nathan Wiederhold
- Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, TX, USA
| | - Alba Pérez-Cantero
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain
| | - Josep Guarro
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain
| | - Alberto M Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain
| |
Collapse
|
4
|
Li Y, Yue Q, Jayanetti DR, Swenson DC, Bartholomeusz GA, An Z, Gloer JB, Bills GF. Anti-Cryptococcus Phenalenones and Cyclic Tetrapeptides from Auxarthron pseudauxarthron. JOURNAL OF NATURAL PRODUCTS 2017; 80:2101-2109. [PMID: 28657331 PMCID: PMC5629637 DOI: 10.1021/acs.jnatprod.7b00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Auxarthrones A-E (1-5), five new phenalenones, and two new naturally occurring cyclic tetrapeptides, auxarthrides A (7) and B (8), were obtained from three different solvent extracts of cultures of the coprophilous fungus Auxarthron pseudauxarthron. Auxarthrones C (3) and E (5) possess an unusual 7a,8-dihydrocyclopenta[a]phenalene-7,9-dione ring system that has not been previously observed in natural products. Formation of 1-5 was found to be dependent on the solvent used for culture extraction. The structures of these new compounds were elucidated primarily by analysis of NMR and MS data. Auxarthrone A (1) was obtained as a mixture of chromatographically inseparable racemic diastereomers (1a and 1b) that cocrystallized, enabling confirmation of their structures by X-ray crystallography. The absolute configurations of 7 and 8 were assigned by analysis of their acid hydrolysates using Marfey's method. Compound 1 displayed moderate antifungal activity against Cryptococcus neoformans and Candida albicans, but did not affect human cancer cell lines.
Collapse
Affiliation(s)
- Yan Li
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Qun Yue
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Dinith R. Jayanetti
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dale C. Swenson
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Geoffrey A. Bartholomeusz
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Zhiqiang An
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - James B. Gloer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Gerald F. Bills
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| |
Collapse
|
5
|
|
6
|
Hubka V, Dobiasova S, Lyskova P, Mallatova N, Chlebkova J, Skorepova M, Kubatova A, Dobias R, Chudickova M, Kolarik M. Auxarthron ostraviensesp. nov., andA. umbrinumassociated with non-dermatophytic onychomycosis. Med Mycol 2013; 51:614-24. [DOI: 10.3109/13693786.2013.770608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Sharma R, Gräser Y, Singh SK. Auxarthronopsis, a new genus of Onygenales isolated from the vicinity of Bandhavgarh National Park, India. IMA Fungus 2013; 4:89-102. [PMID: 23898415 PMCID: PMC3719210 DOI: 10.5598/imafungus.2013.04.01.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/17/2013] [Indexed: 11/25/2022] Open
Abstract
An interesting onygenalean ascomycete was isolated from soil collected from a hollow tree near Bandhavgarh National Park situated in central India. The keratinophilic nature associated with a malbranchea-like asexual morph, appendaged mesh-like reticuloperidia, and subglobose to oblate, punctate ascospores, support the inclusion of this isolate in Onygenaceae. Further, the pale cream ascomata, punctate ascospores, and swollen septa in the peridial hyphae suggested that this was a new species of Auxarthron. However, phylogenetic study of LSU, SSU and ITS sequences, and presence of more than three swollen septa on the peridial appendages, do not support a placement within Auxarthron, and the new generic name Auxarthronopsis is introduced to accommodate this new fungus. The distinguishing features of this new taxon are the multiple (≥10) swollen septa on the appendages attached to its reticulate, loosely mesh-like peridium, the finely and regularly punctate ascospores, and the production of arthroconidial and aleurioconidial asexual forms. Sequence analysis of ITS1-5.8S-ITS2, SSU and LSU regions clearly separate this fungus from monophyletic Auxarthron and other taxa bearing some morphological similarity. Phylogenetically, Auxarthronopsis bandhavgarhensis gen. sp. nov. is closest to Amauroascus purpureus, A. volatilis-patellis, Nannizziopsisalbicans, and Renispora flavissima, but differs morphologically.
Collapse
Affiliation(s)
- Rahul Sharma
- National Facility for Culture Collection of Fungi, MACS' Agharkar Research Institute, G. G. Agarkar Road, Pune - 411 004, India
| | | | | |
Collapse
|
8
|
Houbraken J, Samson RA. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 2012; 70:1-51. [PMID: 22308045 PMCID: PMC3233907 DOI: 10.3114/sim.2011.70.01] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit. Thermoascus and Paecilomyces, both members of Thermoascaceae, also form ascospores lacking a furrow or slit, but are differentiated from Trichocomaceae by the production of asci from croziers and their thermotolerant or thermophilic nature. Phylogenetic analysis shows that Penicillium is polyphyletic. The genus is re-defined and a monophyletic genus for both anamorphs and teleomorphs is created (Penicillium sensu stricto). The genera Thysanophora, Eupenicillium, Chromocleista, Hemicarpenteles and Torulomyces belong in Penicilliums. str. and new combinations for the species belonging to these genera are proposed. Analysis of Penicillium below genus rank revealed the presence of 25 clades. A new classification system including both anamorph and teleomorph species is proposed and these 25 clades are treated here as sections. An overview of species belonging to each section is presented.
Collapse
Affiliation(s)
- J Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Doveri F, Pecchia S, Vergara M, Sarrocco S, Vannacci G. A comparative study of Neogymnomyces virgineus, a new keratinolytic species from dung, and its relationships with the Onygenales. FUNGAL DIVERS 2011. [DOI: 10.1007/s13225-011-0120-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Skinner S, Tsuneda A, Currah R. Morphology and development of the reticuloperidial ascomata of Auxarthron conjugatum. Mycologia 2006. [DOI: 10.1080/15572536.2006.11832679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - R.S. Currah
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9
| |
Collapse
|
11
|
Guarro J, Rubio C, Gené J, Cano J, Gil J, Benito R, Moranderia MJ, Miguez E. Case of keratitis caused by an uncommon Fusarium species. J Clin Microbiol 2004; 41:5823-6. [PMID: 14662993 PMCID: PMC308973 DOI: 10.1128/jcm.41.12.5823-5826.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusarium polyphialidicum caused a corneal ulcer in a Spanish man. Diagnosis was established by a histopathological study and repeated cultures. The isolate was clearly resistant in vitro to the antifungal agents tested. This is the first case of human or animal mycosis by this rare fungus.
Collapse
Affiliation(s)
- Josep Guarro
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.
| | | | | | | | | | | | | | | |
Collapse
|