1
|
Mardones W, Di Genova A, Cortés MP, Travisany D, Maass A, Eyzaguirre J. The genome sequence of the soft-rot fungus Penicillium purpurogenum reveals a high gene dosage for lignocellulolytic enzymes. Mycology 2018; 9:59-69. [PMID: 30123662 PMCID: PMC6059080 DOI: 10.1080/21501203.2017.1419995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/18/2017] [Indexed: 01/18/2023] Open
Abstract
The high lignocellulolytic activity displayed by the soft-rot fungus Penicillium purpurogenum has made it a target for the study of novel lignocellulolytic enzymes. We have obtained a reference genome of 36.2 Mb of non-redundant sequence (11,057 protein-coding genes). The 49 largest scaffolds cover 90% of the assembly, and Core Eukaryotic Genes Mapping Approach (CEGMA) analysis reveals that our assembly captures almost all protein-coding genes. RNA-seq was performed and 93.1% of the reads aligned to the assembled genome. These data, plus the independent sequencing of a set of genes of lignocellulose-degrading enzymes, validate the quality of the genome sequence. P. purpurogenum shows a higher number of proteins with CAZy motifs, transcription factors and transporters as compared to other sequenced Penicillia. These results demonstrate the great potential for lignocellulolytic activity of this fungus and the possible use of its enzymes in related industrial applications.
Collapse
Affiliation(s)
- Wladimir Mardones
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Alex Di Genova
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Erable Team, INRIA Grenoble, Montbonno, France.,Center for Mathematical Modeling, University of Chile, Santiago, Chile.,Center for Genome Regulation, University of Chile, Santiago, Chile
| | - María Paz Cortés
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Center for Mathematical Modeling, University of Chile, Santiago, Chile.,Center for Genome Regulation, University of Chile, Santiago, Chile
| | - Dante Travisany
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Center for Mathematical Modeling, University of Chile, Santiago, Chile.,Center for Genome Regulation, University of Chile, Santiago, Chile
| | - Alejandro Maass
- Center for Mathematical Modeling, University of Chile, Santiago, Chile.,Center for Genome Regulation, University of Chile, Santiago, Chile.,Department of Mathematical Engineering, University of Chile, Santiago, Chile
| | - Jaime Eyzaguirre
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
2
|
Heterologous expression and characterization of α-l-arabinofuranosidase 4 from Penicillium purpurogenum and comparison with the other isoenzymes produced by the fungus. Fungal Biol 2015; 119:641-7. [DOI: 10.1016/j.funbio.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 11/18/2022]
|
3
|
Saha SP, Ghosh S. Optimization of xylanase production by Penicillium citrinum xym2 and application in saccharification of agro-residues. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia - Molecular Phylogeny and Evolution of Fungi 2012; 29:39-54. [PMID: 23606764 PMCID: PMC3589794 DOI: 10.3767/003158512x659500] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/17/2012] [Indexed: 11/25/2022]
Abstract
Taxa of the Talaromyces purpurogenus complex were studied using a polyphasic approach. ITS barcodes were used to show relationships between species of the T. purpurogenus complex and other Talaromyces species. RPB1, RPB2, β-tubulin and calmodulin sequences were used to delimit phylogenetic species in the complex. These data, combined with phenotypic characters, showed that the complex contains four species: T. purpurogenus, T. ruber comb. nov. and two new species T. amestolkiae sp. nov. and T. stollii sp. nov. The latter three species belong to the same clade and T. purpurogenus is located in a phylogenetic distant clade. The four species all share similar conidiophore morphologies, but can be distinguished by macromorphological characters. Talaromyces ruber has a very distinct colony texture on malt extract agar (MEA), produces bright yellow and red mycelium on yeast extract sucrose agar (YES) and does not produce acid on creatine sucrose agar (CREA). In contrast, T. amestolkiae and T. stollii produce acid on CREA. These two species can be differentiated by the slower growth rate of T. amestolkiae on CYA incubated at 36 °C. Furthermore, T. stollii produces soft synnemata-like structures in the centre of colonies on most media. Extrolite analysis confirms the distinction of four species in the T. purpurogenus complex. The red diffusing pigment in T. purpurogenus is a mixture of the azaphilone extrolites also found in Monascus species, including N-glutarylrubropunctamine and rubropunctatin. Talaromyces purpurogenus produced four different kinds of mycotoxins: rubratoxins, luteoskyrin, spiculisporic acid and rugulovasins and these mycotoxins were not detected in the other three species.
Collapse
|
5
|
Sakamoto T, Inui M, Yasui K, Hosokawa S, Ihara H. Substrate specificity and gene expression of two Penicillium chrysogenum α-l-arabinofuranosidases (AFQ1 and AFS1) belonging to glycoside hydrolase families 51 and 54. Appl Microbiol Biotechnol 2012; 97:1121-30. [DOI: 10.1007/s00253-012-3978-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 11/29/2022]
|
6
|
Ravanal MC, Rosa L, Eyzaguirre J. Α-L-arabinofuranosidase 3 from Penicillium purpurogenum (ABF3): potential application in the enhancement of wine flavour and heterologous expression of the enzyme. Food Chem 2012; 134:888-93. [PMID: 23107704 DOI: 10.1016/j.foodchem.2012.02.200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/11/2012] [Accepted: 02/28/2012] [Indexed: 11/30/2022]
Abstract
An α-l-arabinofuranosidase (ABF3) from Penicillium purpurogenum was purified and its possible biotechnological application in the enhancement of wine flavour combined with P. purpurogenum β-glucosidase was studied. A must from Muscat of Alexandria was used to isolate the glycosides. The total monosaccharide (glucose, arabinose and xylose) levels in the glycosides were determined after acid hydrolysis, and were compared with the result of enzymatic hydrolysis. These results were analogous to those obtained in similar experiments using a commercial preparation, thus suggesting that the enzyme from P. purpurogenum may prove useful in this particular application. This prompted us to express the enzyme heterologously. The abf3 gene was thus expressed in Pichia pastoris. The recombinant enzyme was purified and it shows the same properties of the native ABF3 (substrate specificity, kinetic constants, pH and temperature optima and antibody cross-reactivity).
Collapse
Affiliation(s)
- Maria Cristina Ravanal
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, República 217, Santiago, Chile
| | | | | |
Collapse
|
7
|
Navarrete M, Callegari E, Eyzaguirre J. The effect of acetylated xylan and sugar beet pulp on the expression and secretion of enzymes by Penicillium purpurogenum. Appl Microbiol Biotechnol 2011; 93:723-41. [DOI: 10.1007/s00253-011-3744-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/02/2011] [Accepted: 11/16/2011] [Indexed: 01/26/2023]
|
8
|
Ravanal MC, Callegari E, Eyzaguirre J. Novel bifunctional alpha-L-arabinofuranosidase/xylobiohydrolase (ABF3) from Penicillium purpurogenum. Appl Environ Microbiol 2010; 76:5247-53. [PMID: 20562284 PMCID: PMC2916492 DOI: 10.1128/aem.00214-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
The soft rot fungus Penicillium purpurogenum grows on a variety of natural substrates and secretes various isoforms of xylanolytic enzymes, including three arabinofuranosidases. This work describes the biochemical properties as well as the nucleotide and amino acid sequences of arabinofuranosidase 3 (ABF3). This enzyme has been purified to homogeneity. It is a glycosylated monomer with a molecular weight of 50,700 and can bind cellulose. The enzyme is active with p-nitrophenyl alpha-L-arabinofuranoside and p-nitrophenyl beta-D-xylopyranoside with a K(m) of 0.65 mM and 12 mM, respectively. The enzyme is active on xylooligosaccharides, yielding products of shorter length, including xylose. However, it does not hydrolyze arabinooligosaccharides. When assayed with polymeric substrates, little arabinose is liberated from arabinan and debranched arabinan; however, it hydrolyzes arabinose and releases xylooligosaccharides from arabinoxylan. Sequencing both ABF3 cDNA and genomic DNA reveals that this gene does not contain introns and that the open reading frame is 1,380 nucleotides in length. The deduced mature protein is composed of 433 amino acids residues and has a calculated molecular weight of 47,305. The deduced amino acid sequence has been validated by mass spectrometry analysis of peptides from purified ABF3. A total of 482 bp of the promoter were sequenced; putative binding sites for transcription factors such as CreA (four), XlnR (one), and AreA (three) and two CCAAT boxes were found. The enzyme has two domains, one similar to proteins of glycosyl hydrolase family 43 at the amino-terminal end and a family 6 carbohydrate binding module at the carboxyl end. ABF3 is the first described modular family 43 enzyme from a fungal source, having both alpha-L-arabinofuranosidase and xylobiohydrolase functionalities.
Collapse
Affiliation(s)
- María Cristina Ravanal
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota
| | - Eduardo Callegari
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota
| | - Jaime Eyzaguirre
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
9
|
Fritz M, Ravanal MC, Braet C, eyzaguirre J. A family 51 α-l-arabinofuranosidase from Penicillium purpurogenum: purification, properties and amino acid sequence. ACTA ACUST UNITED AC 2008; 112:933-42. [DOI: 10.1016/j.mycres.2008.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 12/24/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
10
|
Gueimonde M, Noriega L, Margolles A, de los Reyes-Gavilán CG. Induction of alpha-L-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Arch Microbiol 2006; 187:145-53. [PMID: 17031615 DOI: 10.1007/s00203-006-0181-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/23/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
Bifidobacterium longum can be isolated from human faeces, some strains being considered probiotics. B. longum NIZO B667 produces an exo-acting alpha-L-arabinofuranosidase, AbfB, previously purified by us, that releases L-arabinose from arabinan and arabinoxylan. This activity was subjected to two-seven-fold induction by L-arabinose, D-xylose, L-arabitol and xylitol and to repression by glucose. Maximum activity was obtained at 48 h incubation except for D-xylose that was at 24 h. High concentrations (200 mM) of L-arabitol also caused repression of the arabinofuranosidase. A unique band of activity showing the same migration pattern as the purified AbfB was found in zymograms of cell free extracts, indicating that the activity was likely due to this sole enzyme. The assessment of the influence of inducers and repressors on the activity of AbfB and on the expression of the abfB gene by real time PCR indicated that regulation was transcriptional. DNA amplifications using a pair of degenerated primers flanking an internal fragment within alpha-L-arabinofuranosidase genes of the family 51 of glycoside hydrolases evidenced that these enzymes are widespread in Bifidobacterium. The aminoacidic sequences of bifidobacteria included a fragment of four to six residues in the position 136-141 that was absent in other microorganisms.
Collapse
Affiliation(s)
- Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias, CSIC, Ctra. de Infiesto s/n, apartado 85, 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
11
|
Chávez R, Bull P, Eyzaguirre J. The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 2006; 123:413-33. [PMID: 16569456 DOI: 10.1016/j.jbiotec.2005.12.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 12/06/2005] [Accepted: 12/23/2005] [Indexed: 11/22/2022]
Abstract
In nature, there are numerous microorganisms that efficiently degrade xylan, a major component of lignocellulose. In particular, filamentous fungi have demonstrated a great capability for secreting a wide range of xylanases, being the genus Aspergillus and Trichoderma the most extensively studied and reviewed among the xylan-producing fungi. However, an important amount of information about the production and genetics of xylanases from fungi of the genus Penicillium has accumulated in recent years. A great number of Penicillia are active producers of xylanolytic enzymes, and the use of xylanases from these species has acquired growing importance in biotechnological applications. This review summarizes our current knowledge about the properties, genetics, expression and biotechnological potential of xylanases from the genus Penicillium.
Collapse
Affiliation(s)
- Renato Chávez
- Unidad de Biotecnología, Instituto de Investigaciones Agropecuarias (INIA), CRI-Carillanca, Temuco, Chile
| | | | | |
Collapse
|
12
|
Numan MT, Bhosle NB. Alpha-L-arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 2005; 33:247-60. [PMID: 16385399 DOI: 10.1007/s10295-005-0072-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Recently, alpha-L-arabinofuranosidases (EC3.2.1.55) have received increased attention primarily due to their role in the degradation of lignocelluloses as well as their positive effect on the activity of other enzymes acting on lignocelluloses. As a result, these enzymes are used in many biotechnological applications including wine industry, clarification of fruit juices, digestion enhancement of animal feedstuffs and as a natural improver for bread. Moreover, these enzymes could be used to improve existing technologies and to develop new technologies. The production, mechanisms of action, classification, synergistic role, biochemical properties, substrate specificities, molecular biology and biotechnological applications of these enzymes have been reviewed in this article.
Collapse
Affiliation(s)
- Mondher Th Numan
- National Institute Of Oceanography, 403004 Dona Poula, Goa, India.
| | | |
Collapse
|