1
|
Scudine KGDO, Castelo PM, Hoppe JPM, Portella AK, Silveira PP. Early Influences on Development of Sensory Perception and Eating Habits. Adv Nutr 2024; 15:100325. [PMID: 39426730 DOI: 10.1016/j.advnut.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Infancy and early childhood are important periods for the development of food choices and eating preferences that are tracked into adult life, influencing weight gain, body composition, and metabolism and ultimately affecting the balance between health and disease. In this narrative review, we discuss studies focused on the effects of fetal programming and early food experiences, highlighting recent advances in the discovery of factors that contribute to the development of food preferences and eating behavior. Food preference can be influenced by early direct contact with flavors, textures, and aromas, as well as by environmental adversities during early development. Evidence suggests that exposure to intrauterine growth restriction is associated with increased preferences for highly palatable foods, such as those rich in carbohydrates and fats, over the life course. Early flavor experiences, whether from amniotic fluid or human milk, may also shape the development of food preferences. Finally, children are more likely to accept textures that they are able to manipulate, and early exposure to a range of textures facilitates the acceptance of foods of various textures later on. Improving dietary habits during gestation (fetal) and postnatal periods is of critical importance for the establishment of positive eating habits and healthy growth in infants and should be an important focus of primary prevention efforts.
Collapse
Affiliation(s)
- Kelly Guedes de Oliveira Scudine
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Paula Midori Castelo
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - João Paulo Maires Hoppe
- Department of Psychiatry, McGill University and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - André Krumel Portella
- Department of Psychiatry, McGill University and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
van Dijk MT, Talati A, Barrios PG, Crandall AJ, Lugo-Candelas C. Prenatal depression outcomes in the next generation: A critical review of recent DOHaD studies and recommendations for future research. Semin Perinatol 2024; 48:151948. [PMID: 39043475 DOI: 10.1016/j.semperi.2024.151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Prenatal depression, a common pregnancy-related risk with a prevalence of 10-20 %, may affect in utero development and socioemotional and neurodevelopmental outcomes in the next generation. Although there is a growing body of work that suggests prenatal depression has an independent and long-lasting effect on offspring outcomes, important questions remain, and findings often do not converge. The present review examines work carried out in the last decade, with an emphasis on studies focusing on mechanisms and leveraging innovative technologies and study designs to fill in gaps in research. Overall, the past decade of research continues to suggest that prenatal depression increases risk for offspring socioemotional problems and may alter early brain development by affecting maternal-fetal physiology during pregnancy. However, important limitations remain; lack of diversity in study samples, inconsistent consideration of potential confounders (e.g., genetics, postnatal depression, parenting), and restriction of examination to narrow time windows and single exposures. On the other hand, exciting work has begun uncovering potential mechanisms underlying transmission, including alterations in mitochondria functioning, epigenetics, and the prenatal microbiome. We review the evidence to date, identify limitations, and suggest strategies for the next decade of research to detect mechanisms as well as sources of plasticity and resilience to ensure this work translates into meaningful, actionable science that improves the lives of families.
Collapse
Affiliation(s)
- M T van Dijk
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - A Talati
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | | | - A J Crandall
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - C Lugo-Candelas
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States.
| |
Collapse
|
3
|
Willford JA, Kaufman JM. Through a teratological lens: A narrative review of exposure to stress and drugs of abuse during pregnancy on neurodevelopment. Neurotoxicol Teratol 2024; 105:107384. [PMID: 39187031 DOI: 10.1016/j.ntt.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Teratological research shows that both prenatal stress and prenatal substance exposure have a significant impact on neurodevelopmental outcomes in children. Using human research, the purpose of this narrative review is to explore the degree to which these exposures may represent complex prenatal and postnatal risks for the development of cognition and behavior in children. An understanding of the HPA axis and its function during pregnancy as well as the types and operationalization of prenatal stress provide a context for understanding the direct and indirect mechanisms by which prenatal stress affects brain and behavior development. In turn, prenatal substance exposure studies are evaluated for their importance in understanding variables that indicate a potential interaction with prenatal stress including reactivity to novelty, arousal, and stress reactivity during early childhood. The similarities and differences between prenatal stress exposure and prenatal substance exposure on neurodevelopmental outcomes including arousal and emotion regulation, cognition, behavior, stress reactivity, and risk for psychopathology are summarized. Further considerations for teratological studies of prenatal stress and/or substance exposure include identifying and addressing methodological challenges, embracing the complexity of pre-and postnatal environments in the research, and the importance of incorporating parenting and resilience into future studies.
Collapse
Affiliation(s)
- Jennifer A Willford
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America.
| | - Jesse M Kaufman
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America
| |
Collapse
|
4
|
Chan SY, Fitzgerald E, Ngoh ZM, Lee J, Chuah J, Chia JSM, Fortier MV, Tham EH, Zhou JH, Silveira PP, Meaney MJ, Tan AP. Examining the associations between microglia genetic capacity, early life exposures and white matter development at the level of the individual. Brain Behav Immun 2024; 119:781-791. [PMID: 38677627 DOI: 10.1016/j.bbi.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
There are inter-individual differences in susceptibility to the influence of early life experiences for which the underlying neurobiological mechanisms are poorly understood. Microglia play a role in environmental surveillance and may influence individual susceptibility to environmental factors. As an index of neurodevelopment, we estimated individual slopes of mean white matter fractional anisotropy (WM-FA) across three time-points (age 4.5, 6.0, and 7.5 years) for 351 participants. Individual variation in microglia reactivity was derived from an expression-based polygenic score(ePGS) comprised of Single Nucleotide Polymorphisms (SNPs) functionally related to the expression of microglia-enriched genes.A higher ePGS denotes an increased genetic capacity for the expression of microglia-related genes, and thus may confer a greater capacity to respond to the early environment and to influence brain development. We hypothesized that this ePGS would associate with the WM-FA index of neurodevelopment and moderate the influence of early environmental factors.Our findings show sex dependency, where a significant association between WM-FA and microglia ePGS was only obtained for females.We then examined associations with perinatal factors known to decrease (optimal birth outcomes and familial conditions) or increase (systemic inflammation) the risk for later mental health problems.In females, individuals with high microglia ePGS showed a negative association between systemic inflammation and WM-FA and a positive association between more advantageous environmental conditions and WM-FA. The microglia ePGS in females thus accounted for variations in the influence of the quality of the early environment on WM-FA.Finally, WM-FA slopes mediated the association of microglia ePGS with interpersonal problems and social hostility in females. Our findings suggest the genetic capacity for microglia function as a potential factor underlying differential susceptibility to early life exposuresthrough influences on neurodevelopment.
Collapse
Affiliation(s)
- Shi Yu Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Eamon Fitzgerald
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada
| | - Zhen Ming Ngoh
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Janice Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Jasmine Chuah
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Joanne S M Chia
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore 229899, Singapore; Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Elizabeth H Tham
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Juan H Zhou
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore; Department of Diagnostic Imaging, National University Health System, 1E Kent Ridge Rd, Singapore 119228, Singapore.
| |
Collapse
|
5
|
Fitzgerald E, Pokhvisneva I, Patel S, Yu Chan S, Peng Tan A, Chen H, Pelufo Silveira P, Meaney MJ. Microglial function interacts with the environment to affect sex-specific depression risk. Brain Behav Immun 2024; 119:597-606. [PMID: 38670238 DOI: 10.1016/j.bbi.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
There is a two-fold higher incidence of depression in females compared to men with recent studies suggesting a role for microglia in conferring this sex-dependent depression risk. In this study we investigated the nature of this relation. Using GWAS enrichment, gene-set enrichment analysis and Mendelian randomization, we found minimal evidence for a direct relation between genes functionally related to microglia and sex-dependent genetic risk for depression. We then used expression quantitative trait loci and single nucleus RNA-sequencing resources to generate polygenic scores (PGS) representative of individual variation in microglial function in the adult (UK Biobank; N = 54753-72682) and fetal (ALSPAC; N = 1452) periods. The adult microglial PGS moderated the association between BMI (UK Biobank; beta = 0.001, 95 %CI 0.0009 to 0.003, P = 7.74E-6) and financial insecurity (UK Biobank; beta = 0.001, 95 %CI 0.005 to 0.015, P = 2E-4) with depressive symptoms in females. The fetal microglia PGS moderated the association between maternal prenatal depressive symptoms and offspring depressive symptoms at 24 years in females (ALSPAC; beta = 0.04, 95 %CI 0.004 to 0.07, P = 0.03). We found no evidence for an interaction between the microglial PGS and depression risk factors in males. Our results illustrate a role for microglial function in the conferral of sex-dependent depression risk following exposure to a depression risk factor.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada.
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| | - Sachin Patel
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| | - Shi Yu Chan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore
| | - Ai Peng Tan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Diagnostic Imaging, National University Health System, Singapore; Brain - Body Initiative, Agency for Science, Technology & Research (A*STAR), Singapore
| | - Helen Chen
- Department of Psychological Medicine, KK Women's and Children's Hospital, Singapore; Duke-National University of Singapore, Singapore
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael J Meaney
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Brain - Body Initiative, Agency for Science, Technology & Research (A*STAR), Singapore.
| |
Collapse
|
6
|
Chen LM, Pokhvisneva I, Lahti-Pulkkinen M, Kvist T, Baldwin JR, Parent C, Silveira PP, Lahti J, Räikkönen K, Glover V, O'Connor TG, Meaney MJ, O'Donnell KJ. Independent Prediction of Child Psychiatric Symptoms by Maternal Mental Health and Child Polygenic Risk Scores. J Am Acad Child Adolesc Psychiatry 2024; 63:640-651. [PMID: 37977417 PMCID: PMC11105503 DOI: 10.1016/j.jaac.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/10/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Prenatal maternal symptoms of depression and anxiety are associated with an increased risk for child socioemotional and behavioral difficulties, supporting the fetal origins of mental health hypothesis. However, to date, studies have not considered specific genomic risk as a possible confound. METHOD The Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (n = 5,546) was used to test if child polygenic risk score for attention-deficit/hyperactivity disorder (ADHD), schizophrenia, or depression confounds or modifies the impact of prenatal maternal depression and anxiety on child internalizing, externalizing, and total emotional/behavioral symptoms from age 4 to 16 years. Longitudinal child and adolescent symptom data were analyzed in the ALSPAC cohort using generalized estimating equations. Replication analyses were done in an independent cohort (Prevention of Preeclampsia and Intrauterine Growth Restriction [PREDO] cohort; n = 514) from Finland, which provided complementary measures of maternal mental health and child psychiatric symptoms. RESULTS Maternal depression and anxiety and child polygenic risk scores independently and additively predicted behavioral and emotional symptoms from childhood through mid-adolescence. There was a robust prediction of child and adolescent symptoms from both prenatal maternal depression (generalized estimating equation estimate = 0.093, 95% CI 0.065-0.121, p = 2.66 × 10-10) and anxiety (generalized estimating equation estimate = 0.065, 95% CI 0.037-0.093, p = 1.62 × 10-5) after adjusting for child genomic risk for mental disorders. There was a similar independent effect of maternal depression (B = 0.156, 95% CI 0.066-0.246, p = .001) on child symptoms in the PREDO cohort. Genetically informed sensitivity analyses suggest that shared genetic risk only partially explains the reported association between prenatal maternal depression and offspring mental health. CONCLUSION These findings highlight the genomic contribution to the fetal origins of mental health hypothesis and further evidence that prenatal maternal depression and anxiety are robust in utero risks for child and adolescent psychiatric symptoms. PLAIN LANGUAGE SUMMARY Depression and anxiety affect approximately 15% of pregnant women, and children exposed to maternal depression or anxiety during pregnancy are at higher risk of developing mental health problems. However, the degree to which shared genetics explains the association between maternal and child mental health is unknown. In this study the authors generated polygenic risk scores (PRS), which provide a single measure of genetic risk for complex traits, to investigate the impact of shared genetic risk on the development of childhood mental health problems. Utilizing two longitudinal studies (n = 6,060), the authors found that PRS only partially explained the association between prenatal maternal depression and childhood mental health problems. These analyses show prenatal maternal depression remained a significant predictor of childhood mental health problems after accounting for shared genetic risk, further highlighting that prenatal maternal mental health is a robust predictor of child and adolescent mental health problems.
Collapse
Affiliation(s)
- Lawrence M Chen
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada
| | - Irina Pokhvisneva
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada
| | - Marius Lahti-Pulkkinen
- University of Helsinki, Finland; Finnish Institute for Health and Welfare, Finland; University of Edinburgh, United Kingdom
| | | | | | - Carine Parent
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada
| | - Patricia P Silveira
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada
| | - Jari Lahti
- University of Helsinki, Finland; Turku Institute for Advanced Studies, University of Turku, Finland
| | | | - Vivette Glover
- Institute of Reproductive and Developmental Biology, Imperial College London, United Kingdom
| | - Thomas G O'Connor
- University of Rochester, Rochester, New York; Wynne Center for Family Research, University of Rochester, Rochester, New York
| | - Michael J Meaney
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research (A∗STAR), Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kieran J O'Donnell
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut; Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
7
|
Miller JG, Gluckman PD, Fortier MV, Chong YS, Meaney MJ, Tan AP, Gotlib IH. Faster pace of hippocampal growth mediates the association between perinatal adversity and childhood depression. Dev Cogn Neurosci 2024; 67:101392. [PMID: 38761439 PMCID: PMC11127214 DOI: 10.1016/j.dcn.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024] Open
Abstract
Early life adversity has been posited to influence the pace of structural neurodevelopment. Most research, however, has relied on cross-sectional data, which do not reveal whether the pace of neurodevelopmental change is accelerated or slowed following early exposures. In a birth cohort study that included neuroimaging data obtained at 4.5, 6, and 7.5 years of age (N = 784), we examined associations among a cumulative measure of perinatal adversity relative to resources, nonlinear trajectories of hippocampal and amygdala volume, and children's subsequent depressive symptoms at 8.5 years of age. Greater adversity was associated with reduced bilateral hippocampal body volume in early childhood, but also to faster growth in the right hippocampal body across childhood. Further, the association between adversity and childhood depressive symptoms was mediated by faster hippocampal body growth. These findings suggest that perinatal adversity is biologically embedded in hippocampal structure development, including an accelerated pace of change in the right hippocampal body that is implicated in children's psychopathology risk. In addition, our findings suggest that reduced hippocampal volume is not inconsistent with accelerated hippocampal change; these aspects of structural development may typically co-occur, as smaller regional volumes in early childhood were associated with faster growth across childhood.
Collapse
Affiliation(s)
- Jonas G Miller
- Department of Psychological Sciences, University of Connecticut, CT, USA.
| | - Peter D Gluckman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marielle V Fortier
- Department of Diagnostic & Interventional Imaging, KK Women's and Children's Hospital, Singapore
| | - Yap Seng Chong
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, A⁎STAR Research Entities, Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Obstetrics & Gynecology, National University Health System, Singapore
| | - Michael J Meaney
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, A⁎STAR Research Entities, Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Douglas Mental Health University Institute, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada; Brain - Body Initiative, A⁎STAR Research Entities, Singapore
| | - Ai Peng Tan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, A⁎STAR Research Entities, Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Brain - Body Initiative, A⁎STAR Research Entities, Singapore; Department of Diagnostic Imaging, National University Health System, Singapore
| | - Ian H Gotlib
- Department of Psychology, Stanford University, CA, USA
| |
Collapse
|
8
|
Arcego DM, Buschdorf JP, O'Toole N, Wang Z, Barth B, Pokhvisneva I, Rayan NA, Patel S, de Mendonça Filho EJ, Lee P, Tan J, Koh MX, Sim CM, Parent C, de Lima RMS, Clappison A, O'Donnell KJ, Dalmaz C, Arloth J, Provençal N, Binder EB, Diorio J, Silveira PP, Meaney MJ. A Glucocorticoid-Sensitive Hippocampal Gene Network Moderates the Impact of Early-Life Adversity on Mental Health Outcomes. Biol Psychiatry 2024; 95:48-61. [PMID: 37406925 DOI: 10.1016/j.biopsych.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Early stress increases the risk for psychiatric disorders. Glucocorticoids are stress mediators that regulate transcriptional activity and morphology in the hippocampus, which is implicated in the pathophysiology of multiple psychiatric conditions. We aimed to establish the relevance of hippocampal glucocorticoid-induced transcriptional activity as a mediator of the effects of early life on later psychopathology in humans. METHODS RNA sequencing was performed with anterior and posterior hippocampal dentate gyrus from adult female macaques (n = 12/group) that were chronically treated with betamethasone (glucocorticoid receptor agonist) or vehicle. Coexpression network analysis identified a preserved gene network in the posterior hippocampal dentate gyrus that was strongly associated with glucocorticoid exposure. The single nucleotide polymorphisms in the genes in this network were used to create an expression-based polygenic score in humans. RESULTS The expression-based polygenic score significantly moderated the association between early adversity and psychotic disorders in adulthood (UK Biobank, women, n = 44,519) and on child peer relations (ALSPAC [Avon Longitudinal Study of Parents and Children], girls, n = 1666 for 9-year-olds and n = 1594 for 11-year-olds), an endophenotype for later psychosis. Analyses revealed that this network was enriched for glucocorticoid-induced epigenetic remodeling in human hippocampal cells. We also found a significant association between single nucleotide polymorphisms from the expression-based polygenic score and adult brain gray matter density. CONCLUSIONS We provide an approach for the use of transcriptomic data from animal models together with human data to study the impact of environmental influences on mental health. The results are consistent with the hypothesis that hippocampal glucocorticoid-related transcriptional activity mediates the effects of early adversity on neural mechanisms implicated in psychiatric disorders.
Collapse
Affiliation(s)
- Danusa Mar Arcego
- Douglas Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada.
| | - Jan-Paul Buschdorf
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Nicholas O'Toole
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Barbara Barth
- Douglas Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | | | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | | | - Patrick Lee
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Jennifer Tan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Ming Xuan Koh
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Chu Ming Sim
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Carine Parent
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | | | - Andrew Clappison
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Carla Dalmaz
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janine Arloth
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nadine Provençal
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Josie Diorio
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Patrícia Pelufo Silveira
- Douglas Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Michael J Meaney
- Douglas Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore; Brain Body Initiative, Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| |
Collapse
|
9
|
Bischoff AR, Dalle Molle R, Mucellini AB, Pokhvisneva I, Levitan RD, Meaney MJ, Silveira PP. Accumbal μ-opioid receptors and salt taste-elicited hedonic responses in a rodent model of prenatal adversity, and their correlates using human functional genomics. Stress 2024; 27:2294954. [PMID: 38140734 DOI: 10.1080/10253890.2023.2294954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Prenatal adversity is associated with behavioral obesogenic features such as preference for palatable foods. Salt appetite may play a role in the development of adiposity and its consequences in individuals exposed to prenatal adversity, and sodium consumption involves individual differences in accumbal µ-opioid receptors function. We investigated the hedonic responses to salt and the levels of µ-opioid receptors and tyrosine hydroxylase in the nucleus accumbens (Nacc) of pups from an animal model of prenatal dietary restriction. In children, we evaluated the interaction between fetal growth and the genetic background associated with the accumbal µ-opioid receptor gene (OPRM1) expression on sodium consumption during a snack test. Sprague-Dawley dams were randomly allocated from pregnancy day 10 to receive an ad libitum (Adlib) or a 50% restricted (FR) diet. The pups' hedonic responses to a salt solution (NaCl 2%) or water were evaluated on the first day of life. FR and Adlib pups differ in their hedonic responses to salt, and there were decreased levels of accumbal µ-opioid and p-µ-opioid receptors in FR pups. In humans, a test meal and genotyping from buccal epithelial cells were performed in 270 children (38 intrauterine growth restricted-IUGR) at 4 years old from a Canadian prospective cohort (MAVAN). The OPRM1 genetic score predicted the sodium intake in IUGR children, but not in controls. The identification of mechanisms involved in the brain response to prenatal adversity and its consequences in behavioral phenotypes and risk for chronic diseases later in life is important for preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Adrianne Rahde Bischoff
- Neonatal Hemodynamics, Stead Family Department of Pediatrics, Division of Neonatology, University of Iowa Stead Family Children's Hospital, Iowa City, IA, USA
| | - Roberta Dalle Molle
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Amanda Brondani Mucellini
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Robert D Levitan
- Centre for Addition and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Patrícia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Gateau K, Schlueter L, Pierce LJ, Thompson B, Gharib A, Durazo-Arvizu RA, Nelson CA, Levitt P. Exploratory study evaluating the relationships between perinatal adversity, oxidative stress, and infant neurodevelopment across the first year of life. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001984. [PMID: 38153909 PMCID: PMC10754429 DOI: 10.1371/journal.pgph.0001984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/13/2023] [Indexed: 12/30/2023]
Abstract
Early childhood adversity increases risk for negative lifelong impacts on health and wellbeing. Identifying the risk factors and the associated biological adaptations early in life is critical to develop scalable early screening tools and interventions. Currently, there are limited, reliable early childhood adversity measures that can be deployed prospectively, at scale, to assess risk in pediatric settings. The goal of this two-site longitudinal study was to determine if the gold standard measure of oxidative stress, F2-Isoprostanes, is potentially a reliable measure of a physiological response to adversity of the infant and mother. The study evaluated the independent relationships between F2-Isoprostanes, perinatal adversity and infant neurocognitive development. The study included mother-infant dyads born >36 weeks' gestation. Maternal demographic information and mental health assessments were utilized to generate a perinatal cumulative risk score. Infants' development was assessed at 6 and 12 months and both mothers and infants were assayed for F2-isoprostane levels in blood and urine, respectively. Statistical analysis revealed that cumulative risk scores correlated with higher maternal (p = 0.01) and infant (p = 0.05) F2-isoprostane levels at 6 months. Infant F2-isoprostane measures at 2 months were negatively associated with Mullen Scales of Early Learning Composite scores at 12 months (p = 0.04). Lastly, higher cumulative risk scores predicted higher average maternal F2-isoprostane levels across the 1-year study time period (p = 0.04). The relationship between perinatal cumulative risk scores and higher maternal and infant F2-isoprostanes at 6 months may reflect an oxidative stress status that informs a sensitive period in which a biomarker can be utilized prospectively to reveal the physiological impact of early adversity.
Collapse
Affiliation(s)
- Kameelah Gateau
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
- Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Lisa Schlueter
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, California, United States of America
| | - Lara J. Pierce
- York University, Department of Psychology, Toronto, ON, Canada
| | - Barbara Thompson
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Alma Gharib
- Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, California, United States of America
| | - Ramon A. Durazo-Arvizu
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
- Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Charles A. Nelson
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Graduate School of Education, Boston, Massachusetts, United States of America
| | - Pat Levitt
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
- Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- York University, Department of Psychology, Toronto, ON, Canada
| |
Collapse
|
11
|
Phua DY, Chen H, Yap F, Chong YS, Gluckman PD, Broekman BFP, Eriksson JG, Meaney MJ. Allostatic load in children: The cost of empathic concern. Proc Natl Acad Sci U S A 2023; 120:e2217769120. [PMID: 37725642 PMCID: PMC10523447 DOI: 10.1073/pnas.2217769120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Early-life adversity affects long-term health outcomes but there is considerable interindividual variability in susceptibility to environmental influences. We proposed that positive psychological characteristics that reflect engagement with context, such as being concerned about people or performance on tasks (i.e., empathic concern), could moderate the interindividual variation in sensitivity to the quality of the early environment. We studied 526 children of various Asian nationalities in Singapore (46.6% female, 13.4% below the poverty line) with longitudinal data on perinatal and childhood experiences, maternal report on empathic concern of the child, and a comprehensive set of physiological measures reflecting pediatric allostatic load assessed at 6 y of age. The perinatal and childhood experiences included adversities and positive experiences. We found that cumulative adverse childhood experience was positively associated with allostatic load of children at 6 y of age at higher levels of empathic concern but not significantly associated at lower levels of empathic concern. This finding reveals evidence for the importance of empathic concern as a psychological characteristic that moderates the developmental impact of environmental influences, serving as a source for vulnerability to adversities in children.
Collapse
Affiliation(s)
- Desiree Y. Phua
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore117609, Republic of Singapore
| | - Helen Chen
- Department of Psychological Medicine, Kandang Kerbau Women’s and Children’s Hospital, Singapore229899, Republic of Singapore
- Paediatric Medicine Academic Clinical Programme, Duke-National University of Singapore, Singapore169857, Republic of Singapore
| | - Fabian Yap
- Department of Psychological Medicine, Kandang Kerbau Women’s and Children’s Hospital, Singapore229899, Republic of Singapore
- Department of Paediatric Medicine, Kandang Kerbay Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore229899, Republic of Singapore
| | - Yap Seng Chong
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore117609, Republic of Singapore
- Yong Loo Lin School of Medicine, Human Potential Translational Research Programme and O&G Department, National University of Singapore, Singapore117597, Singapore
| | - Peter D. Gluckman
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore117609, Republic of Singapore
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland1023, New Zealand
- Public Health Research Program, Folkhalsan Research Center, Helsinki00250, Finland
| | - Birit F. P. Broekman
- Department of Psychiatry, Amsterdam University Medical Centers (UMC) and Onze Lieve Vrouwe Gasthuis (OLVG), Vrije Universiteit (VU), Amsterdam1081 HV, The Netherlands
| | - Johan G. Eriksson
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore117609, Republic of Singapore
- Yong Loo Lin School of Medicine, Human Potential Translational Research Programme and O&G Department, National University of Singapore, Singapore117597, Singapore
- Public Health Research Program, Folkhalsan Research Center, Helsinki00250, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki00100, Finland
| | - Michael J. Meaney
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore117609, Republic of Singapore
- Yong Loo Lin School of Medicine, Human Potential Translational Research Programme and O&G Department, National University of Singapore, Singapore117597, Singapore
- Brain-Body Initiative, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Republic of Singapore
- Sackler Program for Epigenetics and Psychobiology at McGill University, MontrealQCH3A 0G4, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, MontrealQCH3A 0G4, Canada
- Brain-Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore138632, Republic of Singapore
| |
Collapse
|
12
|
Babineau V, Jolicoeur-Martineau A, Szekely E, Green CG, Sassi R, Gaudreau H, Levitan RD, Lydon J, Steiner M, O'Donnell KJ, Kennedy JL, Burack JA, Wazana A. Maternal prenatal depression is associated with dysregulation over the first five years of life moderated by child polygenic risk for comorbid psychiatric problems. Dev Psychobiol 2023; 65:e22395. [PMID: 37338256 DOI: 10.1002/dev.22395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 06/21/2023]
Abstract
Dysregulation is a combination of emotion, behavior, and attention problems associated with lifelong psychiatric comorbidity. There is evidence for the stability of dysregulation from childhood to adulthood, which would be more fully characterized by determining the likely stability from infancy to childhood. Early origins of dysregulation can further be validated and contextualized in association with environmental and biological factors, such as prenatal stress and polygenic risk scores (PRS) for overlapping child psychiatric problems. We aimed to determine trajectories of dysregulation from 3 months to 5 years (N = 582) in association with maternal prenatal depression moderated by multiple child PRS (N = 232 pairs with available PRS data) in a prenatal cohort. Mothers reported depression symptoms at 24-26 weeks' gestation and child dysregulation at 3, 6, 18, 36, 48, and 60 months. The PRS were for major depressive disorder, attention deficit hyperactivity disorder, cross disorder, and childhood psychiatric problems. Covariates were biological sex, maternal education, and postnatal depression. Analyses included latent classes and regression. Two dysregulation trajectories emerged: persistently low dysregulation (94%), and increasingly high dysregulation (6%). Stable dysregulation emerged at 18 months. High dysregulation was associated with maternal prenatal depression, moderated by PRS for child comorbid psychiatric problems. Males were at greater risk of high dysregulation.
Collapse
Affiliation(s)
- Vanessa Babineau
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | | | - Eszter Szekely
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | - Roberto Sassi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hélène Gaudreau
- Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Robert D Levitan
- Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Toronto, Ontario, Canada
| | - John Lydon
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Meir Steiner
- Women's Health Concerns Clinic, St-Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Kieran J O'Donnell
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, USA
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jacob A Burack
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Ashley Wazana
- Institute of Community and Family Psychiatry, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Sunderji A, Gallant HD, Hall A, Davis AD, Pokhvisneva I, Meaney MJ, Silveira PP, Sassi RB, Hall GB. Serotonin transporter (5-HTT) gene network moderates the impact of prenatal maternal adversity on orbitofrontal cortical thickness in middle childhood. PLoS One 2023; 18:e0287289. [PMID: 37319261 PMCID: PMC10270637 DOI: 10.1371/journal.pone.0287289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
In utero, the developing brain is highly susceptible to the environment. For example, adverse maternal experiences during the prenatal period are associated with outcomes such as altered neurodevelopment and emotion dysregulation. Yet, the underlying biological mechanisms remain unclear. Here, we investigate whether the function of a network of genes co-expressed with the serotonin transporter in the amygdala moderates the impact of prenatal maternal adversity on the structure of the orbitofrontal cortex (OFC) in middle childhood and/or the degree of temperamental inhibition exhibited in toddlerhood. T1-weighted structural MRI scans were acquired from children aged 6-12 years. A cumulative maternal adversity score was used to conceptualize prenatal adversity and a co-expression based polygenic risk score (ePRS) was generated. Behavioural inhibition at 18 months was assessed using the Early Childhood Behaviour Questionnaire (ECBQ). Our results indicate that in the presence of a low functioning serotonin transporter gene network in the amygdala, higher levels of prenatal adversity are associated with greater right OFC thickness at 6-12 years old. The interaction also predicts temperamental inhibition at 18 months. Ultimately, we identified important biological processes and structural modifications that may underlie the link between early adversity and future deviations in cognitive, behavioural, and emotional development.
Collapse
Affiliation(s)
- Aleeza Sunderji
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Heather D. Gallant
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Alexander Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Andrew D. Davis
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Irina Pokhvisneva
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain–Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patricia P. Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Roberto B. Sassi
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Geoffrey B. Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Hartman S, Belsky J, Pluess M. Prenatal programming of environmental sensitivity. Transl Psychiatry 2023; 13:161. [PMID: 37164986 PMCID: PMC10172185 DOI: 10.1038/s41398-023-02461-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
According to several theories, people differ in their sensitivity to environmental influences with some more susceptible than others to both supportive and adverse contextual conditions. Such differences in environmental sensitivity have a genetic basis but are also shaped by environmental factors. Herein we narratively build on our previous work proposing that prenatal experiences contribute to the development of environmental sensitivity. This hypothesis of prenatal programming of postnatal plasticity has considerable empirical support. After presenting illustrative animal and human evidence consistent with this claim, we discuss a range of biological mechanisms likely involved in the pathway from prenatal stress exposure to postnatal environmental sensitivity. We also consider work suggesting that genetic differences, gender, as well as the timing, duration and intensity of prenatal exposures may moderate the effects of prenatal programming on postnatal environmental susceptibility or sensitivity. Before concluding, we highlight "unknowns in the prenatal programming of environmental sensitivity" and their practical implications. Ultimately, we conclude that prenatal stress does not necessarily predispose individuals to problematical development, but rather increases sensitivity to both adverse and supportive postnatal contexts. Thus, prenatal stress may actually foster positive development if paired with supportive and caring postnatal environments.
Collapse
Affiliation(s)
- Sarah Hartman
- Department of Human Eology, University of California, Davis, CA, USA
| | - Jay Belsky
- Department of Human Eology, University of California, Davis, CA, USA
| | - Michael Pluess
- Department of Psychological Sciences, School of Psychology, University of Surrey, Guildford, UK.
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
15
|
Silveira PP, Meaney MJ. Examining the biological mechanisms of human mental disorders resulting from gene-environment interdependence using novel functional genomic approaches. Neurobiol Dis 2023; 178:106008. [PMID: 36690304 DOI: 10.1016/j.nbd.2023.106008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
We explore how functional genomics approaches that integrate datasets from human and non-human model systems can improve our understanding of the effect of gene-environment interplay on the risk for mental disorders. We start by briefly defining the G-E paradigm and its challenges and then discuss the different levels of regulation of gene expression and the corresponding data existing in humans (genome wide genotyping, transcriptomics, DNA methylation, chromatin modifications, chromosome conformational changes, non-coding RNAs, proteomics and metabolomics), discussing novel approaches to the application of these data in the study of the origins of mental health. Finally, we discuss the multilevel integration of diverse types of data. Advance in the use of functional genomics in the context of a G-E perspective improves the detection of vulnerabilities, informing the development of preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore; Brain - Body Initiative, Agency for Science, Technology and Research (ASTAR), Singapore.
| |
Collapse
|
16
|
Shah S, Laplante D, Atkinson L, Wazana A. From temperament and parenting to attachment: a review of the interplay of gene and environment factors in the developmental pathway to attachment. Curr Opin Psychiatry 2022; 35:401-408. [PMID: 35959551 DOI: 10.1097/yco.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Attachment represents an aspect of the parent-child relationship by encapsulating behaviours and stress management strategies. Although attachment is not considered a measure of psychopathology, some attachment styles place children at higher risk for psychopathologies. The origins of attachment have historically thought to be either parenting-related variables, or temperament. More recently, there has been accumulated evidence of gene × environment interactions in attachment, temperament, and parenting. This review aims to cover shared gene × environment pathways between these variables, introduce recent relevant insights from prenatal programming research, and offer a synthesized developmental cascade model of attachment. RECENT FINDINGS Carriers of gene polymorphisms related to stress neurobiology respond differently to environments than noncarriers according to two patterns: attachment research shows inconsistent diathesis-stress between gene polymorphisms and environment, and temperament, stress physiology, and prenatal programming research show clear patterns of differential susceptibility. SUMMARY By synthesizing prenatal and postnatal findings, a model of attachment emerges in which individuals more susceptible to environmental influences are carriers of specific genes, whose endophenotypic markers include stress biology and phenotypic markers include temperament. Intervention should, therefore, focus on parenting and stress regulation strategies for these individuals.
Collapse
Affiliation(s)
- Shalaka Shah
- Jewish General Hospital, Lady Davis Institute for Medical Research, and McGill University
| | - David Laplante
- Jewish General Hospital, Lady Davis Institute for Medical Research
| | | | - Ashley Wazana
- Jewish General Hospital, Lady Davis Institute for Medical Research, and McGill University
| |
Collapse
|
17
|
de Lima RMS, Barth B, Mar Arcego D, de Mendonça Filho EJ, Patel S, Wang Z, Pokhvisneva I, Parent C, Levitan RD, Kobor MS, de Vasconcellos Bittencourt APS, Meaney MJ, Dalmaz C, Silveira PP. Leptin receptor co-expression gene network moderates the effect of early life adversity on eating behavior in children. Commun Biol 2022; 5:1092. [PMID: 36241774 PMCID: PMC9568584 DOI: 10.1038/s42003-022-03992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Leptin influences eating behavior. Exposure to early adversity is associated with eating behaviour disorders and metabolic syndrome, but the role of the leptin receptor on this relationship is poorly explored. We investigated whether individual differences in brain region specific leptin receptor (LepR) gene networks could moderate the effects of early adversity on eating behavior and metabolism. We created an expression-based polygenic risk score (ePRS) reflecting variations in the function of LepR gene network in prefrontal cortex and hypothalamus to investigate the interactions between a cumulative index of postnatal adversity on eating behavior in two independent birth cohorts (MAVAN and GUSTO). To explore whether variations in the prefrontal cortex or hypothalamic genetic scores could be associated with metabolic measurements, we also assessed the relationship between LepR-ePRS and fasting blood glucose and leptin levels in a third independent cohort (ALSPAC). We identified significant interaction effects between postnatal adversity and prefrontal-based LepR-ePRS on the Child Eating Behavior Questionnaire scores. In MAVAN, we observed a significant interaction effect on food enjoyment at 48 months (β = 61.58, p = 0.015) and 72 months (β = 97.78, p = 0.001); food responsiveness at 48 months (β = 83.79, p = 0.009) satiety at 48 months (β = −43.63, p = 0.047). Similar results were observed in the GUSTO cohort, with a significant interaction effect on food enjoyment (β = 30.48, p = 0.006) food fussiness score (β = −24.07, p = 0.02) and satiety score at 60 months (β = −17.00, p = 0.037). No effects were found when focusing on the hypothalamus-based LepR-ePRS on eating behavior in MAVAN and GUSTO cohorts, and there was no effect of hypothalamus and prefrontal cortex based ePRSs on metabolic measures in ALSPAC. Our study indicated that exposure to postnatal adversity interacts with prefrontal cortex LepR-ePRS to moderate eating behavior, suggesting a neurobiological mechanism associated with the development of eating behavior problems in response to early adversity. The knowledge of these mechanisms may guide the understanding of eating patterns associated with risk for obesity in response to fluctuations in stress exposure early in life. An expression-based polygenic risk score analysis of leptin receptor (LepR) genes suggests that LepR-specific genes co-expressed in the prefrontal cortex interact with exposure to postnatal adversity, potentially modulating eating behavior in children.
Collapse
Affiliation(s)
- Randriely Merscher Sobreira de Lima
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Barbara Barth
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
| | - Danusa Mar Arcego
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Euclides José de Mendonça Filho
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Programa de Pós-Graduação em Psicologia, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Robert D Levitan
- Department of Psychiatry, University of Toronto and Centre for Addiction and Mental Health, 250 College St, Toronto, Ontario, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC, Canada
| | | | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Novel functional genomics approaches bridging neuroscience and psychiatry. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519472 PMCID: PMC10382709 DOI: 10.1016/j.bpsgos.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The possibility of establishing a metric of individual genetic risk for a particular disease or trait has sparked the interest of the clinical and research communities, with many groups developing and validating genomic profiling methodologies for their potential application in clinical care. Current approaches for calculating genetic risk to specific psychiatric conditions consist of aggregating genome-wide association studies-derived estimates into polygenic risk scores, which broadly represent the number of inherited risk alleles for an individual. While the traditional approach for polygenic risk score calculation aggregates estimates of gene-disease associations, novel alternative approaches have started to consider functional molecular phenotypes that are closer to genetic variation and are less penalized by the multiple testing required in genome-wide association studies. Moving the focus from genotype-disease to genotype-gene regulation frameworks, these novel approaches incorporate prior knowledge regarding biological processes involved in disease and aggregate estimates for the association of genotypes and phenotypes using multi-omics data modalities. In this review, we discuss and list different functional genomics tools that can be used and integrated to inform researchers and clinicians for a better understanding and diagnosis of psychopathology. We suggest that these novel approaches can help generate biologically driven hypotheses for polygenic signals that can ultimately serve the clinical community as potential biomarkers of psychiatric disease susceptibility.
Collapse
|
19
|
Triplett RL, Lean RE, Parikh A, Miller JP, Alexopoulos D, Kaplan S, Meyer D, Adamson C, Smyser TA, Rogers CE, Barch DM, Warner B, Luby JL, Smyser CD. Association of Prenatal Exposure to Early-Life Adversity With Neonatal Brain Volumes at Birth. JAMA Netw Open 2022; 5:e227045. [PMID: 35412624 PMCID: PMC9006107 DOI: 10.1001/jamanetworkopen.2022.7045] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Importance Exposure to early-life adversity alters the structural development of key brain regions underlying neurodevelopmental impairments. The association between prenatal exposure to adversity and brain structure at birth remains poorly understood. Objective To examine whether prenatal exposure to maternal social disadvantage and psychosocial stress is associated with neonatal global and regional brain volumes and cortical folding. Design, Setting, and Participants This prospective, longitudinal cohort study included 399 mother-infant dyads of sociodemographically diverse mothers recruited in the first or early second trimester of pregnancy and their infants, who underwent brain magnetic resonance imaging in the first weeks of life. Mothers were recruited from local obstetric clinics in St Louis, Missouri from September 1, 2017, to February 28, 2020. Exposures Maternal social disadvantage and psychosocial stress in pregnancy. Main Outcomes and Measures Confirmatory factor analyses were used to create latent constructs of maternal social disadvantage (income-to-needs ratio, Area Deprivation Index, Healthy Eating Index, educational level, and insurance status) and psychosocial stress (Perceived Stress Scale, Edinburgh Postnatal Depression Scale, Everyday Discrimination Scale, and Stress and Adversity Inventory). Neonatal cortical and subcortical gray matter, white matter, cerebellum, hippocampus, and amygdala volumes were generated using semiautomated, age-specific, segmentation pipelines. Results A total of 280 mothers (mean [SD] age, 29.1 [5.3] years; 170 [60.7%] Black or African American, 100 [35.7%] White, and 10 [3.6%] other race or ethnicity) and their healthy, term-born infants (149 [53.2%] male; mean [SD] infant gestational age, 38.6 [1.0] weeks) were included in the analysis. After covariate adjustment and multiple comparisons correction, greater social disadvantage was associated with reduced cortical gray matter (unstandardized β = -2.0; 95% CI, -3.5 to -0.5; P = .01), subcortical gray matter (unstandardized β = -0.4; 95% CI, -0.7 to -0.2; P = .003), and white matter (unstandardized β = -5.5; 95% CI, -7.8 to -3.3; P < .001) volumes and cortical folding (unstandardized β = -0.03; 95% CI, -0.04 to -0.01; P < .001). Psychosocial stress showed no association with brain metrics. Although social disadvantage accounted for an additional 2.3% of the variance of the left hippocampus (unstandardized β = -0.03; 95% CI, -0.05 to -0.01), 2.3% of the right hippocampus (unstandardized β = -0.03; 95% CI, -0.05 to -0.01), 3.1% of the left amygdala (unstandardized β = -0.02; 95% CI, -0.03 to -0.01), and 2.9% of the right amygdala (unstandardized β = -0.02; 95% CI, -0.03 to -0.01), no regional effects were found after accounting for total brain volume. Conclusions and Relevance In this baseline assessment of an ongoing cohort study, prenatal social disadvantage was associated with global reductions in brain volumes and cortical folding at birth. No regional specificity for the hippocampus or amygdala was detected. Results highlight that associations between poverty and brain development begin in utero and are evident early in life. These findings emphasize that preventive interventions that support fetal brain development should address parental socioeconomic hardships.
Collapse
Affiliation(s)
- Regina L. Triplett
- Department of Neurology, Washington University in St Louis, St Louis, Missouri
| | - Rachel E. Lean
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Amisha Parikh
- School of Medicine, Washington University in St Louis, St Louis, Missouri
| | - J. Philip Miller
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | | | - Sydney Kaplan
- Department of Neurology, Washington University in St Louis, St Louis, Missouri
| | - Dominique Meyer
- Department of Neurology, Washington University in St Louis, St Louis, Missouri
| | - Christopher Adamson
- Developmental Imaging, Murdoch Children’s Institute, Melbourne, Australia
- Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
| | - Tara A. Smyser
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Cynthia E. Rogers
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Deanna M. Barch
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Department of Radiology, Washington University in St Louis, St Louis, Missouri
| | - Barbara Warner
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Joan L. Luby
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Christopher D. Smyser
- Department of Neurology, Washington University in St Louis, St Louis, Missouri
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
- Department of Radiology, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
20
|
Silveira PP, More L, Gottfried C. Editorial: Gene and Environment Interactions in Neurodevelopmental Disorders. Front Behav Neurosci 2022; 16:893662. [PMID: 35431834 PMCID: PMC9008214 DOI: 10.3389/fnbeh.2022.893662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Patrícia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute & Department of Psychiatry, McGill University, Montreal, QC, Canada
- *Correspondence: Patrícia Pelufo Silveira
| | - Lorenzo More
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Carmem Gottfried
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
21
|
Restrepo-Lozano JM, Pokhvisneva I, Wang Z, Patel S, Meaney MJ, Silveira PP, Flores C. Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children. Mol Psychiatry 2022; 27:2742-2750. [PMID: 35388180 PMCID: PMC9156406 DOI: 10.1038/s41380-022-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Inhibitory control deficits are prevalent in multiple neuropsychiatric conditions. The communication- as well as the connectivity- between corticolimbic regions of the brain are fundamental for eliciting inhibitory control behaviors, but early markers of vulnerability to this behavioral trait are yet to be discovered. The gradual maturation of the prefrontal cortex (PFC), in particular of the mesocortical dopamine innervation, mirrors the protracted development of inhibitory control; both are present early in life, but reach full maturation by early adulthood. Evidence suggests the involvement of the Netrin-1/DCC signaling pathway and its associated gene networks in corticolimbic development. Here we investigated whether an expression-based polygenic score (ePRS) based on corticolimbic-specific DCC gene co-expression networks associates with impulsivity-related phenotypes in community samples of children. We found that lower ePRS scores associate with higher measurements of impulsive choice in 6-year-old children tested in the Information Sampling Task and with impulsive action in 6- and 10-year-old children tested in the Stop Signal Task. We also found the ePRS to be a better overall predictor of impulsivity when compared to a conventional PRS score comparable in size to the ePRS (4515 SNPs in our discovery cohort) and derived from the latest GWAS for ADHD. We propose that the corticolimbic DCC-ePRS can serve as a novel type of marker for impulsivity-related phenotypes in children. By adopting a systems biology approach based on gene co-expression networks and genotype-gene expression (rather than genotype-disease) associations, these results further validate our methodology to construct polygenic scores linked to the overall biological function of tissue-specific gene networks.
Collapse
Affiliation(s)
- Jose M. Restrepo-Lozano
- grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada ,grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada
| | - Irina Pokhvisneva
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Zihan Wang
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Sachin Patel
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Michael J. Meaney
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Patricia P. Silveira
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montreal, QC, Canada. .,Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Batra A, Latsko M, Portella AK, Silveira PP. Early adversity and insulin: neuroendocrine programming beyond glucocorticoids. Trends Endocrinol Metab 2021; 32:1031-1043. [PMID: 34635400 DOI: 10.1016/j.tem.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
Exposure to direct or contextual adversities during early life programs the functioning of the brain and other biological systems, contributing to the development of physical as well as mental health issues in the long term. While the role of glucocorticoids in mediating the outcomes of early adversity has been explored for many years, less attention has been given to insulin. Beyond its metabolic effects in the periphery, central insulin action affects synaptic plasticity, brain neurotransmission, and executive functions. Knowledge about the interactions between the peripheral metabolism and brain function from a developmental perspective can contribute to prevention and diagnosis programs, as well as early interventions for vulnerable populations.
Collapse
Affiliation(s)
- Aashita Batra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| | - Maeson Latsko
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Healthy Brains for Healthy Lives, McGill University, Montreal, QC, Canada
| | - Andre Krumel Portella
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Patricia P Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
de Mendonça Filho EJ, Barth B, Bandeira DR, de Lima RMS, Arcego DM, Dalmaz C, Pokhvisneva I, Sassi RB, Hall GBC, Meaney MJ, Silveira PP. Cognitive Development and Brain Gray Matter Susceptibility to Prenatal Adversities: Moderation by the Prefrontal Cortex Brain-Derived Neurotrophic Factor Gene Co-expression Network. Front Neurosci 2021; 15:744743. [PMID: 34899157 PMCID: PMC8652300 DOI: 10.3389/fnins.2021.744743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Previous studies focused on the relationship between prenatal conditions and neurodevelopmental outcomes later in life, but few have explored the interplay between gene co-expression networks and prenatal adversity conditions on cognitive development trajectories and gray matter density. Methods: We analyzed the moderation effects of an expression polygenic score (ePRS) for the Brain-derived Neurotrophic Factor gene network (BDNF ePRS) on the association between prenatal adversity and child cognitive development. A score based on genes co-expressed with the prefrontal cortex (PFC) BDNF was created, using the effect size of the association between the individual single nucleotide polymorphisms (SNP) and the BDNF expression in the PFC. Cognitive development trajectories of 157 young children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort were assessed longitudinally in 4-time points (6, 12, 18, and 36 months) using the Bayley-II mental scales. Results: Linear mixed-effects modeling indicated that BDNF ePRS moderates the effects of prenatal adversity on cognitive growth. In children with high BDNF ePRS, higher prenatal adversity was associated with slower cognitive development in comparison with those exposed to lower prenatal adversity. Parallel-Independent Component Analysis (pICA) suggested that associations of expression-based SNPs and gray matter density significantly differed between low and high prenatal adversity groups. The brain IC included areas involved in visual association processes (Brodmann area 19 and 18), reallocation of attention, and integration of information across the supramodal cortex (Brodmann area 10). Conclusion: Cognitive development trajectories and brain gray matter seem to be influenced by the interplay of prenatal environmental conditions and the expression of an important BDNF gene network that guides the growth and plasticity of neurons and synapses.
Collapse
Affiliation(s)
- Euclides José de Mendonça Filho
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Denise Ruschel Bandeira
- Programa de Pós-Graduação em Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Randriely Merscher Sobreira de Lima
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Programa de Pós-Graduação em Bioquímica e Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danusa Mar Arcego
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós-Graduação em Bioquímica e Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | | | - Geoffrey B. C. Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael J. Meaney
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| |
Collapse
|
24
|
Batra A, Chen LM, Wang Z, Parent C, Pokhvisneva I, Patel S, Levitan RD, Meaney MJ, Silveira PP. Early Life Adversity and Polygenic Risk for High Fasting Insulin Are Associated With Childhood Impulsivity. Front Neurosci 2021; 15:704785. [PMID: 34539334 PMCID: PMC8441000 DOI: 10.3389/fnins.2021.704785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/03/2021] [Indexed: 01/11/2023] Open
Abstract
While the co-morbidity between metabolic and psychiatric behaviors is well-established, the mechanisms are poorly understood, and exposure to early life adversity (ELA) is a common developmental risk factor. ELA is associated with altered insulin sensitivity and poor behavioral inhibition throughout life, which seems to contribute to the development of metabolic and psychiatric disturbances in the long term. We hypothesize that a genetic background associated with higher fasting insulin interacts with ELA to influence the development of executive functions (e.g., impulsivity in young children). We calculated the polygenic risk scores (PRSs) from the genome-wide association study (GWAS) of fasting insulin at different thresholds and identified the subset of single nucleotide polymorphisms (SNPs) that best predicted peripheral insulin levels in children from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort [N = 467; pt– initial = 0.24 (10,296 SNPs), pt– refined = 0.05 (57 SNPs)]. We then calculated the refined PRS (rPRS) for fasting insulin at this specific threshold in the children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort and investigated its interaction effect with adversity on an impulsivity task applied at 36 months. We found a significant effect of interaction between fasting insulin rPRS and adversity exposure predicting impulsivity measured by the Snack Delay Task at 36 months [β = −0.329, p = 0.024], such that higher PRS [β = −0.551, p = 0.009] was linked to more impulsivity in individuals exposed to more adversity. Enrichment analysis (MetaCoreTM) of the SNPs that compose the fasting insulin rPRS at this threshold was significant for certain nervous system development processes including dopamine D2 receptor signaling. Additional enrichment analysis (FUMA) of the genes mapped from the SNPs in the fasting insulin rPRS showed enrichment with the accelerated cognitive decline GWAS. Therefore, the genetic background associated with risk for adult higher fasting insulin moderates the impact of early adversity on childhood impulsivity.
Collapse
Affiliation(s)
- Aashita Batra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Lawrence M Chen
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Robert D Levitan
- Mood and Anxiety Disorders Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada.,Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Patricia Pelufo Silveira
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Dalmaz C, Barth B, Pokhvisneva I, Wang Z, Patel S, Quillfeldt JA, Mendonça Filho EJ, de Lima RMS, Arcego DM, Sassi RB, Hall GBC, Kobor MS, Meaney MJ, Silveira PP. Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children. Neurobiol Learn Mem 2021; 185:107509. [PMID: 34454100 DOI: 10.1016/j.nlm.2021.107509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.
Collapse
Affiliation(s)
- Carla Dalmaz
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Depto Bioquimica e PPG CB Bioquimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Jorge A Quillfeldt
- PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Depto Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Euclides J Mendonça Filho
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Randriely Merscher Sobreira de Lima
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danusa M Arcego
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Patrícia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Potter-Dickey A, Letourneau N, Silveira PP, Ntanda H, Giesbrecht GF, Hart M, Dewell S, de Koning APJ. Associations Among Parental Caregiving Quality, Cannabinoid Receptor 1 Expression-Based Polygenic Scores, and Infant-Parent Attachment: Evidence for Differential Genetic Susceptibility? Front Neurosci 2021; 15:704392. [PMID: 34385904 PMCID: PMC8353245 DOI: 10.3389/fnins.2021.704392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Attachment is a biological evolutionary system contributing to infant survival. When primary caregivers/parents are sensitive and responsive to their infants’ needs, infants develop a sense of security. Secure infant attachment has been linked to healthy brain and organ-system development. Belsky and colleagues proposed the term differential susceptibility to describe context-dependent associations between genetic variations and behavioral outcomes as a function of parenting environments. Variations in the Cannabinoid Receptor Gene 1 (CNR1) are associated with memory, mood, and reward and connote differential susceptibility to more and less optimal parental caregiving quality in predicting children’s behavioral problems.
Collapse
Affiliation(s)
| | - Nicole Letourneau
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada.,Owerko Centre, Child Development Centre, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Henry Ntanda
- Owerko Centre, Child Development Centre, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Owerko Centre, Child Development Centre, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Martha Hart
- Owerko Centre, Child Development Centre, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah Dewell
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada.,School of Nursing, University of Northern British Columbia, Prince George, BC, Canada
| | - A P Jason de Koning
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Parent C, Pokhvisneva I, de Mendonça Filho EJ, O'Donnell KJ, Meaney MJ, Kee MZL, Thng G, Wing H, Adler NE, Keeton V, Pantell MS, Hessler D, Gottlieb LM, Silveira PP. Salivary cytokine cluster moderates the association between caregivers perceived stress and emotional functioning in youth. Brain Behav Immun 2021; 94:125-137. [PMID: 33662503 DOI: 10.1016/j.bbi.2021.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022] Open
Abstract
Some individuals exposed to early life stress show evidence of enhanced systemic inflammation and are at greater risk for psychopathology. In the current study, caregivers and their offspring (0-17 years) were recruited at a pediatric clinic visit at the University of California, San Francisco (UCSF). Mothers and seven-year-old children from the Growing Up inSingaporeTowards healthy Outcomes (GUSTO) prospective birth cohort were used as a replication cohort. Caregivers perceived stress was measured to determine potential intergenerational effects on the children's functioning and inflammation levels. Children's emotional functioning in the UCSF cohort was evaluated using the Pediatric Quality of Life (PedsQL) inventory. Child emotional and behavioral functioning was measured using the Child Behavior Checklist (CBCL) in GUSTO. Saliva was collected from the children and salivary levels of IL-6, IL-1β, IL-8 and TNF-α were measured using an electrochemiluminescent cytokine multiplex panel. Child IL-6, IL-1β, IL-8 cytokine levels were clustered into low, average, and high cytokine cluster groups using hierarchical cluster analysis. We did not find that salivary cytokine clusters were significantly associated with children's emotional or behavioral function. However, cytokine clusters did significantly moderate the association between increased caregiver perceived stress and reduced child emotional functioning (UCSF cohort) and increased Attention-Deficit-Hyperactivity (ADH) problems (GUSTO cohort, uncorrected Cohen's F2 = 0.02). Using a cytokine clustering technique may be useful in identifying those children exposed to increased caregiver perceived stress that are at risk of emotional and attention deficit hyperactivity problems.
Collapse
Affiliation(s)
- Carine Parent
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
| | | | - Kieran J O'Donnell
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; CIFAR, Toronto, ON, Canada; Yale Child Study Center & Department of Obstetrics Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Michael J Meaney
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore; CIFAR, Toronto, ON, Canada
| | - Michelle Z L Kee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Gladi Thng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Holly Wing
- University of California, San Francisco, Center for Health and Community, San Francisco, CA, United States
| | - Nancy E Adler
- University of California, San Francisco, Department of Psychiatry and Pediatrics, San Francisco, CA, United States
| | - Victoria Keeton
- University of California, San Francisco, Family Health Care Nursing, School of Nursing, San Francisco, CA, United States
| | - Matthew S Pantell
- University of California, San Francisco, Department of Pediatrics, School of Medicine, San Francisco, CA, United States
| | - Danielle Hessler
- University of California, San Francisco, Department of Family and Community Medicine, San Francisco, CA, United States
| | - Laura M Gottlieb
- University of California, San Francisco, Department of Family and Community Medicine, San Francisco, CA, United States
| | - Patricia P Silveira
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
28
|
Association of adverse prenatal exposure burden with child psychopathology in the Adolescent Brain Cognitive Development (ABCD) Study. PLoS One 2021; 16:e0250235. [PMID: 33909652 PMCID: PMC8081164 DOI: 10.1371/journal.pone.0250235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/03/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Numerous adverse prenatal exposures have been individually associated with risk for psychiatric illness in the offspring. However, such exposures frequently co-occur, raising questions about their cumulative impact. We evaluated effects of cumulative adverse prenatal exposure burden on psychopathology risk in school-aged children. METHODS Using baseline surveys from the U.S.-based Adolescent Brain and Cognitive Development (ABCD) Study (7,898 non-adopted, unrelated children from 21 sites, age 9-10, and their primary caregivers), we examined 8 retrospectively-reported adverse prenatal exposures in relation to caregiver-reported total and subscale Child Behavior Checklist (CBCL) scores. We also assessed cumulative effects of these factors on CBCL total as a continuous measure, as well as on odds of clinically significant psychopathology (CBCL total ≥60), in both the initial set and a separate ABCD sample comprising an additional 696 sibling pairs. Analyses were conducted before and after adjustment for 14 demographic and environmental covariates. RESULTS In minimally and fully adjusted models, 6 exposures (unplanned pregnancy; maternal alcohol, marijuana, and tobacco use early in pregnancy; pregnancy complications; and birth complications) independently associated with significant but small increases in CBCL total score. Among these 6, none increased the odds of crossing the threshold for clinically significant symptoms by itself. However, odds of exceeding this threshold became significant with 2 exposures (OR = 1.86, 95% CI 1.47-2.36), and increased linearly with each level of exposure (OR = 1.39, 95% CI 1.31-1.47), up to 3.53-fold for ≥4 exposures versus none. Similar effects were observed in confirmatory analysis among siblings. Within sibling pairs, greater discordance for exposure load associated with greater CBCL total differences, suggesting that results were not confounded by unmeasured family-level effects. CONCLUSION Children exposed to multiple common, adverse prenatal events showed dose-dependent increases in broad, clinically significant psychopathology at age 9-10. Fully prospective studies are needed to confirm and elaborate upon this pattern.
Collapse
|
29
|
Maternal antenatal depression and child mental health: Moderation by genomic risk for attention-deficit/hyperactivity disorder. Dev Psychopathol 2021; 32:1810-1821. [PMID: 33427178 DOI: 10.1017/s0954579420001418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal antenatal depression strongly influences child mental health but with considerable inter-individual variation that is, in part, linked to genotype. The challenge is to effectively capture the genotypic influence. We outline a novel approach to describe genomic susceptibility to maternal antenatal depression focusing on child emotional/behavioral difficulties. Two cohorts provided measures of maternal depression, child genetic variation, and child mental health symptoms. We constructed a conventional polygenic risk score (PRS) for attention-deficit/hyperactivity disorder (ADHD) (PRSADHD) that significantly moderated the association between maternal antenatal depression and internalizing problems at 60 months (p = 2.94 × 10-4, R2 = .18). We then constructed an interaction PRS (xPRS) based on a subset of those single nucleotide polymorphisms from the PRSADHD that most accounted for the moderation of the association between maternal antenatal depression and child outcome. The interaction between maternal antenatal depression and this xPRS accounted for a larger proportion of the variance in child emotional/behavioral problems than models based on any PRSADHD (p = 5.50 × 10-9, R2 = .27), with similar findings in the replication cohort. The xPRS was significantly enriched for genes involved in neuronal development and synaptic function. Our study illustrates a novel approach to the study of genotypic moderation on the impact of maternal antenatal depression on child mental health and highlights the utility of the xPRS approach. These findings advance our understanding of individual differences in the developmental origins of mental health.
Collapse
|
30
|
Morgunova A, Pokhvisneva I, Nolvi S, Entringer S, Wadhwa P, Gilmore J, Styner M, Buss C, Sassi RB, Hall GBC, O'Donnell KJ, Meaney MJ, Silveira PP, Flores CA. DCC gene network in the prefrontal cortex is associated with total brain volume in childhood. J Psychiatry Neurosci 2021; 46:E154-E163. [PMID: 33206040 PMCID: PMC7955849 DOI: 10.1503/jpn.200081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genetic variation in the guidance cue DCC gene is linked to psychopathologies involving dysfunction in the prefrontal cortex. We created an expression-based polygenic risk score (ePRS) based on the DCC coexpression gene network in the prefrontal cortex, hypothesizing that it would be associated with individual differences in total brain volume. METHODS We filtered single nucleotide polymorphisms (SNPs) from genes coexpressed with DCC in the prefrontal cortex obtained from an adult postmortem donors database (BrainEAC) for genes enriched in children 1.5 to 11 years old (BrainSpan). The SNPs were weighted by their effect size in predicting gene expression in the prefrontal cortex, multiplied by their allele number based on an individual's genotype data, and then summarized into an ePRS. We evaluated associations between the DCC ePRS and total brain volume in children in 2 community-based cohorts: the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) and University of California, Irvine (UCI) projects. For comparison, we calculated a conventional PRS based on a genome-wide association study of total brain volume. RESULTS Higher ePRS was associated with higher total brain volume in children 8 to 10 years old (β = 0.212, p = 0.043; n = 88). The conventional PRS at several different thresholds did not predict total brain volume in this cohort. A replication analysis in an independent cohort of newborns from the UCI study showed an association between the ePRS and newborn total brain volume (β = 0.101, p = 0.048; n = 80). The genes included in the ePRS demonstrated high levels of coexpression throughout the lifespan and are primarily involved in regulating cellular function. LIMITATIONS The relatively small sample size and age differences between the main and replication cohorts were limitations. CONCLUSION Our findings suggest that the DCC coexpression network in the prefrontal cortex is critically involved in whole brain development during the first decade of life. Genes comprising the ePRS are involved in gene translation control and cell adhesion, and their expression in the prefrontal cortex at different stages of life provides a snapshot of their dynamic recruitment.
Collapse
Affiliation(s)
- Alice Morgunova
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Irina Pokhvisneva
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Saara Nolvi
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Sonja Entringer
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Pathik Wadhwa
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - John Gilmore
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Martin Styner
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Claudia Buss
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Roberto Britto Sassi
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Geoffrey B C Hall
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Kieran J O'Donnell
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Michael J Meaney
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Patricia P Silveira
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Cecilia A Flores
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| |
Collapse
|
31
|
Abstract
The study of depression in mothers in relation to transmission of risk for the development of psychopathology in their children relies on solid foundations in the understanding of psychopathology, of development, and of developmental psychopathology per se. This article begins with a description of the scope of the problem, including a summary of knowledge of how mothers’ depression is associated with outcomes in children and of moderators of those associations. The sense of scope then informs a theoretical and empirical perspective on knowledge of mechanisms in those associations, with a focus on what has been learned in the past 20 years. Throughout the article, and in conclusions at the end, are suggestions for next steps in research and practice.
Collapse
|
32
|
de Lima RMS, Barth B, Arcego DM, de Mendonça Filho EJ, Clappison A, Patel S, Wang Z, Pokhvisneva I, Sassi RB, Hall GBC, Kobor MS, O'Donnell KJ, Bittencourt APSDV, Meaney MJ, Dalmaz C, Silveira PP. Amygdala 5-HTT Gene Network Moderates the Effects of Postnatal Adversity on Attention Problems: Anatomo-Functional Correlation and Epigenetic Changes. Front Neurosci 2020; 14:198. [PMID: 32256307 PMCID: PMC7093057 DOI: 10.3389/fnins.2020.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Variations in serotoninergic signaling have been related to behavioral outcomes. Alterations in the genome, such as DNA methylation and histone modifications, are affected by serotonin neurotransmission. The amygdala is an important brain region involved in emotional responses and impulsivity, which receives serotoninergic input. In addition, studies suggest that the serotonin transporter gene network may interact with the environment and influence the risk for psychiatric disorders. We propose to investigate whether/how interactions between the exposure to early life adversity and serotonin transporter gene network in the amygdala associate with behavioral disorders. We constructed a co-expression-based polygenic risk score (ePRS) reflecting variations in the function of the serotonin transporter gene network in the amygdala and investigated its interaction with postnatal adversity on attention problems in two independent cohorts from Canada and Singapore. We also described how interactions between ePRS-5-HTT and postnatal adversity exposure predict brain gray matter density and variation in DNA methylation across the genome. We observed that the expression-based polygenic risk score, reflecting the function of the amygdala 5-HTT gene network, interacts with postnatal adversity, to predict attention and hyperactivity problems across both cohorts. Also, both postnatal adversity score and amygdala ePRS-5-HTT score, as well as their interaction, were observed to be associated with variation in DNA methylation across the genome. Variations in gray matter density in brain regions linked to attentional processes were also correlated to our ePRS score. These results confirm that the amygdala 5-HTT gene network is strongly associated with ADHD-related behaviors, brain cortical density, and epigenetic changes in the context of adversity in young children.
Collapse
Affiliation(s)
- Randriely Merscher Sobreira de Lima
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Barbara Barth
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
| | - Danusa Mar Arcego
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Euclides José de Mendonça Filho
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Programa de Pós-Graduação em Psicologia, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrew Clappison
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Kieran J O'Donnell
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | | | - Michael J Meaney
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Barth B, Bizarro L, Miguel PM, Dubé L, Levitan R, O'Donnell K, Meaney MJ, Silveira PP. Genetically predicted gene expression of prefrontal DRD4 gene and the differential susceptibility to childhood emotional eating in response to positive environment. Appetite 2020; 148:104594. [PMID: 31927071 DOI: 10.1016/j.appet.2020.104594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023]
Abstract
Genetic differential susceptibility states that individuals may vary both by exhibiting poor responses when exposed to adverse environments, and disproportionally benefiting from positive settings. The dopamine D4 receptor gene (DRD4) may be particularly implicated in these effects, including disturbed eating behaviors that might lead to obesity. Here, we explore differential susceptibility to positive environments according to the predicted genetically regulated gene expression of prefrontal cortex DRD4 gene. Using MAVAN as the discovery cohort (Maternal Adversity, Vulnerability and Neurodevelopment) and GUSTO as the replication cohort (Growing Up in Singapore Towards Healthy Outcomes), we analyzed the interaction between a) a Positive postnatal environmental score, that accounts for positive outcomes in the postnatal period and b) the genetically regulated gene expression of prefrontal DRD4, computed using a machine learning prediction method (PrediXcan). The outcome measures were the pro-intake domains (Emotional over-eating, Food Responsiveness, Food Enjoyment and Desire to Drink) from the Child Eating Behavior Questionnaire at 48 months of age (MAVAN) and 60 months of age (GUSTO). The interaction between the positive environment and the predicted prefrontal DRD4 gene expression was significant for emotional over-eating in MAVAN (β = -0.403, p < 0.02), in which the high gene expression group had more or less emotional eating according to the exposure to lower or higher positive environment respectively, showing evidence of differential susceptibility criteria. In the replication cohort, a similar result was found with the pro-intake domain Desire to drink (β = -0.583, p < 0.05). These results provide further evidence for the genetic differential susceptibility, accounting for the benefit of positive environments.
Collapse
Affiliation(s)
- Barbara Barth
- Integrated Program in Neurosciences, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada; Programa de Pós-Graduação em Psicologia, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos, Porto Alegre, Rio Grande do Sul, 90035003, Brazil
| | - Lisiane Bizarro
- Programa de Pós-Graduação em Psicologia, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos, Porto Alegre, Rio Grande do Sul, 90035003, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite, Porto Alegre, Rio Grande do Sul, 90.046-900, Brazil
| | - Laurette Dubé
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, 1001 Sherbrooke Street West, Montreal, Quebec, H3A 1G5, Canada
| | - Robert Levitan
- Department of Psychiatry, University of Toronto and Centre for Addiction and Mental Health, 250 College St, Toronto, Ontario, M5T 1R8, Canada
| | - Kieran O'Donnell
- Integrated Program in Neurosciences, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada; Department of Psychiatry, Faculty of Medicine and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, 6875 Boulevard Lasalle, Montréal, Quebec, H4H 1R3, Canada
| | - Michael J Meaney
- Integrated Program in Neurosciences, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada; Department of Psychiatry, Faculty of Medicine and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, 6875 Boulevard Lasalle, Montréal, Quebec, H4H 1R3, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Patricia Pelufo Silveira
- Integrated Program in Neurosciences, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite, Porto Alegre, Rio Grande do Sul, 90.046-900, Brazil; Department of Psychiatry, Faculty of Medicine and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, 6875 Boulevard Lasalle, Montréal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
34
|
Miguel PM, Pereira LO, Barth B, de Mendonça Filho EJ, Pokhvisneva I, Nguyen TTT, Garg E, Razzolini BR, Koh DXP, Gallant H, Sassi RB, Hall GBC, O'Donnell KJ, Meaney MJ, Silveira PP. Prefrontal Cortex Dopamine Transporter Gene Network Moderates the Effect of Perinatal Hypoxic-Ischemic Conditions on Cognitive Flexibility and Brain Gray Matter Density in Children. Biol Psychiatry 2019; 86:621-630. [PMID: 31142432 DOI: 10.1016/j.biopsych.2019.03.983] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genetic polymorphisms of the dopamine transporter gene (DAT1) and perinatal complications associated with poor oxygenation are risk factors for attentional problems in childhood and may show interactive effects. METHODS We created a novel expression-based polygenic risk score (ePRS) reflecting variations in the function of the DAT1 gene network (ePRS-DAT1) in the prefrontal cortex and explored the effects of its interaction with perinatal hypoxic-ischemic-associated conditions on cognitive flexibility and brain gray matter density in healthy children from two birth cohorts-MAVAN from Canada (n = 139 boys and girls) and GUSTO from Singapore (n = 312 boys and girls). RESULTS A history of exposure to several perinatal hypoxic-ischemic-associated conditions was associated with impaired cognitive flexibility only in the high-ePRS group, suggesting that variation in the prefrontal cortex expression of genes involved in dopamine reuptake is associated with differences in this behavior. Interestingly, this result was observed in both ethnically distinct birth cohorts. Additionally, parallel independent component analysis (MAVAN cohort, n = 40 children) demonstrated relationships between single nucleotide polymorphism-based ePRS and gray matter density in areas involved in executive (cortical regions) and integrative (bilateral thalamus and putamen) functions, and these relationships differ in children from high and low exposure to hypoxic-ischemic-associated conditions. CONCLUSIONS These findings reveal that the impact of conditions associated with hypoxia-ischemia on brain development and executive functions is moderated by genotypes associated with dopamine signaling in the prefrontal cortex. We discuss the potential impact of innovative genomic and environmental measures for the identification of children at high risk for impaired executive functions.
Collapse
Affiliation(s)
- Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Euclides José de Mendonça Filho
- Programa de Pós-Graduação em Psicologia, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - Thao T T Nguyen
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - Elika Garg
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - Bruna Regis Razzolini
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Dawn Xin Ping Koh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Heather Gallant
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Kieran John O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, Quebec, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Quebec, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Patrícia Pelufo Silveira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, Quebec, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
35
|
Miguel PM, Pereira LO, Silveira PP, Meaney MJ. Early environmental influences on the development of children's brain structure and function. Dev Med Child Neurol 2019; 61:1127-1133. [PMID: 30740660 DOI: 10.1111/dmcn.14182] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
The developing brain in utero and during the first years of life is highly vulnerable to environmental influences. Experiences occurring during this period permanently modify brain structure and function through epigenetic modifications (alterations of the DNA structure and chromatin function) and consequently affect the susceptibility to mental disorders. In this review, we describe evidence linking adverse environmental variation during early life (from the fetal period to childhood) and long-term changes in brain volume, microstructure, and connectivity, especially in amygdala and hippocampal regions. We also describe genetic variations that moderate the impact of adverse environmental conditions on child neurodevelopment, such as polymorphisms in brain-derived neurotrophic factor and catechol-O-methyltransferase genes, as well as genetic pathways related to glutamate and monoaminergic signaling. Lastly, we have depicted positive early life experiences that could benefit childhood neurodevelopment and reverse some detrimental effects of adversity in the offspring. WHAT THIS PAPER ADDS: Prenatal, peripartum, and postnatal adversities influence child behavior and neurodevelopment. Exposure to environmental enrichment and positive influences may revert these effects. Putative mechanisms involve alterations in neurotrophic factors and neurotransmitter systems. New tools/big data improved the understanding on how early adversity alters neurodevelopment. This permits better translation/application of the findings from animal models to humans.
Collapse
Affiliation(s)
- Patrícia M Miguel
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir O Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia P Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
36
|
Sawyer KM, Zunszain PA, Dazzan P, Pariante CM. Intergenerational transmission of depression: clinical observations and molecular mechanisms. Mol Psychiatry 2019; 24:1157-1177. [PMID: 30283036 DOI: 10.1038/s41380-018-0265-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Maternal mental illness can have a devastating effect during the perinatal period, and has a profound impact on the care that the baby receives and on the relationships that the baby forms. This review summarises clinical evidence showing the effects of perinatal depression on offspring physical and behavioural development, and on the transmission of psychopathology between generations. We then evaluate a number of factors which influence this relationship, such as genetic factors, the use of psychotropic medications during pregnancy, the timing within the perinatal period, the sex of the foetus, and exposure to maltreatment in childhood. Finally, we examine recent findings regarding the molecular mechanisms underpinning these clinical observations, and identify relevant epigenetic and biomarker changes in the glucocorticoid, oxytocin, oestrogen and immune systems, as key biological mediators of these clinical findings. By understanding these molecular mechanisms in more detail, we will be able to improve outcomes for both mothers and their offspring for generations.
Collapse
Affiliation(s)
- Kristi M Sawyer
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
37
|
Camerota M, Willoughby MT. Prenatal Risk Predicts Preschooler Executive Function: A Cascade Model. Child Dev 2019; 91:e682-e700. [PMID: 31206640 DOI: 10.1111/cdev.13271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Little research has considered whether prenatal experience contributes to executive function (EF) development above and beyond postnatal experience. This study tests direct, mediated, and moderated associations between prenatal risk factors and preschool EF and IQ in a longitudinal sample of 1,292 children from the Family Life Project. A composite of prenatal risk factors (i.e., low birth weight, prematurity, maternal emotional problems, maternal prepregnancy obesity, and obstetric complications) significantly predicted EF and IQ at age 3, above quality of the postnatal environment. This relationship was indirect, mediated through infant general cognitive abilities. Quality of the postnatal home and child-care environments did not moderate the cascade model. These findings highlight the role of prenatal experience as a contributor to individual differences in cognitive development.
Collapse
|
38
|
Abstract
The assumption that early stress leads to dysregulation and impairment is widespread in developmental science and informs prevailing models (e.g., toxic stress). An alternative evolutionary–developmental approach, which complements the standard emphasis on dysregulation, proposes that early stress may prompt the development of costly but adaptive strategies that promote survival and reproduction under adverse conditions. In this review, we survey this growing theoretical and empirical literature, highlighting recent developments and outstanding questions. We review concepts of adaptive plasticity and conditional adaptation, introduce the life history framework and the adaptive calibration model, and consider how physiological stress response systems and related neuroendocrine processes may function as plasticity mechanisms. We then address the evolution of individual differences in susceptibility to the environment, which engenders systematic person–environment interactions in the effects of stress on development. Finally, we discuss stress-mediated regulation of pubertal development as a case study of how an evolutionary–developmental approach can foster theoretical integration.
Collapse
Affiliation(s)
- Bruce J. Ellis
- Department of Psychology and Department of Anthropology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Marco Del Giudice
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
39
|
Abstract
Prenatal adversity shapes child neurodevelopment and risk for later mental health problems. The quality of the early care environment can buffer some of the negative effects of prenatal adversity on child development. Retrospective studies, in adult samples, highlight epigenetic modifications as sentinel markers of the quality of the early care environment; however, comparable data from pediatric cohorts are lacking. Participants were drawn from the Maternal Adversity Vulnerability and Neurodevelopment (MAVAN) study, a longitudinal cohort with measures of infant attachment, infant development, and child mental health. Children provided buccal epithelial samples (mean age = 6.99, SD = 1.33 years, n = 226), which were used for analyses of genome-wide DNA methylation and genetic variation. We used a series of linear models to describe the association between infant attachment and (a) measures of child outcome and (b) DNA methylation across the genome. Paired genetic data was used to determine the genetic contribution to DNA methylation at attachment-associated sites. Infant attachment style was associated with infant cognitive development (Mental Development Index) and behavior (Behavior Rating Scale) assessed with the Bayley Scales of Infant Development at 36 months. Infant attachment style moderated the effects of prenatal adversity on Behavior Rating Scale scores at 36 months. Infant attachment was also significantly associated with a principal component that accounted for 11.9% of the variation in genome-wide DNA methylation. These effects were most apparent when comparing children with a secure versus a disorganized attachment style and most pronounced in females. The availability of paired genetic data revealed that DNA methylation at approximately half of all infant attachment-associated sites was best explained by considering both infant attachment and child genetic variation. This study provides further evidence that infant attachment can buffer some of the negative effects of early adversity on measures of infant behavior. We also highlight the interplay between infant attachment and child genotype in shaping variation in DNA methylation. Such findings provide preliminary evidence for a molecular signature of infant attachment and may help inform attachment-focused early intervention programs.
Collapse
|
40
|
Abstract
A recent article in this journal reported a number of gene × environment interactions involving a serotonin transporter-gene network polygenic score and a composite index of prenatal adversity predicting several problem behavior outcomes at 48 months (e.g., anxious/depressed, pervasive developmental problems) and at 60 months (e.g., withdrawal, internalizing problems), yet did not illuminate the nature or form these genetic × environment interactions took. Here we report results of six additional analyses to evaluate whether these interactions reflected diathesis-stress or differential-susceptibility related processes. Analyses of the regions of significance and proportion of interaction index are consistent with the diathesis-stress model, seemingly because of the truncated nature of the adversity score (which did not extend to supportive/positive prenatal experiences/exposures); in contrast, the proportion (of cases) affected index favors the differential-susceptibility model. These results suggest the need for future studies to extend measurement of the prenatal environment to highly supportive experiences and exposures.
Collapse
|