1
|
Borsos M, Torres-Padilla ME. Building up the nucleus: nuclear organization in the establishment of totipotency and pluripotency during mammalian development. Genes Dev 2016; 30:611-21. [PMID: 26980186 PMCID: PMC4803048 DOI: 10.1101/gad.273805.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, epigenetic reprogramming, the acquisition and loss of totipotency, and the first cell fate decision all occur within a 3-d window after fertilization from the one-cell zygote to the formation of the blastocyst. These processes are poorly understood in molecular detail, yet this is an essential prerequisite to uncover principles of stem cells, chromatin biology, and thus regenerative medicine. A unique feature of preimplantation development is the drastic genome-wide changes occurring to nuclear architecture. From studying somatic and in vitro cultured embryonic stem cells (ESCs) it is becoming increasingly established that the three-dimensional (3D) positions of genomic loci relative to each other and to specific compartments of the nucleus can act on the regulation of gene expression, potentially driving cell fate. However, the functionality, mechanisms, and molecular characteristics of the changes in nuclear organization during preimplantation development are only now beginning to be unraveled. Here, we discuss the peculiarities of nuclear compartments and chromatin organization during mammalian preimplantation development in the context of the transition from totipotency to pluripotency.
Collapse
Affiliation(s)
- Máté Borsos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, U964, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale F-67404 Illkirch, France; Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, U964, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale F-67404 Illkirch, France; Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München D-81377 München, Germany
| |
Collapse
|
2
|
Nguyen H, Ortega MA, Ko M, Marh J, Ward WS. ORC4 surrounds extruded chromatin in female meiosis. J Cell Biochem 2015; 116:778-86. [PMID: 25502171 DOI: 10.1002/jcb.25033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022]
Abstract
Six proteins, ORC1-6, make up the origin recognition complex (ORC) that initiates licensing of DNA replication origins. We have previously reported that subunit ORC2 is localized between the separating maternal chromosomes at anaphase II just after fertilization and is present in zygotic pronuclei at G1. Here, we found that ORC1, 3, and 5 all localize between the chromosomes at anaphase II, but could not be detected in zygotic G1. ORC6 localized to the periphery of the nucleoli at all zygotic stages. We identified an unexpected potential role for ORC4 in polar body formation. We found that in both female meiotic divisions, ORC4 surrounds the set of chromosomes, as a sphere-like structure, that will eventually be discarded in the polar bodies, but not the chromosomes that segregate into the oocyte. None of the other five ORC proteins are involved in this structure. In Zygotic G1, ORC4 surrounds the nuclei of the polar bodies, but was not detectable in the pronuclei. When the zygote entered mitosis ORC4 was only detected in the polar body. However, ORC4 appeared on both sets of separating chromosomes at telophase. At this point, the ORC4 that was in the polar body also migrated into the nuclei, suggesting that ORC4 or an associated protein is modified during the first embryonic cell cycle to allow it to bind DNA. Our results suggest that ORC4 may help identify the chromosomes that are destined to be expelled in the polar body, and may play a role in polar body extrusion. ORC4 surrounds the chromatin that will be extruded in the polar body in both female meiotic divisions, then makes a transition from the cytoplasm to the chromosomes at zygotic anaphase, suggesting multiple roles for this replication licensing protein.
Collapse
Affiliation(s)
- Hieu Nguyen
- Institute for Biogenesis Research Department of Anatomy, Biochemistry & Physiology, and the Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | | | | | | | | |
Collapse
|
3
|
Abstract
During normal fertilization, plasma membranes of a spermatozoon and an oocyte mingle to form a mosaic plasma membrane of a zygote. This may contribute to the polyspermy block of the zygote. Sperm tail components (mitochondria, axonema, and accessory fibers) that enter the oocyte are "digested" without playing major roles in embryo development. The proximal centrosome adjacent to the sperm nucleus may become the center of the sperm aster that brings the male and female pronuclei to the center of the zygote, but it may not be essential for embryonic development per se. Whether sperm RNAs contribute to embryonic development is the subject of controversy. The nucleus is the most important sperm component that enters the oocyte. It is known that 7-15% of the spermatozoa of fertile men are chromosomally abnormal. The proportion of the spermatozoa with subchromosomal abnormalities (including damage at the DNA level) is expected to be even higher. The majority of embryos and fetuses with genomic abnormalities are aborted before reaching term. Structurally abnormal spermatozoa are not necessarily genomically abnormal, even though the incidence of genomically abnormal spermatozoa is higher among structurally abnormal than normal spermatozoa. In mammals, certain genes (estimated to be about 100) in the spermatozoon and oocyte must be "imprinted" in a gender-specific manner to warrant normal embryonic development.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, University of Hawaii Medical School, 1960 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
4
|
Ogura A, Ogonuki N, Miki H, Inoue K. Microinsemination and Nuclear Transfer Using Male Germ Cells. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:189-229. [PMID: 16164969 DOI: 10.1016/s0074-7696(05)46005-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microinsemination has been widely used in basic reproductive research and in human-assisted reproductive technology for treating infertility. Historically, microinsemination in mammals started with research on the golden hamster; since then, it has provided invaluable information on the mechanisms of mammalian fertilization. Thanks to advances in animal genetic engineering and germ-cell technologies, microinsemination techniques are now used extensively to identify the biological significance of genes of interest or to confirm the genetic normality of gametes produced by experimental manipulations in vitro. Fortunately, in mice, high rates of embryo development to offspring can be obtained so long as postmeiotic spermatogenic cells are used as male gametes-that is, round spermatids, elongated spermatids, and spermatozoa. For some other mammalian species, using immature spermatogenic cells significantly decreases the efficiency of microinsemination. Physically unstable chromatin and low oocyte-activating capacity are the major causes of fertilization failure. The youngest male germ cells, including primordial germ cells and gonocytes, can be used in the construction of diploid embryos by nuclear-transfer cloning. The cloned embryos obtained in this way provide invaluable information on the erasure and reestablishment of genomic imprinting in germ cells.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN Bioresource Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | |
Collapse
|
5
|
Sutovsky P, Manandhar G, Wu A, Oko R. Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc Res Tech 2003; 61:362-78. [PMID: 12811742 DOI: 10.1002/jemt.10350] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perinuclear theca (PT) is the cytoskeletal coat of mammalian sperm nucleus that is removed from the sperm head at fertilization. PT harbors the sperm borne, oocyte-activating factor (SOAF), a yet-to-be-characterized substance responsible for triggering the signaling cascade of oocyte activation, thought to be dependent on intra-oocyte calcium release. The present article reviews the current knowledge on the biogenesis and molecular composition of sperm PT. Possible functions of sperm PT during natural and assisted fertilization, and in the initiation of embryonic development are discussed. Furthermore, evidence is provided that SOAF is transferred from the sperm PT to oocyte cytoplasm through the internalization and rapid solubilization of the post-acrosomal PT. It is shown that during natural fertilization the sperm PT dissolves in the oocyte cytoplasm concomitantly with sperm nuclear decondensation and the initiation of pronuclear development. SOAF activity is preserved in the differentially extracted sperm heads only if the integrity of PT is maintained. After intracytoplasmic sperm injection (ICSI), activation occurs only in those oocytes in which the injected spermatozoon displays complete or partial dissolution of PT. In the latter case, the residual PT of the sub-acrosomal and/or post-acrosomal sperm region may persist on the apical surface of the sperm nucleus/male pronucleus and may cause a delay or arrest of zygotic development. We propose that the sperm PT harbors SOAF in the post-acrosomal sheath, as this is the first part of the sperm cytosol to enter the oocyte cytoplasm and its disassembly appears sufficient to initiate the early events of oocyte activation. Dissolution of the sub-acrosomal part of the PT, on the other hand, appears necessary to insure complete DNA decondensation in the internalized sperm nucleus and initiate DNA synthesis of both pronuclei. The release of the SOAF from the sperm head into oocyte cytoplasm at fertilization ultimately leads to the activation of oocyte mechanism including the completion of the meiotic cell cycle, pronuclear development and anti-polyspermy defense.
Collapse
Affiliation(s)
- Peter Sutovsky
- Department of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Missouri 65211-5300, USA.
| | | | | | | |
Collapse
|
6
|
Abstract
In the initial step of pronuclear association in fertilized fish eggs, the female and male pronuclei (containing large nucleolus-like bodies) were juxtaposed in the center of the blastodisc and formed nucleoplasmic projections along adjacent surfaces. After contact of the pronuclei, small internuclear bridges joining them were formed by fusion at several regions of the nuclear envelope projections. No specific site of fusion or breakdown of nuclear envelopes was recognized in the pronuclei during karyogamy. In the advanced stage, clumps of condensing chromatin appeared in the nucleoplasm of the newly fused pronuclei. The number and diameter of the internuclear bridges increased gradually by progressive fusion in many regions, finally yielding a spherical zygote nucleus. Following complete formation of the zygote nucleus, the pronuclear envelope began to break down concomitantly with shrinkage of the nucleoplasm, which was highly convoluted around the entire nuclear surface. The nucleoplasm containing chromosomes then mingled with the perinuclear cytoplasm.
Collapse
Affiliation(s)
- Takashi Iwamatsu
- Department of Biology, Aichi University of Education, Kariya 448-8542, Japan
| | | |
Collapse
|
7
|
Kovacic B, Vlaisavljevic V. Configuration of maternal and paternal chromatin and pertaining microtubules in human oocytes failing to fertilize after intracytoplasmic sperm injection. Mol Reprod Dev 2000; 55:197-204. [PMID: 10618659 DOI: 10.1002/(sici)1098-2795(200002)55:2<197::aid-mrd9>3.0.co;2-q] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The microtubules and chromosomes of 180 human oocytes failing to fertilize after intracytoplasmic sperm injection were observed in order to establish how sperm chromatin and sperm astral microtubule configuration is related to the phases of oocyte cell cycle, and to find the defects in those structures causing fertilization arrest. As many as 125 (69%) oocytes were arrested at metaphase II. In one-fourth of them, damages of the second meiotic spindle were noted. In their cytoplasm intact sperm were found in 38 (30%) cases, a swollen sperm head in 36 (29%) and prematurely condensed sperm chromosomes (G1-PCC)-a result of active mitosis promoting factor (MPF)-in 51 (41%) cases. G1-PCC were mostly (73%) surrounded by the bipolar paternal spindle instead of astral microtubules. A male pronucleus was never presented in metaphase II oocytes. In 19 (11%) oocytes, arrested at anaphase II, no intact sperm were found. As many as 9 (47%) oocytes contained sperm in G1-PCC form, which proves that anaphase II oocytes mostly retain active MPF, despite oocyte activation. As many as 78% of 36 monopronucleate oocytes contained sperm, with delay in the process of sperm nucleus decondensation. Sperm in G1-PCC form and a bipolar paternal spindle were never found in monopronucleate oocytes. From this we conclude that sperm that does not activate the oocyte may continue decondensing the chromatin, but the oocyte prevents male pronucleus formation before the female one, mostly by causing PCC in the sperm and by duplicating the sperm centrosome. Mol. Reprod. Dev. 55:197-204, 2000.
Collapse
Affiliation(s)
- B Kovacic
- Department of Reproductive Medicine and Gynecologic Endocrinology, Maribor Teaching Hospital, Maribor, Slovenia
| | | |
Collapse
|
8
|
Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:1-65. [PMID: 10603574 DOI: 10.1016/s0074-7696(08)62703-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian fertilization has traditionally been regarded as a simple blending of two gametes, during which the haploid genome of the fertilizing spermatozoon constitutes the primary paternal contribution to the resulting embryo. In contrast to this view, new research provides evidence of important cytoplasmic contributions made by the fertilizing spermatozoon to the zygotic makeup, to the organization of preimplantation development, and even reproductive success of new forms of assisted fertilization. The central role of the sperm-contributed centriole in the reconstitution of zygotic centrosome has been established in most mammalian species and is put in contrast with strictly maternal centrosomal inheritance in rodents. The complementary reduction or multiplication of sperm and oocyte organelles during gametogenesis, exemplified by the differences in the biogenesis of centrosome in sperm and oocytes, represents an intriguing mechanism for avoiding their redundancy during early embryogenesis. New studies on perinuclear theca of sperm revealed its importance for both spermatogenesis and fertilization. Remodeling of the sperm chromatin into a male pronucleus is guided by oocyte-produced, reducing peptide glutathione and a number of molecules required for the reconstitution of the functional nuclear envelope and nuclear skeleton. Although some of the sperm structures are transformed into zygotic components, the elimination of others is vital to early stages of embryonic development. Sperm mitochondria, carrying potentially harmful paternal mtDNA, appear to be eliminated by a ubiquitin-dependent mechanism. Other accessory structures of the sperm axoneme, including fibrous sheath, microtubule doublets, outer dense fibers, and the striated columns of connecting piece, are discarded in an orderly fashion. The new methods of assisted fertilization, represented by intracytoplasmic sperm injection and round spermatid injection, bypass multiple steps of natural fertilization by introducing an intact spermatozoon or spermatogenic cell into oocyte cytoplasm. Consequently, the carryover of sperm accessory structures that would normally be eliminated before or during the entry of sperm into oocyte cytoplasm persist therein and may interfere with early embryonic development, thus decreasing the success rate of assisted fertilization and possibly causing severe embryonic anomalies. Similarly, foreign organelles, proteins, messenger RNAs, and mitochondrial DNAs, which may have a profound impact on the embryonic development, are propagated by the nuclear transfer of embryonic blastomeres and somatic cell nuclei. This aspect of assisted fertilization is yet to be explored by a focused effort.
Collapse
Affiliation(s)
- P Sutovsky
- Department of Obstetrics and Gynecology, Oregon Health Science University, USA
| | | |
Collapse
|
9
|
Iwamatsu T, Shibata Y, Yamashita M. Studies on fertilization of the teleost. II. Nuclear behavior and changes in histone H1 kinase. Dev Growth Differ 1999; 41:473-82. [PMID: 10466935 DOI: 10.1046/j.1440-169x.1999.00444.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to understand the dynamic responses of gamete nuclei upon fertilization in the fish, Oryzias latipes, the relationship between changes in the activity of histone H1 kinase and nuclear behavior was examined during fertilization. Kinase activity rapidly decreased concomitant with the initiation of the propagative exocytosis of cortical alveoli following sperm attachment to the egg plasma membrane post-insemination (PI). Activity again increased 30 min PI. Similar changes in kinase activity, migration and syngamy of pronuclei, and subsequent cleavage were observed with aphidicolin or actinomycin D treatment, except that formation of abnormal metaphase chromosomes was retarded in aphidicolin-treated zygotes. Pretreatment of unfertilized eggs with cycloheximide or 6-dimethylaminopurine (6-DMAP) caused no nuclear changes. The activity of histone H1 kinase in these eggs rapidly declined following sperm penetration and exocytosis, but did not undergo subsequent increase in the presence of these inhibitors. In these eggs with low histone H1 kinase activity, the fertilization process from sperm penetration to syngamy occurred normally, but the pronuclear membrane did not break down and the chromosomes did not condense. The present data suggest that in fish eggs, DNA replication as well as the synthesis and phosphorylation of proteins, especially cyclin B, are required for normal formation of metaphase chromosomes at the first cleavage, but not for fertilization events from sperm penetration through to nuclear migration resulting in syngamy.
Collapse
Affiliation(s)
- T Iwamatsu
- Department of Biology, Aichi University of Education, Kariya, Japan
| | | | | |
Collapse
|
10
|
Kim NH, Jun SH, Do JT, Uhm SJ, Lee HT, Chung KS. Intracytoplasmic injection of porcine, bovine, mouse, or human spermatozoon into porcine oocytes. Mol Reprod Dev 1999; 53:84-91. [PMID: 10230820 DOI: 10.1002/(sici)1098-2795(199905)53:1<84::aid-mrd10>3.0.co;2-u] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We determined the incidence of activation, male pronuclear formation, and apposition of pronuclei in porcine oocytes following intracytoplasmic injection of various porcine sperm components and foreign species spermatozoa, such as that of cattle, mouse or human. The porcine oocytes were activated by injection of a spermatozoon or an isolated sperm head. In contrast, injection of either sperm tail or a trypsin- or NaOH-treated sperm head failed to induce oocyte activation. Because injection of mouse, bovine, or human spermatozoon activated porcine oocytes, the sperm-borne activation factor(s) is not strictly species-specific. Male pronuclear formation and pronuclear apposition were observed in porcine oocytes following injection of porcine, bovine, mouse or human spermatozoa. Electrical stimulation following sperm cell injection did not enhance the incidence of male pronuclear formation or pronuclear apposition compared with sperm cell injection alone (P > 0.1). Following porcine sperm injection, the microtubular aster was organized from the neck of the spermatozoon, and filled the whole cytoplasm. In contrast, following injection of bovine, mouse, or human spermatozoon, the maternal-derived microtubules were organized from the cortex to the center of the oocytes, which seems to move both pronuclei to the center of oocytes. Cleavage to the two-cell stage was observed at 19-21 hr after injection of porcine spermatozoon. However, none of the oocytes following injection of mouse, bovine, or human spermatozoa developed to the mitotic metaphase or the two-cell stage. These results suggested that the oocyte activating factor(s) is present in the perinuclear material and that it is not species-specific for the porcine oocyte. Self-organized microtubules seemed to move the pronuclei into center of oocytes when foreign species spermatozoa were injected into porcine oocytes.
Collapse
Affiliation(s)
- N H Kim
- Animal Resource Research Center, Kon Kuk University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Sutovsky P, Simerly C, Hewitson L, Schatten G. Assembly of nuclear pore complexes and annulate lamellae promotes normal pronuclear development in fertilized mammalian oocytes. J Cell Sci 1998; 111 ( Pt 19):2841-54. [PMID: 9730977 DOI: 10.1242/jcs.111.19.2841] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to functional nuclear pore complexes engaged in nucleo-cytoplasmic transport, the cytoplasmic stacks of pore complexes, called annulate lamellae, exist in numerous cell types. Although both annulate lamellae and nuclear pore complexes are present in fertilized mammalian oocytes, their relative roles in the process of fertilization and preimplantation development are not known. Using epifluorescence and electron microscopy, we explored their fate during bovine fertilization. The assembly of annulate lamellae in bovine oocytes was triggered by sperm-oocyte binding and continued concomitantly with the incorporation of the nuclear pores in the nuclear envelopes of the developing male and female pronuclei. This process was also induced by the parthenogenetic activation of metaphase-II-arrested oocytes. Depletion of Ca2+, previously implicated in oocyte activation and in the insertion of pore complexes into the nuclear envelope, prevented the formation of nuclear pore complexes, but not the assembly of annulate lamellae in oocyte cytoplasm. Injection of the nuclear pore antagonist, wheat germ agglutinin, into the cytoplasm of mature oocytes that were subsequently fertilized caused the arrest of pronuclear development, indicating the requirement of nuclear pore complexes for normal pronuclear development. Treatment of the fertilized oocytes with the microtubule inhibitor, nocodazole, prevented gathering of annulate lamellae around the developing pronuclei, insertion of nuclear pores into their nuclear envelopes, and further pronuclear development. The formation of the male pronuclei was reconstituted in Xenopus egg extracts and reflected the behavior of nuclear pores during natural fertilization. These data suggest that nuclear pore complexes are required for normal pronuclear development from its beginning up until pronuclear apposition. Annulate lamellae may be involved in the turnover of nuclear pore complexes during fertilization, which is in turn facilitated by the reorganization of oocyte microtubules and influx of Ca2+ into oocyte cytoplasm.
Collapse
Affiliation(s)
- P Sutovsky
- Departments of Obstetrics and Gynecology, and Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
12
|
Maeda Y, Yanagimachi H, Tateno H, Usui N, Yanagimachi R. Decondensation of the mouse sperm nucleus within the interphase nucleus. ZYGOTE 1998; 6:39-45. [PMID: 9652070 DOI: 10.1017/s0967199400005062] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sperm nuclei incorporated into the cytoplasm (ooplasm) of fertilised mouse eggs at the pronuclear stage remain condensed, whereas those injected into male or female pronuclei decondense. Similarly, sperm nuclei injected into germinal vesicles of immature oocytes or the nuclei of 2-cell embryos decondense, while those entering the cytoplasm of these oocytes/embryos do not. These facts seem to suggest that factors necessary for the decondensation of sperm nucleus are present in interphase nuclei and are released into the ooplasm during nuclear envelope breakdown. Nucleoplasmin, which is synthesised in the cytoplasm and accumulated within the nucleus, is likely a major candidate for these factors.
Collapse
Affiliation(s)
- Y Maeda
- Department of Anatomy and Reproductive Biology, University of Hawaii Medical School, Honolulu 96822, USA
| | | | | | | | | |
Collapse
|