1
|
Rao A, Nayak G, Ananda H, Kumari S, Dutta R, Kalthur SG, Mutalik S, Thomas SA, Pasricha R, Raghu SV, Adiga SK, Kalthur G. Anti-tuberculosis drugs used in a directly observed treatment short course (DOTS) schedule alter endocrine patterns and reduce the ovarian reserve and oocyte quality in the mouse. Reprod Fertil Dev 2022; 34:1059-1077. [PMID: 36219878 DOI: 10.1071/rd22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023] Open
Abstract
CONTEXT Tuberculosis is one of the major infectious diseases, with people of reproductive age group having a high risk of infection. AIMS The present study was designed to understand the consequences of anti-tuberculosis drugs (ATDs) used in DOTS (directly observed treatment short course) schedule on ovarian function. METHODS Adult female Swiss albino mice were orally administered with combinations of ATDs used in the DOTS schedule every day for 4weeks. At 2weeks after the cessation of ATDs administration, the endocrine changes and ovarian function were assessed in mice. KEY RESULTS Administration of ATDs to mice resulted in a prolonged estrous cycle, reduced ovarian follicle reserve, alteration in FSH, LH, and progesterone level, and decreased the number of ovulated oocytes. Further, the degree of fragmentation, degeneration, abnormal distribution of cytoplasmic organelles, abnormal spindle organisation, and chromosomal misalignment were higher in oocytes that were ovulated following superovulation. Blastocysts derived from ATDs treated mice had significantly lower total cell numbers and greater DNA damage. A marginal increase in the number of resorbed fetuses was observed in all the ATDs treated groups except in the multidrug resistance treatment group. Male progeny of ATDs treated mice had decreased sperm count and lower progressive motility, while female progeny exhibited a non-significant reduction in the number of oocytes ovulated. CONCLUSIONS Theresults of this study suggest that ATDs can have significant adverse effects on the ovarian reserve, cytoplasmic organisation of oocytes, and can potentially cause transgenerational changes. IMPLICATIONS The findings of the present study indicate ovarian toxicity of ATDs and warrant further research in the direction of identifying alternate drugs with minimal toxicity, and strategies to mitigate the ovarian toxicity induced by these drugs.
Collapse
Affiliation(s)
- Arpitha Rao
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Hanumappa Ananda
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rahul Dutta
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sneha Ann Thomas
- Research Instrument Scientist 1-Electron Microscopy, Core Technology Platforms Operations, NYU, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- Research Instrument Scientist 1-Electron Microscopy, Core Technology Platforms Operations, NYU, Abu Dhabi, United Arab Emirates
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri 574199, Karnataka, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
2
|
Somoskoi B, Martino NA, Cardone RA, Lacalandra GM, Dell'Aquila ME, Cseh S. Different chromatin and energy/redox responses of mouse morulae and blastocysts to slow freezing and vitrification. Reprod Biol Endocrinol 2015; 13:22. [PMID: 25889099 PMCID: PMC4419566 DOI: 10.1186/s12958-015-0018-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 03/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to cryopreserve mammalian embryos has become an integral part of assisted reproduction, both in human and veterinary medicine. Despite differences in the size and physiological characteristics of embryos from various species, the embryos have been frozen by either of two procedures: slow freezing or vitrification. The aim of our study was to compare the effect of slow freezing and vitrification to the chromatin structure, energy status and reactive oxygen species production of mouse morulae and blastocysts. METHODS Mouse morulae and blastocysts were randomly allocated into vitrification, slow freezing and control groups. For slow freezing, Dulbecco phosphate buffered saline based 10% glicerol solution was used. For vitrification, G-MOPS™ based solution supplemented with 16% ethylene glycol, 16% propylene glycol, Ficoll (10 mg/ml) and sucrose (0.65 mol/l) was used. After warming, the chromatin integrity, mitochondrial distribution pattern and energy/oxidative status were compared among groups. RESULTS Cryopreservation affected chromatin integrity at a greater extent at the morula than the blastocyst stage. Chromatin damage induced by slow freezing was more relevant compared to vitrification. Slow freezing and vitrification similarly affected mitochondrial distribution pattern. Greater damage was observed at the morula stage and it was associated with embryo grade. Cryopreservation altered the quantitative bioenergy/redox parameters at a greater extent in the morulae than in the blastocysts. Effects induced by slow freezing were not related to embryo grade or mitochondrial pattern, as affected embryos were of all grades and with both mitochondrial patterns. However, effects induced by vitrification were related to mitochondrial pattern, as only embryos with homogeneous mitochondrial pattern in small aggregates had reduced energy status. CONCLUSIONS This study shows for the first time the joint assessment of chromatin damage and mitochondrial energy/redox potential in fresh and frozen mouse embryos at the morula and blastocyst stage, allowing the comparison of the effects of the two most commonly used cryopreservation procedures.
Collapse
Affiliation(s)
- Bence Somoskoi
- Department and Clinic of Obstetrics and Reproduction, Szent Istvan University, Budapest, Hungary.
| | - Nicola A Martino
- Veterinary Clinics and Animal Productions Unit, Department of Emergency and Organ Trasplantation (DETO), University of Bari Aldo Moro Valenzano, Bari, Italy.
| | - Rosa A Cardone
- Department of Bioscience, Biotechnology and Pharmacological Science, University of Bari, 70126, Bari, Italy.
| | - Giovanni M Lacalandra
- Veterinary Clinics and Animal Productions Unit, Department of Emergency and Organ Trasplantation (DETO), University of Bari Aldo Moro Valenzano, Bari, Italy.
| | - Maria E Dell'Aquila
- Department of Bioscience, Biotechnology and Pharmacological Science, University of Bari, 70126, Bari, Italy.
| | - Sandor Cseh
- Department and Clinic of Obstetrics and Reproduction, Szent Istvan University, Budapest, Hungary.
| |
Collapse
|
3
|
Prooxidant effects of verbascoside, a bioactive compound from olive oil mill wastewater, on in vitro developmental potential of ovine prepubertal oocytes and bioenergetic/oxidative stress parameters of fresh and vitrified oocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:878062. [PMID: 24719893 PMCID: PMC3955694 DOI: 10.1155/2014/878062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 01/25/2023]
Abstract
Verbascoside (VB) is a bioactive polyphenol from olive oil mill wastewater with known antioxidant activity. Oxidative stress is an emerging problem in assisted reproductive technology (ART). Juvenile ART is a promising topic because, in farm animals, it reduces the generation gap and, in human reproductive medicine, it helps to overcome premature ovarian failure. The aim of this study was to test the effects of VB on the developmental competence of ovine prepubertal oocytes and the bioenergetic/oxidative stress status of fresh and vitrified oocytes. In fresh oocytes, VB exerted prooxidant short-term effects, that is, catalase activity increase and uncoupled increases of mitochondria and reactive oxygen species (ROS) fluorescence signals, and long-term effects, that is, reduced blastocyst formation rate. In vitrified oocytes, VB increased ROS levels. Prooxidant VB effects in ovine prepubertal oocytes could be related to higher VB accumulation, which was found as almost one thousand times higher than that reported in other cell systems in previous studies. Also, long exposure times of oocytes to VB, throughout the duration of in vitro maturation culture, may have contributed to significant increase of oocyte oxidation. Further studies are needed to identify lower concentrations and/or shorter exposure times to figure out VB antioxidant effects in juvenile ARTs.
Collapse
|
4
|
Martino NA, Dell'aquila ME, Cardone RA, Somoskoi B, Lacalandra GM, Cseh S. Vitrification preserves chromatin integrity, bioenergy potential and oxidative parameters in mouse embryos. Reprod Biol Endocrinol 2013; 11:27. [PMID: 23552480 PMCID: PMC3652727 DOI: 10.1186/1477-7827-11-27] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/17/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the effects of vitrification on morpho-functional parameters (blastomere/chromatin integrity and bioenergy/oxidative potential) of mouse preimplantation embryos. METHODS In vivo produced mouse (4/16-cell, morulae and blastocyst-stage) embryos were randomly divided into vitrification and control groups. For vitrification, embryos were exposed to a 2-step loading of ethylene glycol and propylene glycol, before being placed in a small nylon loop and submerged into liquid nitrogen. After warming, the cryoprotectants were diluted by a 3-step procedure. Embryo morphology, chromatin integrity and energy/oxidative status were compared between groups. RESULTS Vitrification induced low grade blastomere cytofragmentation (P < 0.05) and low chromatin damage only in embryos at the morula stage (P < 0.001). Mitochondrial (mt) distribution pattern was affected by vitrification only in early embryos (P < 0.001). Mitochondrial activity did not change upon vitrification in morula-stage embryos but it was reduced in blastocyst-stage embryos (P < 0.05). Intracellular ROS levels significantly increased in embryos at the morula and blastocyst stages (P < 0.001). Colocalization of active mitochondria and ROS increased only in vitrified blastocysts. CONCLUSIONS In conclusion, this study elucidates the developmentally-related and mild effects of vitrification on morphology, nuclear and bioenergy/oxidative parameters of mouse embryos and demonstrates that vitrification is a suitable method for preserving predictive parameters of embryo ability to induce a full-term pregnancy.
Collapse
Affiliation(s)
- Nicola A Martino
- Veterinary Clinics and Animal Productions Unit, Department of Emergency and Organ Trasplantation (DETO), University of Bari Aldo Moro, Valenzano, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
The first tissue culture media were developed nearly 150 years ago by Ludwig and Ringer. These were simple salt solutions, which were initially based on the chemical properties of blood serum. The second generation of culture media was developed more than a century later, in the 1970s, aiming to mimic the reproductive environment. In the 1990s, simplex optimization was used to design the third group of media, to some extent ignoring existing formulations and principles. Simultaneous with the development of culture media, it became evident that it was necessary to carefully control the culture conditions, including temperature, pH, osmolarity, and air quality. Equally important was the development of instruments and tools specifically designed for cell tissue culture such as the inverted microscope, the incubator, the Petri dish, sterile plasticware, the laminar flow cabinet, and air filtration equipment.
Collapse
Affiliation(s)
- Jacques Cohen
- Tyho-Galileo Research Laboratories & Reprogenetics, West Orange, NJ, USA.
| | | |
Collapse
|