1
|
Bresnahan DR, Catandi GD, Peters SO, Maclellan LJ, Broeckling CD, Carnevale EM. Maturation and culture affect the metabolomic profile of oocytes and follicular cells in young and old mares. Front Cell Dev Biol 2024; 11:1280998. [PMID: 38283993 PMCID: PMC10811030 DOI: 10.3389/fcell.2023.1280998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Oocytes and follicular somatic cells within the ovarian follicle are altered during maturation and after exposure to culture in vitro. In the present study, we used a nontargeted metabolomics approach to assess changes in oocytes, cumulus cells, and granulosa cells from dominant, follicular-phase follicles in young and old mares. Methods: Samples were collected at three stages associated with oocyte maturation: (1) GV, germinal vesicle stage, prior to the induction of follicle/oocyte maturation in vivo; (2) MI, metaphase I, maturing, collected 24 h after induction of maturation in vivo; and (3) MIIC, metaphase II, mature with collection 24 h after induction of maturation in vivo plus 18 h of culture in vitro. Samples were analyzed using gas and liquid chromatography coupled to mass spectrometry only when all three stages of a specific cell type were obtained from the same mare. Results and Discussion: Significant differences in metabolite abundance were most often associated with MIIC, with some of the differences appearing to be linked to the final stage of maturation and others to exposure to culture medium. While differences occurred for many metabolite groups, some of the most notable were detected for energy and lipid metabolism and amino acid abundance. The study demonstrated that metabolomics has potential to aid in optimizing culture methods and evaluating cell culture additives to support differences in COCs associated with maternal factors.
Collapse
Affiliation(s)
- D. R. Bresnahan
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - G. D. Catandi
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - S. O. Peters
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - L. J. Maclellan
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - C. D. Broeckling
- Proteomic and Metabolomics Core Facility, Colorado State University, Fort Collins, CO, United States
| | - E. M. Carnevale
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Pioltine EM, Costa CB, Franchi FF, dos Santos PH, Nogueira MFG. Tauroursodeoxycholic Acid Supplementation in In Vitro Culture of Indicine Bovine Embryos: Molecular and Cellular Effects on the In Vitro Cryotolerance. Int J Mol Sci 2023; 24:14060. [PMID: 37762363 PMCID: PMC10531190 DOI: 10.3390/ijms241814060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
During embryo development, the endoplasmic reticulum (ER) acts as an important site for protein biosynthesis; however, in vitro culture (IVC) can negatively affect ER homeostasis. Therefore, the aim of our study was to evaluate the effects of the supplementation of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, in the IVC of bovine embryos. Two experiments were carried out: Exp. 1: an evaluation of blastocyst rate, hatching kinetics, and gene expression of hatched embryos after being treated with different concentrations of TUDCA (50, 200, or 1000 μM) in the IVC; Exp. 2: an evaluation of the re-expansion, hatching, and gene expression of hatched embryos previously treated with 200 µM of TUDCA at IVC and submitted to vitrification. There was no increase in the blastocyst and hatched blastocyst rates treated with TUDCA in the IVC. However, embryos submitted to vitrification after treatment with 200 µM of TUDCA underwent an increased hatching rate post-warming together with a down-regulation in the expression of ER stress-related genes and the accumulation of lipids. In conclusion, this work showed that the addition of TUDCA during in vitro culture can improve the cryotolerance of the bovine blastocyst through the putative modulation of ER and oxidative stress.
Collapse
Affiliation(s)
- Elisa Mariano Pioltine
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
| | - Camila Bortoliero Costa
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
- Laboratory of Embryonic Micromanipulation, Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil
| | - Fernanda Fagali Franchi
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
| | - Priscila Helena dos Santos
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
- Laboratory of Embryonic Micromanipulation, Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil
| |
Collapse
|
3
|
Wei M, An G, Fan L, Chen X, Li C, Chen J, Ma Q, Yang D, Wang J. Characteristics of menstrual cycle disorder and saliva metabolomics of young women in a high-temperature environment. Front Physiol 2023; 13:994990. [PMID: 36714308 PMCID: PMC9880290 DOI: 10.3389/fphys.2022.994990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
Objective: Menstrual disorders induced by high-temperature environments, can seriously damage women's reproductive health and workability. The regulation mechanism underlying it is not yet to be elucidated. Saliva is an information-rich biological fluid that can reflect systemic diseases. Here, we investigated the characteristics of menstrual cycle disorders and saliva metabolomics to provide a deeper insight of the regulation mechanism of young women in high-temperature environments. Methods: Women from high and normal temperature areas of China were selected and divided into two groups-high-temperature (H group) and control (C group). A questionnaire survey was conducted in summer (July) to investigate the incidence rate of menstrual disorders, characteristics of the disorders, and factors influencing the risk of these disorders in different regions. Metabolomics was applied to analyze the characteristics of the salivary metabolites and neurotransmitters in the two groups of women with menstrual disorders. Results: The incidence rate of menstrual disorders was significantly higher in the H group than that in the C group (p < 0.05). High-temperature environment, stress, and sleep quality were identified as critical factors associated with menstrual disorders. Non-targeted saliva metabolomics identified 64 significantly different metabolites between two groups, which mainly enriched in metabolic pathways such as carbohydrate metabolism, membrane transport, digestive system, and nucleotide metabolism (p < 0.05). N-acetylneuraminic acid, MYO, and tyramine may be candidate markers for early diagnosis of menstrual disorders in high temperature environments. Metabolites may be involving in the acute-phase response during an inflammatory process, to affecting the reproductive system by influencing the HPA axis loop. Regulations about oocyte membrane production and the luteal functions would be exerted in menstrual disorders. Targeted metabolomics of neurotransmitters revealed increased expression of histamine (HA) and glutamine and decreased expression of 5-hydroxyindole acetic acid (5-HIAA) (p < 0.05). Conclusion: Menstrual disorder characteristics induced by high temperature environments were specific. Anxiety, sleep quality and temperature feeling were the key factors to the menstrual disorder. endocrine regulation mechanism and inflammatory reactions might contribute to the development of menstrual disorders through influencing the formation of the follicular cell membrane.
Collapse
Affiliation(s)
- MengFan Wei
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China,Zhongguancun Hospital, Chinese Academy of Sciences, Beijing, China
| | - GaiHong An
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - LiJun Fan
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - XueWei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chao Li
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - JiaJun Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Qiang Ma
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China,*Correspondence: Qiang Ma, ; DanFeng Yang, ; Jing Wang,
| | - DanFeng Yang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China,*Correspondence: Qiang Ma, ; DanFeng Yang, ; Jing Wang,
| | - Jing Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China,*Correspondence: Qiang Ma, ; DanFeng Yang, ; Jing Wang,
| |
Collapse
|
4
|
Zhang Y, Yan Z, Liu H, Li L, Yuan C, Qin L, Cai L, Liu J, Hu Y, Cui Y. Sorbitol accumulation decreases oocyte quality in aged mice by altering the intracellular redox balance. Aging (Albany NY) 2021; 13:25291-25303. [PMID: 34897034 PMCID: PMC8714154 DOI: 10.18632/aging.203747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Sorbitol is a product of glucose metabolism through the polyol pathway. Many studies have demonstrated that excessive sorbitol can disrupt the intracellular redox balance. However, we still know very little about the impact of excessive intracellular sorbitol on oocyte quality, oocyte maturation, and embryo developmental potential. This study explored whether intracellular sorbitol accumulates in the oocytes of aged mice during in vitro maturation (IVM) and what roles sorbitol plays in oocyte development and maturation. Our results showed that sorbitol levels were significantly higher in in vitro-matured oocytes from aged mice than in oocytes from young mice (14.08 ± 3.78 vs. 0.23 ± 0.04 ng/oocyte). The expression of aldose reductase (AR) mRNA was significantly higher in the in vitro-cultured oocytes from 9-month-old mice than prior to culture. To decrease the excessive intracellular sorbitol in oocytes from aged mice, sorbinil, a specific inhibitor of aldose reductase, was supplemented in IVM medium, and the sorbitol level was significantly decreased (14.08 ± 3.78 vs. 0.48 ± 0.19 ng/oocyte). Our results indicated that the percentage of oocytes with first polar body extrusion (PBE) was significantly higher in the sorbinil group than in the aged group (82.4% ± 7.2% vs. 66.1% ± 6.9%), and the content of sorbitol was drastically increased in the aged group. The ROS fluorescence intensity in the sorbinil group was drastically lower than that in the aged group, while the GSH fluorescence intensity was significantly higher. Interestingly, SOD1 was upregulated in the sorbinil group. The present study suggests that excessive sorbitol accumulation is induced during IVM in aged mouse oocytes, which negatively influences oocyte quality by altering the intracellular redox balance. Inhibition of sorbitol accumulation may be a potential method to improve the nuclear maturation of aged oocytes.
Collapse
Affiliation(s)
- Yuexin Zhang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hanwen Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lingjun Li
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Chun Yuan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yanqiu Hu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
5
|
Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development. Int J Mol Sci 2019; 20:ijms20020409. [PMID: 30669355 PMCID: PMC6359168 DOI: 10.3390/ijms20020409] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian oocytes and early embryos derived from in vitro production are highly susceptible to a variety of cellular stresses. During oocyte maturation and preimplantation embryo development, functional proteins must be folded properly in the endoplasmic reticulum (ER) to maintain oocyte and embryo development. However, some adverse factors negatively impact ER functions and protein synthesis, resulting in the activation of ER stress and unfolded protein response (UPR) signaling pathways. ER stress and UPR signaling have been identified in mammalian oocytes and embryos produced in vitro, suggesting that modulation of ER stress and UPR signaling play very important roles in oocyte maturation and the development of preimplantation embryos. In this review, we briefly describe the current state of knowledge regarding ER stress, UPR signaling pathways, and their roles and mechanisms in mammalian (excluding human) oocyte maturation and preimplantation embryo development.
Collapse
|
6
|
Lin T, Oqani RK, Lee JE, Shin HY, Jin DI. Coculture with good-quality COCs enhances the maturation and development rates of poor-quality COCs. Theriogenology 2016; 85:396-407. [DOI: 10.1016/j.theriogenology.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 11/27/2022]
|