1
|
Yang J, Wang Y, Li C, Han W, Liu W, Xiong S, Zhang Q, Tong K, Huang G, Zhang X. Variation of Female Pronucleus Reveals Oocyte or Embryo Chromosomal Copy Number Variations. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200001. [PMID: 36910589 PMCID: PMC10000260 DOI: 10.1002/ggn2.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/20/2022] [Indexed: 11/11/2022]
Abstract
The characteristics of the human pronuclei (PNs), which exist 16-22 h after fertilization, appear to serve as good indicators to evaluate the quality of human oocyte and embryo, and may reflect the status of female and male chromosome composition. Here, a quantitative PN measurement method that is generated by applying expert experience combined with deep learning from large annotated datasets is reported. After mathematic reconstruction of PNs, significant differences are obtained in chromosome-normal rate and chromosomal small errors such as copy number variants by comparing the size of the reconstructive female PN. After integrating the whole procedure of PN dynamics and adjusting for errors that occur during PN identification, the results are robust. Notably, all positive prediction results are obtained from the female propositus population. Thus, the size of female PNs may mirror the internal quality of the chromosomal integrity of the oocyte. Embryos that develop from zygotes with larger female PNs may have a reduced risk of copy number variations.
Collapse
Affiliation(s)
- Jingwei Yang
- Center for Reproductive MedicineWomen and Children's Hospital of Chongqing Medical UniversityChongqing Health Center for Women and ChildrenChongqing400010China
- Chongqing Key Laboratory of Human embryo EngineeringChongqing400010China
| | - Yikang Wang
- Department of MechatronicsGraduate School of Medicine, Engineering, and Agricultural SciencesUniversity of YamanashiYamanashi‐ken400‐8510Japan
| | - Chong Li
- Center for Reproductive MedicineWomen and Children's Hospital of Chongqing Medical UniversityChongqing Health Center for Women and ChildrenChongqing400010China
- Chongqing Key Laboratory of Human embryo EngineeringChongqing400010China
| | - Wei Han
- Chongqing Key Laboratory of Human embryo EngineeringChongqing400010China
- Chongqing Clinical Research Center for Reprodutive MedicineChongqing400010China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human embryo EngineeringChongqing400010China
- Chongqing Clinical Research Center for Reprodutive MedicineChongqing400010China
| | - Shun Xiong
- Chongqing Key Laboratory of Human embryo EngineeringChongqing400010China
- Chongqing Clinical Research Center for Reprodutive MedicineChongqing400010China
| | - Qi Zhang
- Center for Reproductive MedicineWomen and Children's Hospital of Chongqing Medical UniversityChongqing Health Center for Women and ChildrenChongqing400010China
- Chongqing Key Laboratory of Human embryo EngineeringChongqing400010China
| | - Keya Tong
- Chongqing Key Laboratory of Human embryo EngineeringChongqing400010China
- Chongqing Clinical Research Center for Reprodutive MedicineChongqing400010China
| | - Guoning Huang
- Center for Reproductive MedicineWomen and Children's Hospital of Chongqing Medical UniversityChongqing Health Center for Women and ChildrenChongqing400010China
- Chongqing Key Laboratory of Human embryo EngineeringChongqing400010China
- Chongqing Clinical Research Center for Reprodutive MedicineChongqing400010China
| | - Xiaodong Zhang
- Center for Reproductive MedicineWomen and Children's Hospital of Chongqing Medical UniversityChongqing Health Center for Women and ChildrenChongqing400010China
- Chongqing Key Laboratory of Human embryo EngineeringChongqing400010China
- Chongqing Clinical Research Center for Reprodutive MedicineChongqing400010China
| |
Collapse
|
2
|
De Rycke M, Capalbo A, Coonen E, Coticchio G, Fiorentino F, Goossens V, Mcheik S, Rubio C, Sermon K, Sfontouris I, Spits C, Vermeesch JR, Vermeulen N, Wells D, Zambelli F, Kakourou G. ESHRE survey results and good practice recommendations on managing chromosomal mosaicism. Hum Reprod Open 2022; 2022:hoac044. [PMCID: PMC9637425 DOI: 10.1093/hropen/hoac044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
STUDY QUESTION
How should ART/preimplantation genetic testing (PGT) centres manage the detection of chromosomal mosaicism following PGT?
SUMMARY ANSWER
Thirty good practice recommendations were formulated that can be used by ART/PGT centres as a basis for their own policy with regards to the management of ‘mosaic’ embryos.
WHAT IS KNOWN ALREADY
The use of comprehensive chromosome screening technologies has provided a variety of data on the incidence of chromosomal mosaicism at the preimplantation stage of development and evidence is accumulating that clarifies the clinical outcomes after transfer of embryos with putative mosaic results, with regards to implantation, miscarriage and live birth rates, and neonatal outcomes.
STUDY DESIGN, SIZE, DURATION
This document was developed according to a predefined methodology for ESHRE good practice recommendations. Recommendations are supported by data from the literature, a large survey evaluating current practice and published guidance documents. The literature search was performed using PubMed and focused on studies published between 2010 and 2022. The survey was performed through a web-based questionnaire distributed to members of the ESHRE special interest groups (SIG) Reproductive Genetics and Embryology, and the ESHRE PGT Consortium members. It included questions on ART and PGT, reporting, embryo transfer policy and follow-up of transfers. The final dataset represents 239 centres.
PARTICIPANTS/MATERIALS, SETTING, METHODS
The working group (WG) included 16 members with expertise on the ART/PGT process and chromosomal mosaicism. The recommendations for clinical practice were formulated based on the expert opinion of the WG, while taking into consideration the published data and results of the survey.
MAIN RESULTS AND THE ROLE OF CHANCE
Eighty percent of centres that biopsy three or more cells report mosaicism, even though only 66.9% of all centres have validated their technology and only 61.8% of these have validated specifically for the calling of chromosomal mosaicism. The criteria for designating mosaicism, reporting and transfer policies vary significantly across the centres replying to the survey. The WG formulated recommendations on how to manage the detection of chromosomal mosaicism in clinical practice, considering validation, risk assessment, designating and reporting mosaicism, embryo transfer policies, prenatal testing and follow-up. Guidance is also provided on the essential elements that should constitute the consent forms and the genetic report, and that should be covered in genetic counselling. As there are several unknowns in chromosomal mosaicism, it is recommended that PGT centres monitor emerging data on the topic and adapt or refine their policy whenever new insights are available from evidence.
LIMITATIONS, REASONS FOR CAUTION
Rather than providing instant standardized advice, the recommendations should help ART/PGT centres in developing their own policy towards the management of putative mosaic embryos in clinical practice.
WIDER IMPLICATIONS OF THE FINDINGS
This document will help facilitate a more knowledge-based approach for dealing with chromosomal mosaicism in different centres. In addition to recommendations for clinical practice, recommendations for future research were formulated. Following up on these will direct research towards existing research gaps with direct translation to clinical practice. Emerging data will help in improving guidance, and a more evidence-based approach of managing chromosomal mosaicism.
STUDY FUNDING/COMPETING INTEREST(S)
The WG received technical support from ESHRE. M.D.R. participated in the EQA special advisory group, outside the submitted work, and is the chair of the PGT WG of the Belgian society for human genetics. D.W. declared receiving salary from Juno Genetics, UK. A.C. is an employee of Igenomix, Italy and C.R. is an employee of Igenomix, Spain. C.S. received a research grant from FWO, Belgium, not related to the submitted work. I.S. declared being a Co-founder of IVFvision Ltd, UK. J.R.V. declared patents related to ‘Methods for haplotyping single-cells’ and ‘Haplotyping and copy number typing using polymorphic variant allelic frequencies’, and being a board member of Preimplantation Genetic Diagnosis International Society (PGDIS) and International Society for Prenatal Diagnosis (ISPD). K.S. reported being Chair-elect of ESHRE. The other authors had nothing to disclose.
DISCLAIMER
This Good Practice Recommendations (GPR) document represents the views of ESHRE, which are the result of consensus between the relevant ESHRE stakeholders and are based on the scientific evidence available at the time of preparation.
ESHRE GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or be deemed inclusive of all proper methods of care, or be exclusive of other methods of care reasonably directed to obtaining the same results. They do not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.
Furthermore, ESHRE GPRs do not constitute or imply the endorsement, or favouring, of any of the included technologies by ESHRE.
Collapse
Affiliation(s)
| | - Martine De Rycke
- Centre for Medical Genetics, UZ Brussel, Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Edith Coonen
- Departments of Clinical Genetics and Reproductive Medicine, Maastricht University Medical Centre , Maastricht, The Netherlands
- Maastricht University Medical Centre GROW School for Oncology and Developmental Biology, , Maastricht, The Netherlands
| | | | | | | | | | | | - Karen Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel , Brussels, Belgium
| | | | - Claudia Spits
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel , Brussels, Belgium
| | - Joris Robert Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven , Leuven, Belgium
| | | | - Dagan Wells
- Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, University of Oxford , Oxford, UK
- Juno Genetics , Oxford, UK
| | | | - Georgia Kakourou
- Laboratory of Medical Genetics, National & Kapodistrian University of Athens, Choremio Research Laboratory, “Aghia Sophia” Children's Hospital, 11527 Athens , Greece
| |
Collapse
|