1
|
Kim H. Neural correlates of paired associate recollection: A neuroimaging meta-analysis. Brain Res 2023; 1801:148200. [PMID: 36513138 DOI: 10.1016/j.brainres.2022.148200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Functional neuroimaging data on paired associate recollection have expanded over the years, raising the need for an integrative understanding of the literature. The present study performed a quantitative meta-analysis of the data to fulfill that need. The meta-analysis focused on the three most widely used types of activation contrast: Hit > Miss, Intact > Rearranged, and Memory > Perception. The major results were as follows. First, the Hit > Miss contrast mainly involved regions in the default mode network (DMN)/medial temporal lobe (MTL), likely reflecting a greater amount of retrieved information during the Hit than Miss trials. Second, the Intact > Rearranged contrast mainly involved regions in the DMN/MTL, supporting the view that rejecting recombination foils is based on familiarity with the component parts in the absence of recollection. Third, the Memory > Perception contrast primarily involved regions in the frontoparietal control network, likely reflecting the greater demands on controlled processing during Memory than Perception conditions. Fourth, the subcortical clusters included the amygdala, caudate nucleus/putamen, and mediodorsal thalamus regions, suggesting that these regions are components of the neural circuits supporting associative recollection. Finally, comparisons with previous meta-analyses suggested that associative recollection involves the DMN regions more strongly than source recollection but less strongly than subjective recollection. In conclusion, this study contributes uniquely to the growing literature on paired associate recollection by clarifying the convergent findings and differences among studies.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea.
| |
Collapse
|
2
|
Kotb MA, Kamal AM, Aldossary NM, Alsify AA, Ahmed YM. Value of magnetic resonance spectroscopy in geriatric patients with cognitive impairment. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-0147-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Mild cognitive impairment is a transitional stage prior to dementia, and it is reported in depressed patients. Early diagnosis could predict the reversible etiologies and prevent further deterioration. Proton magnetic resonance spectroscopy has been used for early diagnosis and differential diagnosis of cognitive impairment.
Objective
We aimed to study the difference of hippocampal and frontal white matter metabolites between patients with Alzheimer’s disease, mild cognitive impairment, and cognitive impairment associated with depression, and if those metabolites can differentiate between them.
Subjects and methods
Geriatric patients with cognitive impairment were recruited from neurology and psychiatry clinics. All subjects underwent comprehensive medical evaluations, neuropsychological testing, laboratory tests as well as brain MRI and 1H-MRS studies.
Results
The present study included 85 subjects. Patients with MCI and AD had lower hippocampal NAA and NAA/Cr ratio than patients with depression and normal controls, while, frontal NAA and NAA/Cr ratio were lower in all patient’s subgroups compared to normal control.
Conclusion
Hippocampal NAA and NAA/Cr ratio might help to differentiate between MCI and cognitive impairment associated with depression.
Collapse
|
3
|
De Brigard F, Langella S, Stanley ML, Castel AD, Giovanello KS. Age-related differences in recognition in associative memory. AGING NEUROPSYCHOLOGY AND COGNITION 2019; 27:289-301. [PMID: 31008677 DOI: 10.1080/13825585.2019.1607820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aging is often accompanied by associative memory changes, although their precise nature remains unclear. This study examines how recognition of item position in the context of associative memory differs between younger and older adults. Participants studied word pairs (A-B, C-D) and were later tested with intact (A-B), reversed (D-C), recombined (A-D), and recombined and reversed (B-C) pairs. When participants were instructed to respond "Old" to both intact and reversed pairs, and "New" to recombined, and recombined and reversed pairs, older adults showed worse recognition for recombined and reversed pairs relative to younger adults (Experiment 1). This finding also emerged when flexible retrieval demands were increased by asking participants to respond "Old" only to intact pairs (Experiment 2). These results suggest that as conditions for flexible retrieval become more demanding, older adults may show worse recognition in associative memory tasks relative to younger adults.
Collapse
Affiliation(s)
- Felipe De Brigard
- Department of Philosophy, Department of Psychology and Neuroscience, Center for Cognitive Neuroscience, and Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Stephanie Langella
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Mathew L Stanley
- Department of Psychology and Neuroscience, and Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Alan D Castel
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kelly S Giovanello
- Department of Psychology and Neuroscience and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Bayram E, Caldwell JZK, Banks SJ. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:395-413. [PMID: 30229130 PMCID: PMC6140335 DOI: 10.1016/j.trci.2018.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is caused by a cascade of changes to brain integrity. Neuroimaging biomarkers are important in diagnosis and monitoring the effects of interventions. As memory impairments are among the first symptoms of AD, the relationship between imaging findings and memory deficits is important in biomarker research. The most established magnetic resonance imaging (MRI) finding is hippocampal atrophy, which is related to memory decline and currently used as a diagnostic criterion for AD. While the medial temporal lobes are impacted early by the spread of neurofibrillary tangles, other networks and regional changes can be found quite early in the progression. Atrophy in several frontal and parietal regions, cortical thinning, and white matter alterations correlate with memory deficits in early AD. Changes in activation and connectivity have been detected by functional MRI (fMRI). Task-based fMRI studies have revealed medial temporal lobe hypoactivation, parietal hyperactivation, and frontal hyperactivation in AD during memory tasks, and activation patterns of these regions are also altered in preclinical and prodromal AD. Resting state fMRI has revealed alterations in default mode network activity related to memory in early AD. These studies are limited in part due to the historic inclusion of patients who had suspected AD but likely did not have the disorder. Modern biomarkers allow for more diagnostic certainty, allowing better understanding of neuroimaging markers in true AD, even in the preclinical stage. Larger patient cohorts, comparison of candidate imaging biomarkers to more established biomarkers, and inclusion of more detailed neuropsychological batteries to assess multiple aspects of memory are needed to better understand the memory deficit in AD and help develop new biomarkers. This article reviews MRI findings related to episodic memory impairments in AD and introduces a new study with multimodal imaging and comprehensive neuropsychiatric evaluation to overcome current limitations.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jessica Z K Caldwell
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Sarah J Banks
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
5
|
Wang P, Li J, Li HJ, Huo L, Li R. Mild Cognitive Impairment Is Not "Mild" at All in Altered Activation of Episodic Memory Brain Networks: Evidence from ALE Meta-Analysis. Front Aging Neurosci 2016; 8:260. [PMID: 27872591 PMCID: PMC5097923 DOI: 10.3389/fnagi.2016.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
The present study conducted a quantitative meta-analysis aiming at assessing consensus across the functional neuroimaging studies of episodic memory in individuals with amnestic mild cognitive impairment (aMCI) and elucidating consistent activation patterns. An activation likelihood estimation (ALE) was conducted on the functional neuroimaging studies of episodic encoding and retrieval in aMCI individuals published up to March 31, 2015. Analyses covered 24 studies, which yielded 770 distinct foci. Compared to healthy controls, aMCI individuals showed statistically significant consistent activation differences in a widespread episodic memory network, not only in the bilateral medial temporal lobe and prefrontal cortex, but also in the angular gyrus, precunes, posterior cingulate cortex, and even certain more basic structures. The present ALE meta-analysis revealed that the abnormal patterns of widespread episodic memory network indicated that individuals with aMCI may not be completely "mild" in nature.
Collapse
Affiliation(s)
- Pengyun Wang
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Juan Li
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Hui-Jie Li
- Laboratory for Functional Connectome and Development, Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Lijuan Huo
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Rui Li
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
6
|
Foster CM, Addis DR, Ford JH, Kaufer DI, Burke JR, Browndyke JN, Welsh-Bohmer KA, Giovanello KS. Prefrontal contributions to relational encoding in amnestic mild cognitive impairment. NEUROIMAGE-CLINICAL 2016; 11:158-166. [PMID: 26937384 PMCID: PMC4753805 DOI: 10.1016/j.nicl.2016.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/11/2015] [Accepted: 01/09/2016] [Indexed: 01/22/2023]
Abstract
Relational memory declines are well documented as an early marker for amnestic mild cognitive impairment (aMCI). Episodic memory formation relies on relational processing supported by two mnemonic mechanisms, generation and binding. Neuroimaging studies using functional magnetic resonance imaging (fMRI) have primarily focused on binding deficits which are thought to be mediated by medial temporal lobe dysfunction. In this study, prefrontal contributions to relational encoding were also investigated using fMRI by parametrically manipulating generation demands during the encoding of word triads. Participants diagnosed with aMCI and healthy control subjects encoded word triads consisting of a category word with either, zero, one, or two semantically related exemplars. As the need to generate increased (i.e., two- to one- to zero-link triads), both groups recruited a core set of regions associated with the encoding of word triads including the parahippocampal gyrus, superior temporal gyrus, and superior parietal lobule. Participants diagnosed with aMCI also parametrically recruited several frontal regions including the inferior frontal gyrus and middle frontal gyrus as the need to generate increased, whereas the control participants did not show this modulation. While there is some functional overlap in regions recruited by generation demands between the groups, the recruitment of frontal regions in the aMCI participants coincides with worse memory performance, likely representing a form of neural inefficiency associated with Alzheimer's disease. This study investigated prefrontal contributions to relational encoding in aMCI. Subjects encoded word triads that were varied by semantic relatedness. aMCI participants modulated activity in frontal regions during encoding. Healthy controls showed no such modulation in frontal regions. Modulation in the aMCI group correlated with worse memory performance.
Collapse
Affiliation(s)
- Chris M Foster
- Department of Psychology, The University of North Carolina, Chapel Hill, NC, United States
| | - Donna Rose Addis
- Department of Psychology and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Jaclyn H Ford
- Department of Psychology, The University of North Carolina, Chapel Hill, NC, United States
| | - Daniel I Kaufer
- Department of Neurology, The University of North Carolina, Chapel Hill, NC, United States
| | - James R Burke
- Joseph & Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, United States; Division of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Jeffrey N Browndyke
- Joseph & Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, United States; Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Kathleen A Welsh-Bohmer
- Joseph & Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, United States; Division of Neurology, Duke University Medical Center, Durham, NC, United States; Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Kelly S Giovanello
- Department of Psychology, The University of North Carolina, Chapel Hill, NC, United States; Biomedical Research Imaging Center, The University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
7
|
Li H, Hou X, Liu H, Yue C, He Y, Zuo X. Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies. Hum Brain Mapp 2015; 36:1217-32. [PMID: 25411150 PMCID: PMC6869191 DOI: 10.1002/hbm.22689] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/03/2014] [Accepted: 11/03/2014] [Indexed: 11/11/2022] Open
Abstract
Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD.
Collapse
Affiliation(s)
- Hui‐Jie Li
- Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
| | - Xiao‐Hui Hou
- Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Han‐Hui Liu
- Youth Work DepartmentChina Youth University of Political StudiesBeijing100089China
| | - Chun‐Lin Yue
- Institute of Sports MedicineSoochow UniversitySuzhou215006China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
- Center for Collaboration and Innovation in Brain and Learning SciencesBeijing Normal UniversityBeijing100875China
| | - Xi‐Nian Zuo
- Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Center for Collaboration and Innovation in Brain and Learning SciencesBeijing Normal UniversityBeijing100875China
| |
Collapse
|
8
|
Meusel LAC, Kansal N, Tchistiakova E, Yuen W, MacIntosh BJ, Greenwood CE, Anderson ND. A systematic review of type 2 diabetes mellitus and hypertension in imaging studies of cognitive aging: time to establish new norms. Front Aging Neurosci 2014; 6:148. [PMID: 25071557 PMCID: PMC4085499 DOI: 10.3389/fnagi.2014.00148] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
The rising prevalence of type 2 diabetes (T2DM) and hypertension in older adults, and the deleterious effect of these conditions on cerebrovascular and brain health, is creating a growing discrepancy between the "typical" cognitive aging trajectory and a "healthy" cognitive aging trajectory. These changing health demographics make T2DM and hypertension important topics of study in their own right, and warrant attention from the perspective of cognitive aging neuroimaging research. Specifically, interpretation of individual or group differences in blood oxygenation level dependent magnetic resonance imaging (BOLD MRI) or positron emission tomography (PET H2O(15)) signals as reflective of differences in neural activation underlying a cognitive operation of interest requires assumptions of intact vascular health amongst the study participants. Without adequate screening, inclusion of individuals with T2DM or hypertension in "healthy" samples may introduce unwanted variability and bias to brain and/or cognitive measures, and increase potential for error. We conducted a systematic review of the cognitive aging neuroimaging literature to document the extent to which researchers account for these conditions. Of the 232 studies selected for review, few explicitly excluded individuals with T2DM (9%) or hypertension (13%). A large portion had exclusion criteria that made it difficult to determine whether T2DM or hypertension were excluded (44 and 37%), and many did not mention any selection criteria related to T2DM or hypertension (34 and 22%). Of all the surveyed studies, only 29% acknowledged or addressed the potential influence of intersubject vascular variability on the measured BOLD or PET signals. To reinforce the notion that individuals with T2DM and hypertension should not be overlooked as a potential source of bias, we also provide an overview of metabolic and vascular changes associated with T2DM and hypertension, as they relate to cerebrovascular and brain health.
Collapse
Affiliation(s)
| | - Nisha Kansal
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada
| | - Ekaterina Tchistiakova
- Sunnybrook Research Institute, Heart and Stroke Foundation Canadian Partnership for Stroke Recovery Toronto, ON, Canada ; Department of Medical Biophysics, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - William Yuen
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Heart and Stroke Foundation Canadian Partnership for Stroke Recovery Toronto, ON, Canada ; Department of Medical Biophysics, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Carol E Greenwood
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Nicole D Anderson
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada ; Departments of Psychology and Psychiatry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
9
|
Nellessen N, Rottschy C, Eickhoff SB, Ketteler ST, Kuhn H, Shah NJ, Schulz JB, Reske M, Reetz K. Specific and disease stage-dependent episodic memory-related brain activation patterns in Alzheimer's disease: a coordinate-based meta-analysis. Brain Struct Funct 2014; 220:1555-71. [PMID: 24633738 DOI: 10.1007/s00429-014-0744-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/28/2014] [Indexed: 12/31/2022]
Abstract
Episodic memory is typically affected during the course of Alzheimer's disease (AD). Due to the pronounced heterogeneity of functional neuroimaging studies on episodic memory impairments in mild cognitive impairment (MCI) and AD regarding their methodology and findings, we aimed to delineate consistent episodic memory-related brain activation patterns. We performed a systematic, quantitative, coordinate-based whole-brain activation likelihood estimation meta-analysis of 28 functional magnetic resonance imaging (fMRI) studies comprising 292 MCI and 102 AD patients contrasted to 409 age-matched control subjects. We included episodic encoding and/or retrieval phases, investigated the effects of group, verbal or image stimuli and correlated mean Mini-Mental-Status-Examination (MMSE) scores with the modelled activation estimates. MCI patients presented increased right hippocampal activation during memory encoding, decreased activation in the left hippocampus and fusiform gyrus during retrieval tasks, as well as attenuated activation in the right anterior insula/inferior frontal gyrus during verbal retrieval. In AD patients, however, stronger activation within the precuneus during encoding tasks was accompanied by attenuated right hippocampal activation during retrieval tasks. Low cognitive performance (MMSE scores) was associated with stronger activation of the precuneus and reduced activation of the right (para)hippocampus and anterior insula/inferior frontal gyrus. This meta-analysis provides evidence for a specific and probably disease stage-dependent brain activation pattern related to the pathognomonic AD characteristic of episodic memory loss.
Collapse
Affiliation(s)
- Nils Nellessen
- Department of Neurology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ford JH, Giovanello KS, Guskiewicz KM. Episodic memory in former professional football players with a history of concussion: an event-related functional neuroimaging study. J Neurotrauma 2013; 30:1683-701. [PMID: 23679098 DOI: 10.1089/neu.2012.2535] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions.
Collapse
Affiliation(s)
- Jaclyn H Ford
- 1 Department of Psychology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina
| | | | | |
Collapse
|