1
|
Groh JR, Yhang E, Tripodis Y, Palminsano J, Martin B, Burke E, Bhatia U, Mez J, Stern RA, Gunstad J, Alosco ML. Health outcomes of former division I college athletes. Brain Inj 2024:1-11. [PMID: 39306858 DOI: 10.1080/02699052.2024.2405209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Former professional collision sport (CS) athletes, particularly American football players, are at risk of developing chronic health conditions; however, little is known about the health outcomes of amateur athletes. METHODS A 60-item health survey examined self-reported symptoms and diagnoses among former Division 1 Collegiate CS athletes and non- or limited-contact sport (non-CS) athletes. Binary logistic regressions tested the association between playing CS and health outcomes. RESULTS Five hundred and two (6.2%) participants completed the survey: 160 CS athletes (mean age: 59.2, SD = 16.0) and 303 non-CS athletes (mean age: 54.0, SD = 16.9). CS athletes had increased odds of reported cognitive complaints and neuropsychiatric symptoms including memory (Padj < 0.01), attention/concentration (Padj = 0.01), problem solving/multi-tasking (Padj = 0.05), language (Padj = 0.02), anxiety (Padj = 0.04), impulsivity (Padj = 0.02), short-fuse/rage/explosivity (Padj < 0.001), and violence/aggression (Padj = 0.02). CS athletes also reported higher rates of sleep apnea (Padj = 0.02). There were no group differences in cardiovascular and physical health outcomes. CONCLUSIONS Former CS athletes reported more cognitive and neuropsychiatric complaints. The low response rate is a limitation of this study; however, over 500,000 athletes play college sports each year, thus research on long-term health outcomes in this population is critical.
Collapse
Affiliation(s)
- Jenna R Groh
- Graduate Medical Sciences, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Eukyung Yhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Palminsano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Erin Burke
- Department of Psychology, Kent State University, Kent, OH, USA
| | - Urja Bhatia
- Department of Psychology, Kent State University, Kent, OH, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - John Gunstad
- Department of Psychology, Kent State University, Kent, OH, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Schaffert J, Datoc A, Sanders GD, Didehbani N, LoBue C, Cullum CM. Repetitive head-injury exposure and later-in-life cognitive and emotional outcomes among former collegiate football players: a CLEAATS investigation. Int Rev Psychiatry 2024; 36:233-242. [PMID: 39255023 DOI: 10.1080/09540261.2024.2352572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 09/11/2024]
Abstract
This study measured the relationship between head-injury exposure and later-in-life cognitive and emotional symptoms in aging collegiate football players who participated in the College Level Aging Athlete Study. Linear regressions examined the relationship between various head-injury exposure variables (head-injury exposure estimate [HIEE], number of diagnosed concussions, and symptomatic hits to the head) and subjective cognitive function, objective cognitive function, and emotional/mood symptoms. Additional regressions evaluated the impact of emotional symptoms on subjective cognitive decline and objective cognitive function. Participants (n = 216) were 50-87 years old (M = 63.4 [8.5]), 91% White, and well-educated (bachelor's/graduate degree = 92%). HIEE did not predict scores on cognitive or emotional/mood symptom measures (p's > .169). Diagnosed concussions had a small effect on depression symptoms (p = .002, b = 0.501, R2 = .052) and subjective cognitive symptoms (p = .002, b = 0.383, R2 = .051). An emotional symptom index had a stronger relationship (p < .001, b = 0.693, R2 = .362) with subjective cognitive functioning but no significant relationship with objective cognitive function (p = .052, b = -0.211, R2 = .020). Controlling for emotional symptoms, the relationship between concussions and subjective cognitive symptoms was attenuated (p = .078, R2 = .011). Findings suggested that head-injury exposure was not significantly related to cognitive or emotional/mood outcomes in former collegiate football players and highlighted the importance of current emotional/mood symptoms on subjective cognitive function.
Collapse
Affiliation(s)
- Jeff Schaffert
- Division of Psychology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alison Datoc
- Department of Psychiatry, Children's Health Andrews Institute, Orthopaedics and Sports Medicine, Division of Psychology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gavin D Sanders
- Department of Psychiatry, Division of Psychology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nyaz Didehbani
- Department of Psychiatry, Physical Medicine and Rehabilitation, Division of Psychology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christian LoBue
- Department of Psychiatry, Neurological Surgery, Division of Psychology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - C Munro Cullum
- Department of Psychiatry, Neurology, and Neurological Surgery, Division of Psychology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Brett BL, Beversdorf DQ. Establishing Diagnostic Features of Traumatic Encephalopathy Syndrome: One Step at a Time. Neurology 2024; 102:e209273. [PMID: 38489545 DOI: 10.1212/wnl.0000000000209273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Benjamin L Brett
- From the Department of Neurosurgery (B.L.B.), Medical College of Wisconsin, Milwaukee; and University of Missouri (D.Q.B.), Columbia, MO
| | - David Q Beversdorf
- From the Department of Neurosurgery (B.L.B.), Medical College of Wisconsin, Milwaukee; and University of Missouri (D.Q.B.), Columbia, MO
| |
Collapse
|
4
|
Allen AT, Cole WR, Walton SR, Kerr ZY, Chandran A, Mannix R, Guskiewicz KM, Meehan WP, Echemendia RJ, McCrea MA, Brett BL. Subjective and Performance-Based Cognition and Their Associations with Head Injury History in Older Former National Football League Players. Med Sci Sports Exerc 2023; 55:2170-2179. [PMID: 37443456 PMCID: PMC10787800 DOI: 10.1249/mss.0000000000003256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
PURPOSE Investigate the association between self-reported subjective and performance-based cognition among older (50-70 years) former professional American football players, as well as the relationship of cognitive measures with concussion history and years of football participation, as a proxy for repetitive head impact exposure. METHODS Among older former National Football League (NFL) players ( N = 172; mean age = 60.69 ± 5.64), associations of subjective (Patient Reported Outcome Measurement Information System Cognitive Function-Short Form) and performance-based cognitive measures (Brief Test of Adult Cognition by Telephone [BTACT] Executive Function and Episodic Memory indices) were assessed via univariable and multivariable regression models, with a priori covariates of depression and race. A similar univariate and multivariable regression approach assessed associations between concussion history and years of football participation with subjective and performance-based cognitive measures. In a sample subset ( n = 114), stability of subjective cognitive rating was assessed via partial correlation. RESULTS Subjective ratings of cognition were significantly associated with performance-based assessment, with moderate effect sizes (episodic memory ηp2 = 0.12; executive function ηp2 = 0.178). These associations were weakened, but remained significant ( P s < 0.05), with the inclusion of covariates. Greater concussion history was associated with lower subjective cognitive function ( ηp2 = 0.114, P < 0.001), but not performance-based cognition. The strength of association between concussion history and subjective cognition was substantially weakened with inclusion of covariates ( ηp2 = 0.057). Years of participation were not associated with measures of subjective or objective cognition ( P s > 0.05). CONCLUSIONS These findings reinforce the importance of comprehensive evaluation reflecting both subjective and objective measures of cognition, as well as the consideration of patient-specific factors, as part of a comprehensive neurobehavioral and health assessment of older former contact sport athletes.
Collapse
Affiliation(s)
- Andrew T. Allen
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI
| | - Wesley R. Cole
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Samuel R. Walton
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Zachary Yukio Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Avinash Chandran
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, VA
- Datalys Center for Sports Injury Research and Prevention, Indianapolis, IN
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, MA
| | - Kevin M. Guskiewicz
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - William P. Meehan
- Sports Medicine Division, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics and Orthopedics, Harvard Medical School, Boston, MA
| | - Ruben J. Echemendia
- Psychological and Neurobehavioral Associates, Inc, State College, PA
- University Orthopedics Center Concussion Clinic, State College, PA
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI
- Department of Neurology, Medical College of Wisconsin, Wauwatosa, WI
| | - Benjamin L. Brett
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI
- Department of Neurology, Medical College of Wisconsin, Wauwatosa, WI
| |
Collapse
|
5
|
McKee AC, Mez J, Abdolmohammadi B, Butler M, Huber BR, Uretsky M, Babcock K, Cherry JD, Alvarez VE, Martin B, Tripodis Y, Palmisano JN, Cormier KA, Kubilus CA, Nicks R, Kirsch D, Mahar I, McHale L, Nowinski C, Cantu RC, Stern RA, Daneshvar D, Goldstein LE, Katz DI, Kowall NW, Dwyer B, Stein TD, Alosco ML. Neuropathologic and Clinical Findings in Young Contact Sport Athletes Exposed to Repetitive Head Impacts. JAMA Neurol 2023; 80:1037-1050. [PMID: 37639244 PMCID: PMC10463175 DOI: 10.1001/jamaneurol.2023.2907] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Importance Young contact sport athletes may be at risk for long-term neuropathologic disorders, including chronic traumatic encephalopathy (CTE). Objective To characterize the neuropathologic and clinical symptoms of young brain donors who were contact sport athletes. Design, Setting, and Participants This case series analyzes findings from 152 of 156 brain donors younger than 30 years identified through the Understanding Neurologic Injury and Traumatic Encephalopathy (UNITE) Brain Bank who donated their brains from February 1, 2008, to September 31, 2022. Neuropathologic evaluations, retrospective telephone clinical assessments, and online questionnaires with informants were performed blinded. Data analysis was conducted between August 2021 and June 2023. Exposures Repetitive head impacts from contact sports. Main Outcomes and Measures Gross and microscopic neuropathologic assessment, including diagnosis of CTE, based on defined diagnostic criteria; and informant-reported athletic history and informant-completed scales that assess cognitive symptoms, mood disturbances, and neurobehavioral dysregulation. Results Among the 152 deceased contact sports participants (mean [SD] age, 22.97 [4.31] years; 141 [92.8%] male) included in the study, CTE was diagnosed in 63 (41.4%; median [IQR] age, 26 [24-27] years). Of the 63 brain donors diagnosed with CTE, 60 (95.2%) were diagnosed with mild CTE (stages I or II). Brain donors who had CTE were more likely to be older (mean difference, 3.92 years; 95% CI, 2.74-5.10 years) Of the 63 athletes with CTE, 45 (71.4%) were men who played amateur sports, including American football, ice hockey, soccer, rugby, and wrestling; 1 woman with CTE played collegiate soccer. For those who played football, duration of playing career was significantly longer in those with vs without CTE (mean difference, 2.81 years; 95% CI, 1.15-4.48 years). Athletes with CTE had more ventricular dilatation, cavum septum pellucidum, thalamic notching, and perivascular pigment-laden macrophages in the frontal white matter than those without CTE. Cognitive and neurobehavioral symptoms were frequent among all brain donors. Suicide was the most common cause of death, followed by unintentional overdose; there were no differences in cause of death or clinical symptoms based on CTE status. Conclusions and Relevance This case series found that young brain donors exposed to repetitive head impacts were highly symptomatic regardless of CTE status, and the causes of symptoms in this sample are likely multifactorial. Future studies that include young brain donors unexposed to repetitive head impacts are needed to clarify the association among exposure, white matter and microvascular pathologic findings, CTE, and clinical symptoms.
Collapse
Affiliation(s)
- Ann C. McKee
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- National Center for PTSD, VA Boston Healthcare, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Jesse Mez
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Bobak Abdolmohammadi
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Morgane Butler
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Bertrand Russell Huber
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- National Center for PTSD, VA Boston Healthcare, Boston, Massachusetts
| | - Madeline Uretsky
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Katharine Babcock
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Jonathan D. Cherry
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Victor E. Alvarez
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Brett Martin
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Joseph N. Palmisano
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Kerry A. Cormier
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Caroline A. Kubilus
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Raymond Nicks
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Daniel Kirsch
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Ian Mahar
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Lisa McHale
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Christopher Nowinski
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Robert C. Cantu
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
- Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
- Department of Neurosurgery, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Robert A. Stern
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurosurgery, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Daniel Daneshvar
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Rehabilitation Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lee E. Goldstein
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Psychiatry, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Biomedical, Electrical, and Computer Engineering, Boston University College of Engineering, Boston, Massachusetts
| | - Douglas I. Katz
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Neil W. Kowall
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Brigid Dwyer
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Thor D. Stein
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Michael L. Alosco
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| |
Collapse
|
6
|
Amadon GK, Goeckner BD, Brett BL, Meier TB. Comparison of Various Metrics of Repetitive Head Impact Exposure And Their Associations With Neurocognition in Collegiate-Aged Athletes. Arch Clin Neuropsychol 2023; 38:714-723. [PMID: 36617242 PMCID: PMC10369361 DOI: 10.1093/arclin/acac107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Characterize the levels of various metrics of repetitive head impacts (RHI) in contact (CS) and non-contact (NCS) sport athletes and determine the extent to which they are associated with fluid cognition. METHODS Collegiate-aged athletes (n = 176) completed semi-structured interviews about participation in contact sport. RHI was operationalized based on current sport (CS/NCS), the cumulative number of years of participation, age at first exposure (AFE), and based on recently proposed traumatic encephalopathy syndrome (TES) categories. The NIH Toolbox Cognition Battery assessed fluid cognition. General linear models compared RHI metrics between CS and NCS athletes and tested associations of RHI measures with fluid cognition. RESULTS CS athletes had more years of RHI exposure, higher rates of "extensive" exposure based on TES criteria, and were more likely to have AFE before age 12 relative to NCS (ps < .001). A subset of NCS athletes, however, reported prior RHI at levels categorized as being "extensive" based on TES criteria (5%), while a larger minority had AFE before 12 (34%). No adverse associations of RHI and fluid cognition were observed (ps > .05). Across all RHI metrics, more or earlier RHI was associated with better episodic memory (ps ≤ .05). Secondary analyses showed this effect was driven by women. CONCLUSIONS Current results find no evidence that RHI in collegiate-aged athletes is associated with worse neurocognition. Although there was extensive overlap among RHI measures, results demonstrate that categorizing athletes based on their current sport undercounts the lifetime RHI exposure in many NCS athletes.
Collapse
Affiliation(s)
- Grace K Amadon
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
Alosco ML, Ly M, Mosaheb S, Saltiel N, Uretsky M, Tripodis Y, Martin B, Palmisano J, Delano-Wood L, Bondi MW, Meng G, Xia W, Daley S, Goldstein LE, Katz DI, Dwyer B, Daneshvar DH, Nowinski C, Cantu RC, Kowall NW, Stern RA, Alvarez VE, Mez J, Huber BR, McKee AC, Stein TD. Decreased myelin proteins in brain donors exposed to football-related repetitive head impacts. Brain Commun 2023; 5:fcad019. [PMID: 36895961 PMCID: PMC9990992 DOI: 10.1093/braincomms/fcad019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
American football players and other individuals exposed to repetitive head impacts can exhibit a constellation of later-life cognitive and neuropsychiatric symptoms. While tau-based diseases such as chronic traumatic encephalopathy can underpin certain symptoms, contributions from non-tau pathologies from repetitive head impacts are increasingly recognized. We examined cross-sectional associations between myelin integrity using immunoassays for myelin-associated glycoprotein and proteolipid protein 1 with risk factors and clinical outcomes in brain donors exposed to repetitive head impacts from American football. Immunoassays for myelin-associated glycoprotein and proteolipid protein 1 were conducted on dorsolateral frontal white matter tissue samples of 205 male brain donors. Proxies of exposure to repetitive head impacts included years of exposure and age of first exposure to American football play. Informants completed the Functional Activities Questionnaire, Behavior Rating Inventory of Executive Function-Adult Version (Behavioral Regulation Index), and Barratt Impulsiveness Scale-11. Associations between myelin-associated glycoprotein and proteolipid protein 1 with exposure proxies and clinical scales were tested. Of the 205 male brain donors who played amateur and professional football, the mean age was 67.17 (SD = 16.78), and 75.9% (n = 126) were reported by informants to be functionally impaired prior to death. Myelin-associated glycoprotein and proteolipid protein 1 correlated with the ischaemic injury scale score, a global indicator of cerebrovascular disease (r = -0.23 and -0.20, respectively, Ps < 0.01). Chronic traumatic encephalopathy was the most common neurodegenerative disease (n = 151, 73.7%). Myelin-associated glycoprotein and proteolipid protein 1 were not associated with chronic traumatic encephalopathy status, but lower proteolipid protein 1 was associated with more severe chronic traumatic encephalopathy (P = 0.03). Myelin-associated glycoprotein and proteolipid protein 1 were not associated with other neurodegenerative disease pathologies. More years of football play was associated with lower proteolipid protein 1 [beta = -2.45, 95% confidence interval (CI) [-4.52, -0.38]] and compared with those who played <11 years of football (n = 78), those who played 11 or more years (n = 128) had lower myelin-associated glycoprotein (mean difference = 46.00, 95% CI [5.32, 86.69]) and proteolipid protein 1 (mean difference = 24.72, 95% CI [2.40, 47.05]). Younger age of first exposure corresponded to lower proteolipid protein 1 (beta = 4.35, 95% CI [0.25, 8.45]). Among brain donors who were aged 50 or older (n = 144), lower proteolipid protein 1 (beta = -0.02, 95% CI [-0.047, -0.001]) and myelin-associated glycoprotein (beta = -0.01, 95% CI [-0.03, -0.002]) were associated with higher Functional Activities Questionnaire scores. Lower myelin-associated glycoprotein correlated with higher Barratt Impulsiveness Scale-11 scores (beta = -0.02, 95% CI [-0.04, -0.0003]). Results suggest that decreased myelin may represent a late effect of repetitive head impacts that contributes to the manifestation of cognitive symptoms and impulsivity. Clinical-pathological correlation studies with prospective objective clinical assessments are needed to confirm our findings.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Monica Ly
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
| | - Sydney Mosaheb
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Nicole Saltiel
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
| | - Mark W Bondi
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
| | | | - Weiming Xia
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah Daley
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - Douglas I Katz
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | - Robert C Cantu
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bertrand Russell Huber
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Alosco ML, Barr WB, Banks SJ, Wethe JV, Miller JB, Pulukuri SV, Culhane J, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Mariani ML, Cantu RC, Dodick DW, McClean MD, Au R, Mez J, Turner RW, Palmisano JN, Martin B, Hartlage K, Cummings JL, Reiman EM, Shenton ME, Stern RA. Neuropsychological test performance of former American football players. Alzheimers Res Ther 2023; 15:1. [PMID: 36597138 PMCID: PMC9808953 DOI: 10.1186/s13195-022-01147-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Patterns of cognitive impairment in former American football players are uncertain because objective neuropsychological data are lacking. This study characterized the neuropsychological test performance of former college and professional football players. METHODS One hundred seventy male former football players (n=111 professional, n=59 college; 45-74 years) completed a neuropsychological test battery. Raw scores were converted to T-scores using age, sex, and education-adjusted normative data. A T-score ≤ 35 defined impairment. A domain was impaired if 2+ scores fell in the impaired range except for the language and visuospatial domains due to the limited number of tests. RESULTS Most football players had subjective cognitive concerns. On testing, rates of impairments were greatest for memory (21.2% two tests impaired), especially for recall of unstructured (44.7%) versus structured verbal stimuli (18.8%); 51.8% had one test impaired. 7.1% evidenced impaired executive functions; however, 20.6% had impaired Trail Making Test B. 12.1% evidenced impairments in the attention, visual scanning, and psychomotor speed domain with frequent impairments on Trail Making Test A (18.8%). Other common impairments were on measures of language (i.e., Multilingual Naming Test [21.2%], Animal Fluency [17.1%]) and working memory (Number Span Backward [14.7%]). Impairments on our tasks of visuospatial functions were infrequent. CONCLUSIONS In this sample of former football players (most of whom had subjective cognitive concerns), there were diffuse impairments on neuropsychological testing with verbal memory being the most frequently impaired domain.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA, 02118, USA.
| | - William B Barr
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sarah J Banks
- Department of Neuroscience, University of California, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Jennifer V Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Justin B Miller
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Surya Vamsi Pulukuri
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA, 02118, USA
| | - Julia Culhane
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA, 02118, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Megan L Mariani
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA, 02118, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA, 02118, USA
| | - David W Dodick
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Rhoda Au
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA, 02118, USA
- Framingham Heart Study, Framingham, MA, USA
- Slone Epidemiology Center, Boston University, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA, 02118, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Robert W Turner
- Department of Clinical Research & Leadership, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Kaitlin Hartlage
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA, 02118, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Schaffert J, Didehbani N, LoBue C, Hart J, Motes M, Rossetti H, Wilmoth K, Goette W, Lacritz L, Cullum CM. Neurocognitive outcomes of older National Football League retirees. Brain Inj 2022; 36:1364-1371. [PMID: 36437496 DOI: 10.1080/02699052.2022.2143567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Determine if head-injury exposure relates to later-in-life cognitive decline in older National Football League (NFL) retirees. METHOD NFL retirees (aged 50+) with or without cognitive impairment underwent baseline (n = 53) and follow-up (n = 29; 13-59 months later) neuropsychological evaluations. Cognitively normal (CN) retirees (n = 26) were age- and education-matched to healthy controls (n = 26). Cognitively impaired (CI) retirees with mild cognitive impairment or dementia (n = 27) were matched to a clinical sample (CS) by age, sex, education, and diagnosis (n = 83). ANOVAs compared neuropsychological composites at baseline and over time between retirees and their matched groups. Regression models evaluated whether concussions, concussions with loss of consciousness (LOC), or games played predicted neuropsychological functioning. RESULTS At baseline, CN retirees had slightly worse memory than controls (MCN retirees = 50.69, SECN retirees = 1.320; MHealthy controls = 57.08, SEHealthy controls = 1.345; p = 0.005). No other group diferences were observed, and head-injury exposure did not predict neurocognitive performance at baseline or over time. CONCLUSIONS Head-injury exposure was not associated with later-in-life cognition, regardless of cognitive diagnosis. Some retirees may exhibit lower memory scores compared to age-matched peers, though this is of unclear clinical significance.
Collapse
Affiliation(s)
- Jeff Schaffert
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nyaz Didehbani
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christian LoBue
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John Hart
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael Motes
- Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Heidi Rossetti
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kristin Wilmoth
- Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Will Goette
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura Lacritz
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - C Munro Cullum
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Phelps A, Alosco ML, Baucom Z, Hartlage K, Palmisano JN, Weuve J, Mez J, Tripodis Y, Stern RA. Association of Playing College American Football With Long-term Health Outcomes and Mortality. JAMA Netw Open 2022; 5:e228775. [PMID: 35442450 PMCID: PMC9021915 DOI: 10.1001/jamanetworkopen.2022.8775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IMPORTANCE Exposure to repetitive head impacts from playing American football (including impacts resulting in symptomatic concussions and subconcussive trauma) is associated with increased risk for later-life health problems, including cognitive and neuropsychiatric decline and neurodegenerative disease. Most research on long-term health consequences of playing football has focused on former professional athletes, with limited studies of former college players. OBJECTIVES To estimate the prevalence of self-reported health conditions among former college football players compared with a sample of men in the general population as well as standardized mortality ratios (SMRs) among former college football players. DESIGN, SETTING, AND PARTICIPANTS This cohort study included data from 447 former University of Notre Dame (ND) football players aged 59 to 75 years who were seniors on the rosters from 1964 to 1980. A health outcomes survey was distributed to living players and next of kin of deceased players for whom contact information was available. The survey was completed from December 2018 to May 2019. EXPOSURE Participation in football at ND. MAIN OUTCOMES AND MEASURES Prevalence of health outcomes was compared between living former players who completed the survey and propensity score-matched participants in the Health and Retirement Study (HRS). Standardized mortality ratios of all causes and specific causes of death among all former players were compared with those among men in the general US population. RESULTS A total of 216 living players completed the health survey (median age, 67 years; IQR, 63-70 years) and were compared with 638 participants in the HRS (median age, 66 years; IQR, 63-70 years). Former players reported a higher prevalence of cognitive impairment (10 [5%] vs 8 [1%]; P = .02), headaches (22 [10%] vs 22 [4%]; P = .001), cardiovascular disease (70 [33%] vs 128 [20%]; P = .001), hypercholesterolemia (111 [52%] vs 182 [29%]; P = .001), and alcohol use (185 [86%] vs 489 [77%]; P = .02) and a lower prevalence of diabetes (24 [11%] vs 146 [23%]; P = .001). All-cause mortality (SMR, 0.54; 95% CI, 0.42-0.67) and mortality from heart (SMR, 0.64; 95% CI, 0.39-0.99), circulatory (SMR, 0.23; 95% CI, 0.03-0.83), respiratory (SMR, 0.13; 95% CI, 0.00-0.70), and digestive system (SMR, 0.13; 95% CI, 0.00-0.74) disorders; lung cancer (SMR, 0.26; 95% CI, 0.05-0.77); and violence (SMR, 0.10; 95% CI, 0.00-0.58) were significantly lower in the ND cohort than in the general population. Mortality from brain and other nervous system cancers was significantly higher in the ND cohort (SMR, 3.82; 95% CI, 1.04-9.77). Whereas point estimates were greater for all neurodegenerative causes (SMR, 1.42; 95% CI, 0.29-4.18), amyotrophic lateral sclerosis (SMR, 2.93; 95% CI, 0.36-10.59), and Parkinson disease (SMR, 2.07; 95% CI, 0.05-11.55), the difference did not reach statistical significance. CONCLUSIONS AND RELEVANCE In this cohort study of former college football players, both positive and negative health outcomes were observed. With more than 800 000 former college players living in the US, additional research appears to be needed to provide stakeholders with guidance to maximize factors that improve health outcomes and minimize factors that may increase risk for later-life morbidity and mortality.
Collapse
Affiliation(s)
- Alyssa Phelps
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Zachary Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Kaitlin Hartlage
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Joseph N. Palmisano
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
11
|
Brett BL, Kerr ZY, Walton SR, Chandran A, Defreese JD, Mannix R, Echemendia RJ, Meehan WP, Guskiewicz KM, McCrea M. Longitudinal trajectory of depression symptom severity and the influence of concussion history and physical function over a 19-year period among former National Football League (NFL) players: an NFL-LONG Study. J Neurol Neurosurg Psychiatry 2022; 93:272-279. [PMID: 34663623 PMCID: PMC8854336 DOI: 10.1136/jnnp-2021-326602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/03/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This study investigated the longitudinal course of depressive symptom severity over 19 years in former American football players and the influence of concussion history, contact sport participation and physical function on observed trajectories. METHODS Former American football players completed a general health questionnaire involving demographic information, medical/psychiatric history, concussion/football history and validated measures of depression and physical function at three time points (2001, 2010 and 2019). Parallel process latent growth curve modelling tested associations between concussion history, years of football participation, and overall and change in physical function on the overall level and trajectory of depressive symptoms. RESULTS Among the 333 participants (mean(SD) age, 48.95 (9.37) at enrolment), there was a statistically significant, but small increase in depressive symptom severity from 2001 (48.34 (7.75)) to 2019 (49.77 (9.52)), slope=0.079 (SE=0.11), p=0.007. Those with greater concussion history endorsed greater overall depressive symptom severity, B=1.38 (SE=0.33), p<0.001. Concussion history, B<0.001 (SE=0.02), p=0.997 and years of participation, B<0.001 (SE=0.01), p=0.980, were not associated with rate of change (slope factor) over 19 years. Greater decline in physical function, B=-0.71 (SE=0.16), p<0.001, was predictive of a faster growth rate (ie, steeper increase) of depression symptom endorsement over time. CONCLUSIONS Concussion history, not years of participation, was associated with greater depressive symptom severity. Neither factor was predictive of changes over a 19-year period. Decline in physical function was a significant predictor of a steeper trajectory of increased depressive symptoms, independent of concussion effects. This represents one viable target for preventative intervention to mitigate long-term neuropsychiatric difficulties associated with concussion across subsequent decades of life.
Collapse
Affiliation(s)
- Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
- Department of Neurology, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Zachary Y Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samuel R Walton
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Avinash Chandran
- Datalys Center for Sports Injury Research and Prevention, indianapolis, IN, USA
| | - J D Defreese
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Ruben J Echemendia
- Psychological and Neurobehavioral Associates, Inc, State College, Pennsylvania, USA
- Department of Psychology, University of Missouri-Kansas City, Kansas City, MO, USA
| | - William P Meehan
- Sports Medicine Division, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics and Orthopedics, Harvard Medical School, Boston, MA, USA
| | - Kevin M Guskiewicz
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
- Department of Neurology, Medical College of Wisconsin, Wauwatosa, WI, USA
| |
Collapse
|
12
|
Brett BL, Walton S, Meier T, Nencka AS, Powell JR, Giovanello KS, Guskiewicz KK, McCrea M. Head impact exposure, grey matter volume, and moderating effects of estimated IQ and educational attainment in former athletes at midlife. J Neurotrauma 2022; 39:497-507. [PMID: 35044240 PMCID: PMC8978573 DOI: 10.1089/neu.2021.0449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Repetitive head impact (RHI) exposure has been associated with differences in brain structure among younger active athletes, most often within the hippocampus. Studies of former athletes at early-midlife are limited. We investigated the association between RHI exposure and grey matter structure, as well as moderating factors, among former athletes in early-midlife. Former collegiate football players (N=55; age=37.9+1.5 years) completed magnetic resonance imaging to quantify grey matter morphometry and extensive structured interviews of RHI history (Head Impact Exposure Estimate). Linear regression models tested the association between RHI exposure and GM structures of interest. Interactions were tested for moderators: two estimates of IQ (single word reading and picture vocabulary) and education history. Greater RHI exposure was associated with smaller hippocampal volume, β=-.36, p=.004. Conversely, RHI exposure was not significantly associated with other GM outcomes ps>.05. Education history significantly moderated the association between RHI exposure and hippocampal volume, β=.69, p=.047. Among those with a bachelor's degree, greater RHI exposure was significantly associated with smaller hippocampal volumes, β=-.58, p<.001. For those with graduate/professional degrees, the association between RHI and hippocampal volume was not significant, β=-.33, p=.134. Consistent with studies involving younger, active athletes, smaller hippocampal volumes were selectively associated with greater RHI exposure among former collegiate football players at midlife. This relationship was moderated by higher levels of education. Future longitudinal studies are needed to investigate the course of possible changes that can occur between early-midlife to older ages, as well as the continued protective effect of education and other potential influential factors.
Collapse
Affiliation(s)
- Benjamin L Brett
- Medical College of Wisconsin, 5506, Neurosurgery and Neurology, 8701 W Watertown Plank Rd, Milwaukee, Wisconsin, United States, 53226;
| | - Samuel Walton
- University of North Carolina at Chapel Hill College of Arts and Sciences, 169101, Department of Exercise and Sport Science, Chapel Hill, North Carolina, United States;
| | - Timothy Meier
- Medical College of Wisconsin, Neurosurgery, 8701 Watertown Plank Road, Milwaukee, Wisconsin, United States, 53226;
| | - Andrew S Nencka
- Medical College of Wisconsin, Biophysics, Milwaukee, Wisconsin, United States;
| | - Jacob R Powell
- University of North Carolina at Chapel Hill College of Arts and Sciences, 169101, Department of Exercise and Sport Science, Chapel Hill, North Carolina, United States;
| | - Kelly S Giovanello
- University of North Carolina at Chapel Hill, Psychology, Chapel Hill, North Carolina, United States;
| | - Kevin K Guskiewicz
- University of North Carolina, Exercise and Sport Science, CB#8700, Chapel Hill, North Carolina, United States, 27599-8700;
| | - Michael McCrea
- Medical College of Wisconsin, Neurosurgery, Hub for Collaborative Medicine, 8701 Watertown Plank Road, Milwaukee, Wisconsin, United States, 53226;
| |
Collapse
|