1
|
Lomakin IB, Steitz TA. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature 2013; 500:307-11. [PMID: 23873042 PMCID: PMC3748252 DOI: 10.1038/nature12355] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/07/2013] [Indexed: 11/09/2022]
Abstract
During translation initiation in eukaryotes, the small ribosomal subunit binds messenger RNA at the 5' end and scans in the 5' to 3' direction to locate the initiation codon, form the 80S initiation complex and start protein synthesis. This simple, yet intricate, process is guided by multiple initiation factors. Here we determine the structures of three complexes of the small ribosomal subunit that represent distinct steps in mammalian translation initiation. These structures reveal the locations of eIF1, eIF1A, mRNA and initiator transfer RNA bound to the small ribosomal subunit and provide insights into the details of translation initiation specific to eukaryotes. Conformational changes associated with the captured functional states reveal the dynamics of the interactions in the P site of the ribosome. These results have functional implications for the mechanism of mRNA scanning.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.
| | | |
Collapse
|
2
|
Zhao Q, Huang HC, Nagaswamy U, Xia Y, Gao X, Fox GE. UNAC tetraloops: to what extent do they mimic GNRA tetraloops? Biopolymers 2012; 97:617-28. [PMID: 22605553 DOI: 10.1002/bip.22049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structures of four small RNAs each containing a different version of the UNAC loop were determined in solution using NMR spectroscopy and restrained molecular dynamics. The UMAC tetraloops (where M is A or C) exhibited a typical GNRA fold including at least one hydrogen bond between the first U and fourth C. In contrast, UGAC and UUAC tetraloops have a different orientation of the first and fourth residues, such that they do not closely mimic the GNRA fold. Although the UMAC tetraloops are excellent structural mimics of the GNRA tetraloop backbone, sequence comparisons typically do not reveal co-variation between the two loop types. The limited covariation is attributed to differences in the location of potential hydrogen bond donors and acceptors as a result of the replacement of the terminal A of GNRA with C in the UMAC version. Thus, UMAC loops do not readily form the common GNRA tetraloop-receptor interaction. The loop at positions 863-866 in E. coli 16S ribosomal RNA appears to be a major exception. However, in this case the GNRA loop does not in fact engage in the usual base to backbone tertiary interactions. In summary, UMAC loops are not just an alternative sequence version of the GNRA loop family, but instead they expand the types of interactions, or lack thereof, that are possible. From a synthetic biology perspective their inclusion in an artificial RNA may allow the establishment of a stable loop structure while minimizing unwanted long range interactions or permitting alternative long-range interactions. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 617-628, 2012.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
3
|
Calidas D, Culver GM. Interdependencies govern multidomain architecture in ribosomal small subunit assembly. RNA (NEW YORK, N.Y.) 2011; 17:263-277. [PMID: 21156960 PMCID: PMC3022276 DOI: 10.1261/rna.2332511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/05/2010] [Indexed: 05/27/2023]
Abstract
The 30S subunit is composed of four structural domains, the body, platform, head, and penultimate/ultimate stems. The functional integrity of the 30S subunit is dependent upon appropriate assembly and precise orientation of all four domains. We examined 16S rRNA conformational changes during in vitro assembly using directed hydroxyl radical probing mediated by Fe(II)-derivatized ribosomal protein (r-protein) S8. R-protein S8 binds the central domain of 16S rRNA directly and independently and its iron derivatized substituents have been shown to mediate cleavage in three domains of 16S rRNA, thus making it an ideal probe to monitor multidomain orientation during assembly. Cleavages in minimal ribonucleoprotein (RNP) particles formed with Fe(II)-S8 and 16S rRNA alone were compared with that in the context of the fully assembled subunit. The minimal binding site of S8 at helix 21 exists in a structure similar to that observed in the mature subunit, in the absence of other r-proteins. However, the binding site of S8 at the junction of helices 25-26a, which is transcribed after helix 21, is cleaved with differing intensities in the presence and absence of other r-proteins. Also, assembly of the body helps establish an architecture approximating, but perhaps not identical, to the 30S subunit at helix 12 and the 5' terminus. Moreover, the assembly or orientation of the neck is dependent upon assembly of both the head and the body. Thus, a complex interrelationship is observed between assembly events of independent domains and the incorporation of primary binding proteins during 30S subunit formation.
Collapse
Affiliation(s)
- Deepika Calidas
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
4
|
Woodson SA. RNA folding and ribosome assembly. Curr Opin Chem Biol 2008; 12:667-73. [PMID: 18935976 DOI: 10.1016/j.cbpa.2008.09.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/14/2008] [Accepted: 09/20/2008] [Indexed: 01/29/2023]
Abstract
Ribosome synthesis is a tightly regulated process that is crucial for cell survival. Chemical footprinting, mass spectrometry, and cryo-electron microscopy are revealing how these complex cellular machines are assembled. Rapid folding of the rRNA provides a platform for protein-induced assembly of the bacterial 30S ribosome. Multiple assembly pathways increase the flexibility of the assembly process, while accessory factors and modification enzymes chaperone the late stages of assembly and control the quality of the mature subunits.
Collapse
Affiliation(s)
- Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA.
| |
Collapse
|
5
|
Dutca LM, Culver GM. Assembly of the 5' and 3' minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20. J Mol Biol 2007; 376:92-108. [PMID: 18155048 DOI: 10.1016/j.jmb.2007.10.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/04/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
The ribosomal protein (r-protein) S20 is a primary binding protein. As such, it interacts directly and independently with the 5' domain as well as the 3' minor domain of 16S ribosomal RNA (rRNA) in minimal particles and the fully assembled 30S subunit. The interactions observed between r-protein S20 and the 5' domain of 16S rRNA are quite extensive, while those between r-protein S20 and the 3' minor domain are significantly more limited. In this study, directed hydroxyl radical probing mediated by Fe(II)-derivatized S20 proteins was used to monitor the folding of 16S rRNA during r-protein association and 30S subunit assembly. An analysis of the cleavage patterns in the minimal complexes [16S rRNA and Fe(II)-S20] and the fully assembled 30S subunit containing the same Fe(II)-derivatized proteins shows intriguing similarities and differences. These results suggest that the two domains, 5' and 3' minor, are organized relative to S20 at different stages of assembly. The 5' domain acquires, in a less complex ribonucleoprotein particle than the 3' minor domain, the same architecture as observed in mature subunits. These results are similar to what would be predicted of subunit assembly by the 5'-to-3' direction assembly model.
Collapse
Affiliation(s)
- Laura M Dutca
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
6
|
Atz R, Ma S, Gao J, Anderson DL, Grimes S. Alanine scanning and Fe-BABE probing of the bacteriophage ø29 prohead RNA-connector interaction. J Mol Biol 2007; 369:239-48. [PMID: 17433366 PMCID: PMC1976407 DOI: 10.1016/j.jmb.2007.03.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/21/2007] [Accepted: 03/13/2007] [Indexed: 11/22/2022]
Abstract
The DNA packaging motor of the Bacillus subtilis bacteriophage ø29 prohead is comprised in part of an oligomeric ring of 174 base RNA molecules (pRNA) positioned near the N termini of subunits of the dodecameric head-tail connector. Deletion and alanine substitution mutants in the connector protein (gp10) N terminus were assembled into proheads in Escherichia coli and the particles tested for pRNA binding and DNA-gp3 packaging in vitro. The basic amino acid residues RKR at positions 3-5 of the gp10 N terminus were central to pRNA binding during assembly of an active DNA packaging motor. Conjugation of iron(S)-1-(p-bromoacetamidobenzyl) ethylenediaminetetraacetate (Fe-BABE) to residue S170C in the narrow end of the connector, near the N terminus, permitted hydroxyl radical probing of bound [(32)P]pRNA and identified two discrete sites proximal to this residue: the C-helix at the junction of the A, C and D helices, and the E helix and the CE loop/D loop of the intermolecular base pairing site.
Collapse
Affiliation(s)
- Rockney Atz
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455
| | - Shuhua Ma
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Jiali Gao
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Dwight L. Anderson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455
- *To whom correspondence should be addressed at the University of Minnesota, 18-242 Moos Tower, 515 Delaware St. S. E., Minneapolis, MN 55455; Phone (612) 624-0667; FAX (612) 625-1108;
| |
Collapse
|
7
|
Holmes KL, Culver GM. Analysis of Conformational Changes in 16S rRNA During the Course of 30S Subunit Assembly. J Mol Biol 2005; 354:340-57. [PMID: 16246364 DOI: 10.1016/j.jmb.2005.09.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/19/2022]
Abstract
Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.
Collapse
Affiliation(s)
- Kristi L Holmes
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
8
|
Anokhina MM, Barta A, Nierhaus KH, Spiridonova VA, Kopylov AM. Mapping of the second tetracycline binding site on the ribosomal small subunit of E.coli. Nucleic Acids Res 2004; 32:2594-7. [PMID: 15141029 PMCID: PMC419471 DOI: 10.1093/nar/gkh583] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 03/22/2004] [Accepted: 04/14/2004] [Indexed: 11/13/2022] Open
Abstract
Tetracycline blocks stable binding of aminoacyl-tRNA to the bacterial ribosomal A-site. Various tetracycline binding sites have been identified in crystals of the 30S ribosomal small subunit of Thermus thermophilus. Here we describe a direct photo- affinity modification of the ribosomal small subunits of Escherichia coli with 7-[3H]-tetracycline. To select for specific interactions, an excess of the 30S subunits over tetracycline has been used. Primer extension analysis of the 16S rRNA revealed two sites of the modifications: C936 and C948. Considering available data on tetracycline interactions with the prokaryotic 30S subunits, including the presented data (E.coli), X-ray data (T.thermophilus) and genetic data (Helicobacter pylori, E.coli), a second high affinity tetracycline binding site is proposed within the 3'-major domain of the 16S rRNA, in addition to the A-site related tetracycline binding site.
Collapse
Affiliation(s)
- Maria M Anokhina
- Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
9
|
Jagannathan I, Culver GM. Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8. J Mol Biol 2003; 330:373-83. [PMID: 12823975 DOI: 10.1016/s0022-2836(03)00586-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.
Collapse
Affiliation(s)
- Indu Jagannathan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 4258 Molecular Biology Building, Ames, IA 50011, USA
| | | |
Collapse
|
10
|
Scarlett DJG, McCaughan KK, Wilson DN, Tate WP. Mapping functionally important motifs SPF and GGQ of the decoding release factor RF2 to the Escherichia coli ribosome by hydroxyl radical footprinting. Implications for macromolecular mimicry and structural changes in RF2. J Biol Chem 2003; 278:15095-104. [PMID: 12458201 DOI: 10.1074/jbc.m211024200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the decoding release factor (RF) in translation termination is to couple cognate recognition of the stop codon in the mRNA with hydrolysis of the completed polypeptide from its covalently linked tRNA. For this to occur, the RF must interact with specific A-site components of the active centers within both the small and large ribosomal subunits. In this work, we have used directed hydroxyl radical footprinting to map the ribosomal binding site of the Escherichia coli class I release factor RF2, during translation termination. In the presence of the cognate UGA stop codon, residues flanking the universally conserved (250)GGQ(252) motif of RF2 were each shown to footprint to the large ribosomal subunit, specifically to conserved elements of the peptidyltransferase and GTPase-associated centers. In contrast, residues that flank the putative "peptide anticodon" of RF2, (205)SPF(207), were shown to make a footprint in the small ribosomal subunit at positions within well characterized 16 S rRNA motifs in the vicinity of the decoding center. Within the recently solved crystal structure of E. coli RF2, the GGQ and SPF motifs are separated by 23 A only, a distance that is incompatible with the observed cleavage sites that are up to 100 A apart. Our data suggest that RF2 may undergo gross conformational changes upon ribosome binding, the implications of which are discussed in terms of the mechanism of RF-mediated termination.
Collapse
Affiliation(s)
- Debbie-Jane G Scarlett
- Department of Biochemistry and Centre for Gene Research, University of Otago, P. O. Box 56, Dunedin, New Zealand
| | | | | | | |
Collapse
|
11
|
Lancaster L, Kiel MC, Kaji A, Noller HF. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 2002; 111:129-40. [PMID: 12372306 DOI: 10.1016/s0092-8674(02)00938-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ribosome recycling factor (RRF) disassembles posttermination complexes in conjunction with elongation factor EF-G, liberating ribosomes for further rounds of translation. The striking resemblance of its L-shaped structure to that of tRNA has suggested that the mode of action of RRF may be based on mimicry of tRNA. Directed hydroxyl radical probing of 16S and 23S rRNA from Fe(II) tethered to ten positions on the surface of E. coli RRF constrains it to a well-defined location in the subunit interface cavity. Surprisingly, the orientation of RRF in the ribosome differs markedly from any of those previously observed for tRNA, suggesting that structural mimicry does not necessarily reflect functional mimicry.
Collapse
Affiliation(s)
- Laura Lancaster
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
12
|
Brodersen DE, Clemons WM, Carter AP, Wimberly BT, Ramakrishnan V. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J Mol Biol 2002; 316:725-68. [PMID: 11866529 DOI: 10.1006/jmbi.2001.5359] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present a detailed analysis of the protein structures in the 30 S ribosomal subunit from Thermus thermophilus, and their interactions with 16 S RNA based on a crystal structure at 3.05 A resolution. With 20 different polypeptide chains, the 30 S subunit adds significantly to our data base of RNA structure and protein-RNA interactions. In addition to globular domains, many of the proteins have long, extended regions, either in the termini or in internal loops, which make extensive contact to the RNA component and are involved in stabilizing RNA tertiary structure. Many ribosomal proteins share similar alpha+beta sandwich folds, but we show that the topology of this domain varies considerably, as do the ways in which the proteins interact with RNA. Analysis of the protein-RNA interactions in the context of ribosomal assembly shows that the primary binders are globular proteins that bind at RNA multihelix junctions, whereas proteins with long extensions assemble later. We attempt to correlate the structure with a large body of biochemical and genetic data on the 30 S subunit.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Neutrons
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Subunits
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Scattering, Radiation
- Sequence Alignment
- Thermus thermophilus/chemistry
- Thermus thermophilus/genetics
Collapse
|
13
|
Tishchenko S, Nikulin A, Fomenkova N, Nevskaya N, Nikonov O, Dumas P, Moine H, Ehresmann B, Ehresmann C, Piendl W, Lamzin V, Garber M, Nikonov S. Detailed analysis of RNA-protein interactions within the ribosomal protein S8-rRNA complex from the archaeon Methanococcus jannaschii. J Mol Biol 2001; 311:311-24. [PMID: 11478863 DOI: 10.1006/jmbi.2001.4877] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of ribosomal protein S8 bound to its target 16 S rRNA from a hyperthermophilic archaeon Methanococcus jannaschii has been determined at 2.6 A resolution. The protein interacts with the minor groove of helix H21 at two sites located one helical turn apart, with S8 forming a bridge over the RNA major groove. The specificity of binding is essentially provided by the C-terminal domain of S8 and the highly conserved nucleotide core, characterized by two dinucleotide platforms, facing each other. The first platform (A595-A596), which is the less phylogenetically and structurally constrained, does not directly contact the protein but has an important shaping role in inducing cross-strand stacking interactions. The second platform (U641-A642) is specifically recognized by the protein. The universally conserved A642 plays a pivotal role by ensuring the cohesion of the complex organization of the core through an array of hydrogen bonds, including the G597-C643-U641 base triple. In addition, A642 provides the unique base-specific interaction with the conserved Ser105, while the Thr106 - Thr107 peptide link is stacked on its purine ring. Noteworthy, the specific recognition of this tripeptide (Thr-Ser-Thr/Ser) is parallel to the recognition of an RNA tetraloop by a dinucleotide platform in the P4-P6 ribozyme domain of group I intron. This suggests a general dual role of dinucleotide platforms in recognition of RNA or peptide motifs. One prominent feature is that conserved side-chain amino acids, as well as conserved bases, are essentially involved in maintaining tertiary folds. The specificity of binding is mainly driven by shape complementarity, which is increased by the hydrophobic part of side-chains. The remarkable similarity of this complex with its homologue in the T. thermophilus 30 S subunit indicates a conserved interaction mode between Archaea and Bacteria.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/metabolism
- Bacteria/chemistry
- Bacteria/genetics
- Base Sequence
- Binding Sites
- Conserved Sequence/genetics
- Crystallography, X-Ray
- Evolution, Molecular
- Humans
- Hydrogen Bonding
- Methanococcus/chemistry
- Methanococcus/genetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Alignment
- Substrate Specificity
Collapse
Affiliation(s)
- S Tishchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- B A Maguire
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
15
|
Juzumiene DI, Wollenzien P. Arrangement of the central pseudoknot region of 16S rRNA in the 30S ribosomal subunit determined by site-directed 4-thiouridine crosslinking. RNA (NEW YORK, N.Y.) 2001; 7:71-84. [PMID: 11214183 PMCID: PMC1370071 DOI: 10.1017/s1355838201001728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The 16S rRNA central pseudoknot region in the 30S ribosomal subunit has been investigated by photocrosslinking from 4-thiouridine (s4U) located in the first 20 nt of the 16S rRNA. RNA fragments (nt 1-20) were made by in vitro transcription to incorporate s4U at every uridine position or were made by chemical synthesis to incorporate s4U into one of the uridine positions at +5, +14, +17, or +20. These were ligated to RNA containing nt 21-1542 of the 16S rRNA sequence and, after gel purification, the ligated RNA was reconstituted into 30S subunits. Long-range intramolecular crosslinks were produced by near-UV irradiation; these were separated by gel electrophoresis and analyzed by reverse transcription reactions. A number of crosslinks are made in each of the constructs, which must reflect the structural flexibility or conformational heterogeneity in this part of the 30S subunit. All of the constructs show crosslinking to the 559-562, 570-571, and 1080-1082 regions; however, other sites are crosslinked specifically from each s4U position. The most distinctive crosslinking sites are: 341-343 and 911-917 for s4U(+5); 903-904 (very strong), 1390-1397, and 1492 for s4U(+14); and 903-904 (moderate) for s4U(+17); in the 1070-1170 region in which there are different patterns for each s4U position. These results indicate that part of the central pseudoknot is in close contact with the decoding region, with helix 27 in the 885-912 interval and with part of domain III RNA. Crosslinking between s4U(+14) and 1395-1397 is consistent with base pairing at U14-A1398.
Collapse
Affiliation(s)
- D I Juzumiene
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | |
Collapse
|
16
|
Chandra Sanyal S, Liljas A. The end of the beginning: structural studies of ribosomal proteins. Curr Opin Struct Biol 2000; 10:633-6. [PMID: 11114498 DOI: 10.1016/s0959-440x(00)00143-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Work on the structural biology of ribosomes has progressed rapidly over the past few years. It has come to a stage at which the structures of the individual components are no longer of interest, except for those that still present ambiguous information about their structure because of conformational dynamics, as well as for those that show very little homology with their counterparts from other species or other kingdoms. The recently solved structure of protein L7/L12 and its proposed modes of dimerization have helped to understand the structural flexibility of this protein, which occurs as two dimers in the ribosome. The structure provides a missing link for many previous biochemical and functional studies.
Collapse
Affiliation(s)
- S Chandra Sanyal
- Molecular Biophysics, Lund University, Box 124, SE-221 00, Lund, Sweden.
| | | |
Collapse
|