1
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Błaszczyk E, Płociński P, Lechowicz E, Brzostek A, Dziadek B, Korycka-Machała M, Słomka M, Dziadek J. Depletion of tRNA CCA-adding enzyme in Mycobacterium tuberculosis leads to polyadenylation of transcripts and precursor tRNAs. Sci Rep 2023; 13:20717. [PMID: 38001315 PMCID: PMC10673834 DOI: 10.1038/s41598-023-47944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
In reference to gene annotation, more than half of the tRNA species synthesized by Mycobacterium tuberculosis require the enzymatic addition of the cytosine-cytosine-adenine (CCA) tail, which is indispensable for amino acid charging and tRNA functionality. It makes the mycobacterial CCA-adding enzyme essential for survival of the bacterium and a potential target for novel pipelines in drug discovery avenues. Here, we described the rv3907c gene product, originally annotated as poly(A)polymerase (rv3907c, PcnA) as a functional CCA-adding enzyme (CCAMtb) essential for viability of M. tuberculosis. The depletion of the enzyme affected tRNAs maturation, inhibited bacilli growth, and resulted in abundant accumulation of polyadenylated RNAs. We determined the enzymatic activities displayed by the mycobacterial CCAMtb in vitro and studied the effects of inhibiting of its transcription in bacterial cells. We are the first to properly confirm the existence of RNA polyadenylation in mycobacteria, a previously controversial phenomenon, which we found promoted upon CCA-adding enzyme downexpression.
Collapse
Affiliation(s)
- Ewelina Błaszczyk
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | - Przemysław Płociński
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Ewelina Lechowicz
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | | | - Marcin Słomka
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 139, 90-235, Łódź, Poland
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland.
| |
Collapse
|
3
|
Palsule G, Gopalan V, Simcox A. Biogenesis of RNase P RNA from an intron requires co-assembly with cognate protein subunits. Nucleic Acids Res 2019; 47:8746-8754. [PMID: 31287870 PMCID: PMC6797745 DOI: 10.1093/nar/gkz572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
RNase P RNA (RPR), the catalytic subunit of the essential RNase P ribonucleoprotein, removes the 5′ leader from precursor tRNAs. The ancestral eukaryotic RPR is a Pol III transcript generated with mature termini. In the branch of the arthropod lineage that led to the insects and crustaceans, however, a new allele arose in which RPR is embedded in an intron of a Pol II transcript and requires processing from intron sequences for maturation. We demonstrate here that the Drosophila intronic-RPR precursor is trimmed to the mature form by the ubiquitous nuclease Rat1/Xrn2 (5′) and the RNA exosome (3′). Processing is regulated by a subset of RNase P proteins (Rpps) that protects the nascent RPR from degradation, the typical fate of excised introns. Our results indicate that the biogenesis of RPR in vivo entails interaction of Rpps with the nascent RNA to form the RNase P holoenzyme and suggests that a new pathway arose in arthropods by coopting ancient mechanisms common to processing of other noncoding RNAs.
Collapse
Affiliation(s)
- Geeta Palsule
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Simcox
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Perederina A, Berezin I, Krasilnikov AS. In vitro reconstitution and analysis of eukaryotic RNase P RNPs. Nucleic Acids Res 2019; 46:6857-6868. [PMID: 29722866 PMCID: PMC6061874 DOI: 10.1093/nar/gky333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/22/2018] [Indexed: 12/23/2022] Open
Abstract
RNase P is a ubiquitous site-specific endoribonuclease primarily responsible for the maturation of tRNA. Throughout the three domains of life, the canonical form of RNase P is a ribonucleoprotein (RNP) built around a catalytic RNA. The core RNA is well conserved from bacteria to eukaryotes, whereas the protein parts vary significantly. The most complex and the least understood form of RNase P is found in eukaryotes, where multiple essential proteins playing largely unknown roles constitute the bulk of the enzyme. Eukaryotic RNase P was considered intractable to in vitro reconstitution, mostly due to insolubility of its protein components, which hindered its studies. We have developed a robust approach to the in vitro reconstitution of Saccharomyces cerevisiae RNase P RNPs and used it to analyze the interplay and roles of RNase P components. The results eliminate the major obstacle to biochemical and structural studies of eukaryotic RNase P, identify components required for the activation of the catalytic RNA, reveal roles of proteins in the enzyme stability, localize proteins on RNase P RNA, and demonstrate the interdependence of the binding of RNase P protein modules to the core RNA.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Wu J, Niu S, Tan M, Huang C, Li M, Song Y, Wang Q, Chen J, Shi S, Lan P, Lei M. Cryo-EM Structure of the Human Ribonuclease P Holoenzyme. Cell 2018; 175:1393-1404.e11. [PMID: 30454648 DOI: 10.1016/j.cell.2018.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Ribonuclease (RNase) P is a ubiquitous ribozyme that cleaves the 5' leader from precursor tRNAs. Here, we report cryo-electron microscopy structures of the human nuclear RNase P alone and in complex with tRNAVal. Human RNase P is a large ribonucleoprotein complex that contains 10 protein components and one catalytic RNA. The protein components form an interlocked clamp that stabilizes the RNA in a conformation optimal for substrate binding. Human RNase P recognizes the tRNA using a double-anchor mechanism through both protein-RNA and RNA-RNA interactions. Structural comparison of the apo and tRNA-bound human RNase P reveals that binding of tRNA induces a local conformational change in the catalytic center, transforming the ribozyme into an active state. Our results also provide an evolutionary model depicting how auxiliary RNA elements in bacterial RNase P, essential for substrate binding, and catalysis, were replaced by the much more complex and multifunctional protein components in higher organisms.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shuangshuang Niu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ming Tan
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenhui Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Mingyue Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Song
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Qianmin Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Juan Chen
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shaohua Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Pengfei Lan
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China; Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.
| |
Collapse
|
6
|
Laterreur N, Lemieux B, Neumann H, Berger-Dancause JC, Lafontaine D, Wellinger RJ. The yeast telomerase module for telomere recruitment requires a specific RNA architecture. RNA (NEW YORK, N.Y.) 2018; 24:1067-1079. [PMID: 29777050 PMCID: PMC6049500 DOI: 10.1261/rna.066696.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Telomerases are ribonucleoprotein (RNP) reverse transcriptases. While telomerases maintain genome stability, their composition varies significantly between species. Yeast telomerase RNPs contain an RNA that is comparatively large, and its overall folding shows long helical segments with distal functional parts. Here we investigated the essential stem IVc module of the budding yeast telomerase RNA, called Tlc1. The distal part of stem IVc includes a conserved sequence element CS2a and structurally conserved features for binding Pop1/Pop6/Pop7 proteins, which together function analogously to the P3 domains of the RNase P/MRP RNPs. A more proximal bulged stem with the CS2 element is thought to associate with Est1, a telomerase protein required for telomerase recruitment to telomeres. Previous work found that changes in CS2a cause a loss of all stem IVc proteins, not just the Pop proteins. Here we show that the association of Est1 with stem IVc indeed requires both the proximal bulged stem and the P3 domain with the associated Pop proteins. Separating the P3 domain from the Est1 binding site by inserting only 2 base pairs into the helical stem between the two sites causes a complete loss of Est1 from the RNP and hence a telomerase-negative phenotype in vivo. Still, the distal P3 domain with the associated Pop proteins remains intact. Moreover, the P3 domain ensures Est2 stability on the RNP independently of Est1 association. Therefore, the Tlc1 stem IVc recruitment module of the RNA requires a very tight architectural organization for telomerase function in vivo.
Collapse
Affiliation(s)
- Nancy Laterreur
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| | - Bruno Lemieux
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| | - Hannah Neumann
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| | | | - Daniel Lafontaine
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
7
|
Zhang Y, Huang H, Dong X, Fang Y, Wang K, Zhu L, Wang K, Huang T, Yang J. A Dynamic 3D Graphical Representation for RNA Structure Analysis and Its Application in Non-Coding RNA Classification. PLoS One 2016; 11:e0152238. [PMID: 27213271 PMCID: PMC4877074 DOI: 10.1371/journal.pone.0152238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022] Open
Abstract
With the development of new technologies in transcriptome and epigenetics, RNAs have been identified to play more and more important roles in life processes. Consequently, various methods have been proposed to assess the biological functions of RNAs and thus classify them functionally, among which comparative study of RNA structures is perhaps the most important one. To measure the structural similarity of RNAs and classify them, we propose a novel three dimensional (3D) graphical representation of RNA secondary structure, in which an RNA secondary structure is first transformed into a characteristic sequence based on chemical property of nucleic acids; a dynamic 3D graph is then constructed for the characteristic sequence; and lastly a numerical characterization of the 3D graph is used to represent the RNA secondary structure. We tested our algorithm on three datasets: (1) Dataset I consisting of nine RNA secondary structures of viruses, (2) Dataset II consisting of complex RNA secondary structures including pseudo-knots, and (3) Dataset III consisting of 18 non-coding RNA families. We also compare our method with other nine existing methods using Dataset II and III. The results demonstrate that our method is better than other methods in similarity measurement and classification of RNA secondary structures.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, People's Republic of China
- Hebei Laboratory of Pharmaceutic Molecular Chemistry, Shijiazhuang, Hebei 050018, People's Republic of China
- * E-mail: (JY); (YZ); (TH)
| | - Haiyun Huang
- Department of Information Retrieval of Library, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, People's Republic of China
| | - Xiaoqing Dong
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, People's Republic of China
| | - Yiliang Fang
- International Travel Healthcare Center, Fuzhou, Fujian 350001, People's Republic of China
| | - Kejing Wang
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, People's Republic of China
| | - Lijuan Zhu
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, People's Republic of China
| | - Ke Wang
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- * E-mail: (JY); (YZ); (TH)
| | - Jialiang Yang
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, People's Republic of China
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
- * E-mail: (JY); (YZ); (TH)
| |
Collapse
|
8
|
Abstract
Many RNA families, i.e., groups of homologous RNA genes, belong to RNA classes, such as tRNAs, snoRNAs, or microRNAs, that are characterized by common sequence motifs and/or common secondary structure features. The detection of new members of RNA classes, as well as the comprehensive annotation of genomes with members of RNA classes is a challenging task that goes beyond simple homology search. Computational methods addressing this problem typically use a three-tiered approach: In the first step an efficient and sensitive filter is employed. In the second step the candidate set is narrowed down using computationally expensive methods geared towards specificity. In the final step the hits are annotated with class-specific features and scored. Here we review the tools that are currently available for a diverse set of RNA classes.
Collapse
|
9
|
Abstract
Ribonuclease P (RNase P) is one of the first ribozymes discovered and it is found in all phylogenetic groups. It is responsible for processing the 5' end of pre-tRNAs as well as other RNA molecules. RNase P is formed by an RNA molecule responsible for catalysis and one or more proteins. Structural studies of the proteins from different organisms, the bacterial RNA component, and a bacterial RNase P holoenzyme/tRNA complex provide insights into the mechanism of this universal ribozyme. Together with the existing wealth of biochemical information, these studies provide atomic-level information on the mechanism of RNase P and continue to expand our understanding of the structure and architecture of large RNA molecules and ribonucleoprotein complexes, the nature of catalysis by ribozymes, the structural basis of recognition of RNA by RNA molecules, and the evolution of enzymes from the prebiotic, RNA-based world to the modern world.
Collapse
Affiliation(s)
- Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
10
|
Koh DC, Edelman GM, Mauro VP. Physical evidence supporting a ribosomal shunting mechanism of translation initiation for BACE1 mRNA. ACTA ACUST UNITED AC 2013; 1:e24400. [PMID: 26824018 PMCID: PMC4718059 DOI: 10.4161/trla.24400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/06/2013] [Accepted: 03/21/2013] [Indexed: 12/22/2022]
Abstract
In Alzheimer disease, elevated levels of the BACE1 enzyme are correlated with increased production of amyloid peptides and disease pathology. The increase in BACE1 levels is post-transcriptional and may involve altered translation efficiency. Earlier studies have indicated that translation of BACE1 mRNA is cap-dependent. As ribosomal subunits move from the cap-structure to the initiation codon, they fail to recognize several AUG codons in the 5′ leader. In this study, we looked for physical evidence of the mechanism underlying ribosomal scanning or shunting along the BACE1 5′ leader by investigating structural stability in the 5′ leaders of endogenous mRNAs in vivo. To perform this analysis, we probed RNAs using lead(II) acetate, a cell-permeable chemical that induces cleavage of unpaired nucleotides having conformational flexibility. The data revealed that the ≈440-nt 5′ leader was generally resistant to cleavage except for a region upstream of the initiation codon. Cleavage continued into the coding region, consistent with destabilization of secondary structures by translating ribosomes. Evidence that a large segment of the BACE1 5′ leader was not cleaved indicates that this region is structurally stable and suggests that it is not scanned. The data support a mechanism of translation initiation in which ribosomal subunits bypass (shunt) part of the BACE1 5′ leader to reach the initiation codon. We suggest that a nucleotide bias in the 5′ leader may predispose the initiation codon to be more accessible than other AUG codons in the 5′ leader, leading to an increase in its relative utilization.
Collapse
Affiliation(s)
- Dora C Koh
- Department of Cell and Molecular Biology; The Scripps Research Institute; La Jolla, CA USA
| | - Gerald M Edelman
- Department of Cell and Molecular Biology; The Scripps Research Institute; La Jolla, CA USA
| | - Vincent P Mauro
- Department of Cell and Molecular Biology; The Scripps Research Institute; La Jolla, CA USA
| |
Collapse
|
11
|
Moss WN, Dela-Moss LI, Kierzek E, Kierzek R, Priore SF, Turner DH. The 3' splice site of influenza A segment 7 mRNA can exist in two conformations: a pseudoknot and a hairpin. PLoS One 2012; 7:e38323. [PMID: 22685560 PMCID: PMC3369869 DOI: 10.1371/journal.pone.0038323] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022] Open
Abstract
The 3′ splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3′ splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site.
Collapse
Affiliation(s)
- Walter N. Moss
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Lumbini I. Dela-Moss
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego, Poland
| | - Salvatore F. Priore
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Douglas H. Turner
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Thiel CT, Rauch A. The molecular basis of the cartilage-hair hypoplasia-anauxetic dysplasia spectrum. Best Pract Res Clin Endocrinol Metab 2011; 25:131-42. [PMID: 21396580 DOI: 10.1016/j.beem.2010.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cartilage-hair hypoplasia and anauxetic dysplasia are two autosomal recessive skeletal dysplasias characterized by different degrees from metaphyseal to spondylo-meta-epiphyseal dysplasia and variable additional features including predisposition to cancer, anemia, immunodeficiency, and gastrointestinal malabsorption and Hirschsprung's disease. Both are caused by mutations in the untranslated RMRP gene, which forms the RNA subunit of the RNase MRP complex. This complex is involved in the ribosome assembly by cleavage of 5.8S rRNA, cell cycle control by Cyclin B2 mRNA cleavage at the end of mitosis, processing the mitochondrial RNA, and forming a complex with hTERT suggesting a possible involvement in expression regulation by siRNA synthesis. The degree of skeletal dysplasia correlates mainly with the rRNA cleavage activity, whereas significantly diminished mRNA cleavage activity is a prerequisite for immunodeficiency. Thus, the clinical phenotype emerges in most cases of the combined effect on the respective effect on RNase MRP function.
Collapse
Affiliation(s)
- Christian T Thiel
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Schwabachanlage 10, Erlangen, Germany.
| | | |
Collapse
|
13
|
Perederina A, Krasilnikov AS. The P3 domain of eukaryotic RNases P/MRP: making a protein-rich RNA-based enzyme. RNA Biol 2010; 7:534-9. [PMID: 20523128 DOI: 10.4161/rna.7.5.12302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear Ribonuclease (RNase) P is a universal essential RNA-based enzyme made of a catalytic RNA component and a protein part; eukaryotic RNase P is closely related to a universal eukaryotic ribonucleoprotein RNase MRP. The protein part of the eukaryotic RNases P/MRP is dramatically more complex than that in bacterial and archaeal RNases P. The increase in the complexity of the protein part in eukaryotic RNases P/MRP was accompanied by the appearance of a novel structural element in the RNA component: an essential and phylogenetically conserved helix-loop-helix P3 RNA domain. The crystal structure of the P3 RNA domain in a complex with protein components Pop6 and Pop7 has been recently solved. Here we discuss the most salient structural features of the P3 domain as well as its possible role in the evolutionary transition to the protein-rich eukaryotic RNases P/MRP.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
14
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
15
|
Yusuf D, Marz M, Stadler PF, Hofacker IL. Bcheck: a wrapper tool for detecting RNase P RNA genes. BMC Genomics 2010; 11:432. [PMID: 20626900 PMCID: PMC2996960 DOI: 10.1186/1471-2164-11-432] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Effective bioinformatics solutions are needed to tackle challenges posed by industrial-scale genome annotation. We present Bcheck, a wrapper tool which predicts RNase P RNA genes by combining the speed of pattern matching and sensitivity of covariance models. The core of Bcheck is a library of subfamily specific descriptor models and covariance models. RESULTS Scanning all microbial genomes in GenBank identifies RNase P RNA genes in 98% of 1024 microbial chromosomal sequences within just 4 hours on single CPU. Comparing to existing annotations found in 387 of the GenBank files, Bcheck predictions have more intact structure and are automatically classified by subfamily membership. For eukaryotic chromosomes Bcheck could identify the known RNase P RNA genes in 84 out of 85 metazoan genomes and 19 out of 21 fungi genomes. Bcheck predicted 37 novel eukaryotic RNase P RNA genes, 32 of which are from fungi. Gene duplication events are observed in at least 20 metazoan organisms. Scanning of meta-genomic data from the Global Ocean Sampling Expedition, comprising over 10 million sample sequences (18 Gigabases), predicted 2909 unique genes, 98% of which fall into ancestral bacteria A type of RNase P RNA and 66% of which have no close homolog to known prokaryotic RNase P RNA. CONCLUSIONS The combination of efficient filtering by means of a descriptor-based search and subsequent construction of a high-quality gene model by means of a covariance model provides an efficient method for the detection of RNase P RNA genes in large-scale sequencing data. Bcheck is implemented as webserver and can also be downloaded for local use from http://rna.tbi.univie.ac.at/bcheck.
Collapse
Affiliation(s)
- Dilmurat Yusuf
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Wien, Austria
| | | | | | | |
Collapse
|
16
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
17
|
Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. EMBO J 2010; 29:761-9. [PMID: 20075859 DOI: 10.1038/emboj.2009.396] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/08/2009] [Indexed: 11/09/2022] Open
Abstract
Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.
Collapse
|
18
|
Perederina A, Esakova O, Quan C, Khanova E, Krasilnikov AS. Crystallization and preliminary X-ray diffraction analysis of the P3 RNA domain of yeast ribonuclease MRP in a complex with RNase P/MRP protein components Pop6 and Pop7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:76-80. [PMID: 20057077 PMCID: PMC2805543 DOI: 10.1107/s1744309109049707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/19/2009] [Indexed: 11/10/2022]
Abstract
Eukaryotic ribonucleases P and MRP are closely related RNA-based enzymes which contain a catalytic RNA component and several protein subunits. The roles of the protein subunits in the structure and function of eukaryotic ribonucleases P and MRP are not clear. Crystals of a complex that included a circularly permuted 46-nucleotide-long P3 domain of the RNA component of Saccharomyces cerevisiae ribonuclease MRP and selenomethionine derivatives of the shared ribonuclease P/MRP protein components Pop6 (18.2 kDa) and Pop7 (15.8 kDa) were obtained using the sitting-drop vapour-diffusion method. The crystals belonged to space group P4(2)22 (unit-cell parameters a = b = 127.2, c = 76.8 A, alpha = beta = gamma = 90 degrees ) and diffracted to 3.25 A resolution.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Chao Quan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Elena Khanova
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| |
Collapse
|
19
|
Abstract
The "RNA World" hypothesis suggests that life developed from RNA enzymes termed ribozymes, which carry out reactions without assistance from proteins. Ribonuclease (RNase) P is one ribozyme that appears to have adapted these origins to modern cellular life by adding protein to the RNA core in order to broaden the potential functions. This RNA-protein complex plays diverse roles in processing RNA, but its best-understood reaction is pre-tRNA maturation, resulting in mature 5' ends of tRNAs. The core catalytic activity resides in the RNA subunit of almost all RNase P enzymes but broader substrate tolerance is required for recognizing not only the diverse sequences of tRNAs, but also additional cellular RNA substrates. This broader substrate tolerance is provided by the addition of protein to the RNA core and allows RNase P to selectively recognize different RNAs, and possibly ribonucleoprotein (RNP) substrates. Thus, increased protein content correlated with evolution from bacteria to eukaryotes has further enhanced substrate potential enabling the enzyme to function in a complex cellular environment.
Collapse
Affiliation(s)
- Michael C. Marvin
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| |
Collapse
|
20
|
|
21
|
Esakova O, Perederina A, Quan C, Schmitt ME, Krasilnikov AS. Footprinting analysis demonstrates extensive similarity between eukaryotic RNase P and RNase MRP holoenzymes. RNA (NEW YORK, N.Y.) 2008; 14:1558-67. [PMID: 18579867 PMCID: PMC2491465 DOI: 10.1261/rna.1106408] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/02/2008] [Indexed: 05/22/2023]
Abstract
Eukaryotic ribonuclease (RNase) P and RNase MRP are evolutionary related RNA-based enzymes involved in metabolism of various RNA molecules, including tRNA and rRNA. In contrast to the closely related eubacterial RNase P, which is comprised of an RNA component and a single small protein, these enzymes contain multiple protein components. Here we report the results of footprinting studies performed on purified Saccharomyces cerevisiae RNase MRP and RNase P holoenzymes. The results identify regions of the RNA components affected by the protein moiety, suggest a role of the proteins in stabilization of the RNA fold, and point to substantial similarities between the two evolutionary related RNA-based enzymes.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
22
|
Cartilage-hair hypoplasia-associated mutations in the RNase MRP P3 domain affect RNA folding and ribonucleoprotein assembly. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:455-66. [PMID: 18164267 DOI: 10.1016/j.bbamcr.2007.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/12/2007] [Accepted: 11/29/2007] [Indexed: 11/24/2022]
Abstract
Cartilage-hair hypoplasia (CHH) is caused by mutations in the gene encoding the RNA component of RNase MRP. Currently it is unknown how these mutations affect the function of this endoribonuclease. In this study we investigated the effect of mutations in the P3 domain on protein binding and RNA folding. Our data demonstrate that a number of P3 nucleotide substitutions reduced the efficiency of its interaction with Rpp25 and Rpp20, two protein subunits binding as a heterodimer to this domain. The CHH-associated 40G>A substitution, as well as the replacement of residue 47, almost completely abrogated Rpp25 and Rpp20 binding in different assays. Also other CHH-associated P3 mutations reduced the efficiency by which the RNase MRP RNA is bound by Rpp25-Rpp20. These data demonstrate that the most important residues for binding of the Rpp25-Rpp20 dimer reside in the apical stem-loop of the P3 domain. Structural analyses by NMR not only showed that this loop may adopt a pseudo-triloop structure, but also demonstrated that the 40G>A substitution alters the folding of this part of the P3 domain. Our data are the first to provide insight into the molecular mechanism by which CHH-associated mutations affect the function of RNase MRP.
Collapse
|
23
|
Smith JK, Hsieh J, Fierke CA. Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis. Biopolymers 2007; 87:329-38. [PMID: 17868095 DOI: 10.1002/bip.20846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.
Collapse
Affiliation(s)
- J Kristin Smith
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
24
|
Perederina A, Esakova O, Koc H, Schmitt ME, Krasilnikov AS. Specific binding of a Pop6/Pop7 heterodimer to the P3 stem of the yeast RNase MRP and RNase P RNAs. RNA (NEW YORK, N.Y.) 2007; 13:1648-55. [PMID: 17717080 PMCID: PMC1986809 DOI: 10.1261/rna.654407] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pop6 and Pop7 are protein subunits of Saccharomyces cerevisiae RNase MRP and RNase P. Here we show that bacterially expressed Pop6 and Pop7 form a soluble heterodimer that binds the RNA components of both RNase MRP and RNase P. Footprint analysis of the interaction between the Pop6/7 heterodimer and the RNase MRP RNA, combined with gel mobility assays, demonstrates that the Pop6/7 complex binds to a conserved region of the P3 domain. Binding of these proteins to the MRP RNA leads to local rearrangement in the structure of the P3 loop and suggests that direct interaction of the Pop6/7 complex with the P3 domain of the RNA components of RNases MRP and P may mediate binding of other protein components. These results suggest a role for a key element in the RNase MRP and RNase P RNAs in protein binding, and demonstrate the feasibility of directly studying RNA-protein interactions in the eukaryotic RNases MRP and P complexes.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
25
|
Aspinall TV, Gordon JM, Bennett HJ, Karahalios P, Bukowski JP, Walker SC, Engelke DR, Avis JM. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture. Nucleic Acids Res 2007; 35:6439-50. [PMID: 17881380 PMCID: PMC2095792 DOI: 10.1093/nar/gkm553] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein–RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein–protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.
Collapse
Affiliation(s)
- Tanya V. Aspinall
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - James M.B. Gordon
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Hayley J. Bennett
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Panagiotis Karahalios
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - John-Paul Bukowski
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Scott C. Walker
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - David R. Engelke
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Johanna M. Avis
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
- *To whom correspondence should be addressed. +44 161 306 4216+44 161 306 5201
| |
Collapse
|
26
|
Innings A, Ullberg M, Johansson A, Rubin CJ, Noreus N, Isaksson M, Herrmann B. Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood. J Clin Microbiol 2007; 45:874-80. [PMID: 17215340 PMCID: PMC1829127 DOI: 10.1128/jcm.01556-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/11/2006] [Accepted: 12/26/2006] [Indexed: 12/26/2022] Open
Abstract
We have developed a single-tube multiplex real-time PCR method for the detection of the eight most common Candida species causing septicemia: Candida albicans, C. dubliniensis, C. famata, C. glabrata, C. guilliermondii, C. krusei, C. parapsilosis, and C. tropicalis. The method developed targets the RNase P RNA gene RPR1. Sequences of this gene were determined for seven of the Candida species and showed surprisingly large sequence variation. C. glabrata was found to have a gene that was five times longer gene than those of the other species, and the nucleotide sequence similarity between C. krusei and C. albicans was as low as 55%. The multiplex PCR contained three probes that enabled the specific detection of C. albicans, C. glabrata, and C. krusei and a fourth probe that allowed the general detection of the remaining species. The method was able to detect 1 to 10 genome copies when the detection limit was tested repeatedly for the four species C. albicans, C. glabrata, C. krusei, and C. guilliermondii. No significant difference in the detection limit was seen when the multiplex format was compared with single-species PCR, i.e., two primers and one probe. The method detected eight clinically relevant Candida species and did not react with other tested non-Candida species or human DNA. The assay was applied to 20 blood samples from nine patients and showed a sensitivity similar to that of culture.
Collapse
Affiliation(s)
- Asa Innings
- Department of Clinical Microbiology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Vourekas A, Kalavrizioti D, Zarkadis IK, Spyroulias GA, Stathopoulos C, Drainas D. A 40.7 kDa Rpp30/Rpp1 homologue is a protein subunit of Dictyostelium discoideum RNase P holoenzyme. Biochimie 2007; 89:301-10. [PMID: 17207566 DOI: 10.1016/j.biochi.2006.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 11/24/2006] [Indexed: 11/25/2022]
Abstract
RNase P is an essential and ubiquitous endonuclease that mediates the maturation of the 5' ends of all precursor tRNA molecules. The holoenzyme from Dictyostelium discoideum possesses RNA and protein subunits essential for activity, but the exact composition of the ribonucleoprotein complex is still under investigation. Bioinformatic analysis of D. discoideum genome identified seven open reading frames encoding candidate RNase P protein subunits. The gene named drpp30 encodes a protein with a predicted molecular mass of 40.7 kDa that clusters with Rpp1 and Rpp30 RNase P protein subunits from Saccharomyces cerevisiae and human respectively, which have significantly lower molecular masses. Cloning and heterologous expression of DRpp30 followed by immunochemical analysis of RNase P active fractions demonstrates its association with RNase P holoenzyme. Furthermore, we show that DRpp30 can bind D. discoideum RNase P RNA and tRNA transcripts in vitro, giving a first insight of its possible role in D. discoideum RNase P function. Homology modeling using as a template the archaeal Ph1887p, and molecular dynamics simulations of the modeled structure suggest that DRpp30 adopts a TIM-barrel fold.
Collapse
|
28
|
Woodhams MD, Stadler PF, Penny D, Collins LJ. RNase MRP and the RNA processing cascade in the eukaryotic ancestor. BMC Evol Biol 2007; 7 Suppl 1:S13. [PMID: 17288571 PMCID: PMC1796607 DOI: 10.1186/1471-2148-7-s1-s13] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. RESULTS We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. CONCLUSION We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.
Collapse
Affiliation(s)
- Michael D Woodhams
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Germany
| | - David Penny
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | - Lesley J Collins
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| |
Collapse
|
29
|
Kikovska E, Svärd SG, Kirsebom LA. Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci U S A 2007; 104:2062-7. [PMID: 17284611 PMCID: PMC1892975 DOI: 10.1073/pnas.0607326104] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The universally conserved ribonucleoprotein RNase P is involved in the processing of tRNA precursor transcripts. RNase P consists of one RNA and, depending on its origin, a variable number of protein subunits. Catalytic activity of the RNA moiety so far has been demonstrated only for bacterial and some archaeal RNase P RNAs but not for their eukaryotic counterparts. Here, we show that RNase P RNAs from humans and the lower eukaryote Giardia lamblia mediate cleavage of four tRNA precursors and a model RNA hairpin loop substrate in the absence of protein. Compared with bacterial RNase P RNA, the rate of cleavage (k(obs)) was five to six orders of magnitude lower, whereas the affinity for the substrate (appK(d)) was reduced approximately 20- to 50-fold. We conclude that the RNA-based catalytic activity of RNase P has been preserved during evolution. This finding opens previously undescribed ways to study the role of the different proteins subunits of eukaryotic RNase P.
Collapse
Affiliation(s)
- Ema Kikovska
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Welting TJM, Peters FMA, Hensen SMM, van Doorn NL, Kikkert BJ, Raats JMH, van Venrooij WJ, Pruijn GJM. Heterodimerization regulates RNase MRP/RNase P association, localization, and expression of Rpp20 and Rpp25. RNA (NEW YORK, N.Y.) 2007; 13:65-75. [PMID: 17119099 PMCID: PMC1705748 DOI: 10.1261/rna.237807] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rpp20 and Rpp25 are subunits of the human RNase MRP and RNase P endoribonucleases belonging to the Alba superfamily of nucleic acid binding proteins. These proteins, which bind very strongly to each other, transiently associate with RNase MRP. Here, we show that the Rpp20-Rpp25 heterodimer is resistant to both high concentrations of salt and a nonionic detergent. The interaction of Rpp20 and Rpp25 with the P3 domain of the RNase MRP RNA appeared to be strongly enhanced by their heterodimerization. Coimmunoprecipitation experiments demonstrated that only a single copy of each of these proteins is associated with the RNase MRP and RNase P particles in HEp-2 cells. Both proteins accumulate in the nucleoli, which in case of Rpp20 is strongly dependent on its interaction with Rpp25. Finally, the results of overexpression and knock-down experiments indicate that their expression levels are codependent. Taken together, these data indicate that the Rpp20-Rpp25 heterodimerization regulates their RNA-binding activity, subcellular localization, and expression, which suggests that their interaction is also crucial for their role in RNase MRP/P function.
Collapse
Affiliation(s)
- Tim J M Welting
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Marquez SM, Chen JL, Evans D, Pace NR. Structure and function of eukaryotic Ribonuclease P RNA. Mol Cell 2006; 24:445-56. [PMID: 17081993 PMCID: PMC1716732 DOI: 10.1016/j.molcel.2006.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/16/2006] [Accepted: 09/20/2006] [Indexed: 10/24/2022]
Abstract
Ribonuclease P (RNase P) is the ribonucleoprotein endonuclease that processes the 5' ends of precursor tRNAs. Bacterial and eukaryal RNase P RNAs had the same primordial ancestor; however, they were molded differently by evolution. RNase P RNAs of eukaryotes, in contrast to bacterial RNAs, are not catalytically active in vitro without proteins. By comparing the bacterial and eukaryal RNAs, we can begin to understand the transitions made between the RNA and protein-dominated worlds. We report, based on crosslinking studies, that eukaryal RNAs, although catalytically inactive alone, fold into functional forms and specifically bind tRNA even in the absence of proteins. Based on the crosslinking results and crystal structures of bacterial RNAs, we develop a tertiary structure model of the eukaryal RNase P RNA. The eukaryal RNA contains a core structure similar to the bacterial RNA but lacks specific features that in bacterial RNAs contribute to catalysis and global stability of tertiary structure.
Collapse
Affiliation(s)
- Steven M. Marquez
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309-0347 USA
| | - Julian L. Chen
- Department of Chemistry & Biochemistry, and School of Life Sciences, Arizona State University, Tempe, AZ 85287-1604 USA
| | - Donald Evans
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309-0347 USA
| | - Norman R. Pace
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309-0347 USA
- *Author to whom correspondence should be addressed. E-mail: Telephone 303-735-1864 Fax 303-492-7744
| |
Collapse
|
32
|
Abstract
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
33
|
Xiao S, Hsieh J, Nugent RL, Coughlin DJ, Fierke CA, Engelke DR. Functional characterization of the conserved amino acids in Pop1p, the largest common protein subunit of yeast RNases P and MRP. RNA (NEW YORK, N.Y.) 2006; 12:1023-37. [PMID: 16618965 PMCID: PMC1464857 DOI: 10.1261/rna.23206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNase P and RNase MRP are ribonucleoprotein enzymes required for 5'-end maturation of precursor tRNAs (pre-tRNAs) and processing of precursor ribosomal RNAs, respectively. In yeast, RNase P and MRP holoenzymes have eight protein subunits in common, with Pop1p being the largest at >100 kDa. Little is known about the functions of Pop1p, beyond the fact that it binds specifically to the RNase P RNA subunit, RPR1 RNA. In this study, we refined the previous Pop1 phylogenetic sequence alignment and found four conserved regions. Highly conserved amino acids in yeast Pop1p were mutagenized by randomization and conditionally defective mutations were obtained. Effects of the Pop1p mutations on pre-tRNA processing, pre-rRNA processing, and stability of the RNA subunits of RNase P and MRP were examined. In most cases, functional defects in RNase P and RNase MRP in vivo were consistent with assembly defects of the holoenzymes, although moderate kinetic defects in RNase P were also observed. Most mutations affected both pre-tRNA and pre-rRNA processing, but a few mutations preferentially interfered with only RNase P or only RNase MRP. In addition, one temperature-sensitive mutation had no effect on either tRNA or rRNA processing, consistent with an additional role for RNase P, RNase MRP, or Pop1p in some other form. This study shows that the Pop1p subunit plays multiple roles in the assembly and function of of RNases P and MRP, and that the functions can be differentiated through the mutations in conserved residues.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhu Y, Stribinskis V, Ramos KS, Li Y. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA (NEW YORK, N.Y.) 2006; 12:699-706. [PMID: 16540690 PMCID: PMC1440897 DOI: 10.1261/rna.2284906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5' termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution.
Collapse
Affiliation(s)
- Yanglong Zhu
- Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
35
|
Dean TR, Kohan M, Betancourt D, Menetrez MY. A simple polymerase chain reaction/restriction fragment length polymorphism assay capable of identifying medically relevant filamentous fungi. Mol Biotechnol 2005; 31:21-8. [PMID: 16118412 DOI: 10.1385/mb:31:1:021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Because of the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces, it is necessary to accurately reflect the organisms responsible for these maladies and to identify them in precise and timely manner. To this end, we have developed a method that is cost effective, easy to perform, and accurate. We performed a simple polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis on multiple members of species known to negatively influence the indoor environment. The genera analyzed were Stachybotrys, Penicillium, Aspergillus, and Cladosporium. Each organism underwent PCR with universal primers that amplified ribosomal sequences generating products from 550 to 600 bp followed by enzymatic digestion with EcoRI, HaeIII, MspI, and HinfI. Our results show that using this combination of restriction enzymes enables the identification of these fungal organisms at the species level.
Collapse
Affiliation(s)
- Timothy R Dean
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA.
| | | | | | | |
Collapse
|
36
|
Walker SC, Avis JM. Secondary structure probing of the human RNase MRP RNA reveals the potential for MRP RNA subsets. Biochem Biophys Res Commun 2005; 335:314-21. [PMID: 16083861 DOI: 10.1016/j.bbrc.2005.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 07/18/2005] [Indexed: 11/21/2022]
Abstract
RNase MRP is a ribonucleoprotein endoribonuclease involved in eukaryotic pre-rRNA processing. The enzyme possesses an RNA subunit, structurally related to that of RNase P RNA, that is thought to be catalytic. RNase MRP RNA sequences from Saccharomycetaceae species are structurally well defined through detailed phylogenetic and structural analysis. In contrast, higher eukaryote MRP RNA structure models are based on comparative sequence analysis of only five sequences and limited probing data. Detailed structural analysis of the Homo sapiens MRP RNA, entailing enzymatic and chemical probing, is reported. The data are consistent with the phylogenetic secondary structure model and demonstrate unequivocally that higher eukaryote MRP RNA structure differs significantly from that reported for Saccharomycetaceae species. Neither model can account for all of the known MRP RNAs and we thus propose the evolution of at least two subsets of RNase MRP secondary structure, differing predominantly in the predicted specificity domain.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
37
|
Walker SC, Aspinall TV, Gordon JMB, Avis JM. Probing the structure of Saccharomyces cerevisiae RNase MRP. Biochem Soc Trans 2005; 33:479-81. [PMID: 15916546 DOI: 10.1042/bst0330479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In yeast, RNase MRP (mitochondrial RNA processing), a ribonucleoprotein precursor rRNA processing enzyme, possesses one putatively catalytic RNA and ten protein subunits and is highly related to RNase P. Structural analysis of the MRP RNA provides data that closely match a previous secondary-structure model derived from phylogenetic analysis, with the exception of an additional stem. This stem occupies an equivalent position to the P7 stem of RNase P RNA and its inclusion confers on MRP RNA a greater similarity to the core P RNA structure. In vivo studies indicate that the P7-like stem can form, but is not a part of, the active enzyme structure. Stem formation would increase RNA stability in the absence of proteins and our alternative structure may be a valid intermediate species in RNase MRP assembly. Further ongoing studies of this enzyme reveal an extensive network of interactions between subunits and a probable central role for the Pop1, Pop4 and Pop7 subunits.
Collapse
Affiliation(s)
- S C Walker
- Faculty of Life Sciences, University of Manchester, Jackson's Mill, P.O. Box 88, Manchester M60 1QD, UK
| | | | | | | |
Collapse
|
38
|
Piccinelli P, Rosenblad MA, Samuelsson T. Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes. Nucleic Acids Res 2005; 33:4485-95. [PMID: 16087735 PMCID: PMC1183490 DOI: 10.1093/nar/gki756] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
RNases P and MRP are ribonucleoprotein complexes involved in tRNA and rRNA processing, respectively. The RNA subunits of these two enzymes are structurally related to each other and play an essential role in the enzymatic reaction. Both of the RNAs have a highly conserved helical region, P4, which is important in the catalytic reaction. We have used a bioinformatics approach based on conserved elements to computationally analyze available genomic sequences of eukaryotic organisms and have identified a large number of novel nuclear RNase P and MRP RNA genes. For MRP RNA for instance, this investigation increases the number of known sequences by a factor of three. We present secondary structure models of many of the predicted RNAs. Although all sequences are able to fold into the consensus secondary structure of P and MRP RNAs, a striking variation in size is observed, ranging from a Nosema locustae MRP RNA of 160 nt to much larger RNAs, e.g. a Plasmodium knowlesi P RNA of 696 nt. The P and MRP RNA genes appear in tandem in some protists, further emphasizing the close evolutionary relationship of these RNAs.
Collapse
Affiliation(s)
- Paul Piccinelli
- Department of Medical Biochemistry, Goteborg UniversityBox 440, SE-405 30 Göteborg, Sweden
| | - Magnus Alm Rosenblad
- Department of Medical Biochemistry, Goteborg UniversityBox 440, SE-405 30 Göteborg, Sweden
- SWEGENE Bioinformatics, Goteborg UniversityBox 413, SE-405 30 Goteborg, Sweden
| | - Tore Samuelsson
- Department of Medical Biochemistry, Goteborg UniversityBox 440, SE-405 30 Göteborg, Sweden
- To whom correspondence should be addressed. Tel: +46 31 773 34 68; Fax +46 31 41 61 08;
| |
Collapse
|
39
|
Hall TA, Brown JW. Interactions between RNase P protein subunits in archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:247-54. [PMID: 15810434 PMCID: PMC2685574 DOI: 10.1155/2004/743956] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A yeast two-hybrid system was used to identify protein-protein interactions between the ribonuclease P (RNase P) protein subunits Mth11p, Mth687p, Mth688p and Mth1618p from the archaeon Methanothermobacter thermoautotrophicus. Clear interactions between Mth688p and Mth687p, and between Mth1618p and Mth11p, were confirmed by HIS3 and LacZ reporter expression. Weaker interactions of Mth687p and Mth688p with Mth 11p, and Mth11p with itself, are also suggested. These interactions resemble, and confirm, those previously seen among the homologs of these proteins in the more complex yeast RNase P holoenzyme.
Collapse
Affiliation(s)
- Thomas A. Hall
- Ibis Therapeutics, 2292 Faraday Ave., Carlsbad, CA 92008, USA
| | - James W. Brown
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
- Corresponding author ()
| |
Collapse
|
40
|
Kachouri R, Stribinskis V, Zhu Y, Ramos KS, Westhof E, Li Y. A surprisingly large RNase P RNA in Candida glabrata. RNA (NEW YORK, N.Y.) 2005; 11:1064-72. [PMID: 15987816 PMCID: PMC1370791 DOI: 10.1261/rna.2130705] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have found an extremely large ribonuclease P (RNase P) RNA (RPR1) in the human pathogen Candida glabrata and verified that this molecule is expressed and present in the active enzyme complex of this hemiascomycete yeast. A structural alignment of the C. glabrata sequence with 36 other hemiascomycete RNase P RNAs (abbreviated as P RNAs) allows us to characterize the types of insertions. In addition, 15 P RNA sequences were newly characterized by searching in the recently sequenced genomes Candida albicans, C. glabrata, Debaryomyces hansenii, Eremothecium gossypii, Kluyveromyces lactis, Kluyveromyces waltii, Naumovia castellii, Saccharomyces kudriavzevii, Saccharomyces mikatae, and Yarrowia lipolytica; and by PCR amplification for other Candida species (Candida guilliermondii, Candida krusei, Candida parapsilosis, Candida stellatoidea, and Candida tropicalis). The phylogenetic comparative analysis identifies a hemiascomycete secondary structure consensus that presents a conserved core in all species with variable insertions or deletions. The most significant variability is found in C. glabrata P RNA in which three insertions exceeding in total 700 nt are present in the Specificity domain. This P RNA is more than twice the length of any other homologous P RNAs known in the three domains of life and is eight times the size of the smallest. RNase P RNA, therefore, represents one of the most diversified noncoding RNAs in terms of size variation and structural diversity.
Collapse
MESH Headings
- Ascomycota/classification
- Ascomycota/genetics
- Base Sequence
- Candida glabrata/chemistry
- Candida glabrata/enzymology
- Candida glabrata/genetics
- Candida glabrata/metabolism
- Conserved Sequence
- DNA, Fungal
- Databases, Genetic
- Genes, Fungal
- Genetic Variation
- Genome, Fungal
- Models, Chemical
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Phylogeny
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/isolation & purification
- RNA, Fungal/metabolism
- Ribonuclease P/chemistry
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Rym Kachouri
- Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
41
|
Wen T, Oussenko IA, Pellegrini O, Bechhofer DH, Condon C. Ribonuclease PH plays a major role in the exonucleolytic maturation of CCA-containing tRNA precursors in Bacillus subtilis. Nucleic Acids Res 2005; 33:3636-43. [PMID: 15983136 PMCID: PMC1160522 DOI: 10.1093/nar/gki675] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In contrast to Escherichia coli, where all tRNAs have the CCA motif encoded by their genes, two classes of tRNA precursors exist in the Gram-positive bacterium Bacillus subtilis. Previous evidence had shown that ribonuclease Z (RNase Z) was responsible for the endonucleolytic maturation of the 3' end of those tRNAs lacking an encoded CCA motif, accounting for about one-third of its tRNAs. This suggested that a second pathway of tRNA maturation must exist for those precursors with an encoded CCA motif. In this paper, we examine the potential role of the four known exoribonucleases of B.subtilis, PNPase, RNase R, RNase PH and YhaM, in this alternative pathway. In the absence of RNase PH, precursors of CCA-containing tRNAs accumulate that are a few nucleotides longer than the mature tRNA species observed in wild-type strains or in the other single exonuclease mutants. Thus, RNase PH plays an important role in removing the last few nucleotides of the tRNA precursor in vivo. The presence of three or four exonuclease mutations in a single strain results in CCA-containing tRNA precursors of increasing size, suggesting that, as in E.coli, the exonucleolytic pathway consists of multiple redundant enzymes. Assays of purified RNase PH using in vitro-synthesized tRNA precursor substrates suggest that RNase PH is sensitive to the presence of a CCA motif. The division of labor between the endonucleolytic and exonucleolytic pathways observed in vivo can be explained by the inhibition of RNase Z by the CCA motif in CCA-containing tRNA precursors and by the inhibition of exonucleases by stable secondary structure in the 3' extensions of the majority of CCA-less tRNAs.
Collapse
Affiliation(s)
| | - Irina A. Oussenko
- Mount Sinai School of Medicine of New York UniversityNew York, NY 10029, USA
| | | | - David H. Bechhofer
- Mount Sinai School of Medicine of New York UniversityNew York, NY 10029, USA
| | - Ciarán Condon
- To whom correspondence should be addressed. Tel: +33 1 58 41 51 23; Fax: +33 1 58 41 50 20;
| |
Collapse
|
42
|
Xiao S, Day-Storms JJ, Srisawat C, Fierke CA, Engelke DR. Characterization of conserved sequence elements in eukaryotic RNase P RNA reveals roles in holoenzyme assembly and tRNA processing. RNA (NEW YORK, N.Y.) 2005; 11:885-96. [PMID: 15872187 PMCID: PMC1370773 DOI: 10.1261/rna.7282205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/02/2005] [Indexed: 05/02/2023]
Abstract
RNase P is a ubiquitous endoribonuclease responsible for cleavage of the 5' leader of precursor tRNAs (pre-tRNAs). Although the protein composition of RNase P holoenzymes varies significantly among Bacteria, Archaea, and Eukarya, the holoenzymes have essential RNA subunits with several sequences and structural features that are common to all three kingdoms of life. Additional structural elements of the RNA subunits have been found that are conserved in eukaryotes, but not in bacteria, and might have functions specifically required by the more complex eukaryotic holoenzymes. In this study, we have mutated four eukaryotic-specific conserved regions in Saccharomyces cerevisiae nuclear RNase P RNA and characterized the effects of the mutations on cell growth, enzyme function, and biogenesis of RNase P. RNase P with mutations in each of the four regions tested is sufficiently functional to support life although growth of the resulting yeast strains was compromised to varying extents. Further analysis revealed that mutations in three different regions cause differential defects in holoenzyme assembly, localization, and pre-tRNA processing in vivo and in vitro. These data suggest that most, but not all, eukaryotic-specific conserved regions of RNase P RNA are important for the maturation and function of the holoenzyme.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109-0606, USA
| | | | | | | | | |
Collapse
|
43
|
Marquez SM, Harris JK, Kelley ST, Brown JW, Dawson SC, Roberts EC, Pace NR. Structural implications of novel diversity in eucaryal RNase P RNA. RNA (NEW YORK, N.Y.) 2005; 11:739-51. [PMID: 15811915 PMCID: PMC1370759 DOI: 10.1261/rna.7211705] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 01/30/2005] [Indexed: 05/23/2023]
Abstract
Previous eucaryotic RNase P RNA secondary structural models have been based on limited diversity, representing only two of the approximately 30 phylogenetic kingdoms of the domain Eucarya. To elucidate a more generally applicable structure, we used biochemical, bioinformatic, and molecular approaches to obtain RNase P RNA sequences from diverse organisms including representatives of six additional kingdoms of eucaryotes. Novel sequences were from acanthamoeba (Acathamoeba castellanii, Balamuthia mandrillaris, Filamoeba nolandi), animals (Caenorhabditis elegans, Drosophila melanogaster), alveolates (Theileria annulata, Babesia bovis), conosids (Dictyostelium discoideum, Physarum polycephalum), trichomonads (Trichomonas vaginalis), microsporidia (Encephalitozoon cuniculi), and diplomonads (Giardia intestinalis). An improved alignment of eucaryal RNase P RNA sequences was assembled and used for statistical and comparative structural analysis. The analysis identifies a conserved core structure of eucaryal RNase P RNA that has been maintained throughout evolution and indicates that covariation in size occurs between some structural elements of the RNA. Eucaryal RNase P RNA contains regions of highly variable length and structure reminiscent of expansion segments found in rRNA. The eucaryal RNA has been remodeled through evolution as a simplified version of the structure found in bacterial and archaeal RNase P RNAs.
Collapse
Affiliation(s)
- Steven M Marquez
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Room A3B40, Boulder, CO 80309-0347, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Tanaka T, Kanda N, Kikuchi Y. The P3 domain of E. coli ribonuclease P RNA can be truncated and replaced. FEBS Lett 2005; 577:101-4. [PMID: 15527768 DOI: 10.1016/j.febslet.2004.09.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 09/27/2004] [Accepted: 09/28/2004] [Indexed: 11/19/2022]
Abstract
We prepared some truncated and replaced P3 mutants of Escherichia coli RNase P RNA, and used them to examine the RNase P ribozyme and holoenzyme reactions of a pre-tRNA substrate. The results indicated that mutations in the P3 domain did not affect the cleavage site selection of the pre-tRNA substrate, but did affect the efficiency of cleavage of the substrate. Results of stepwise truncation of the P3 domain and its replacement by the TAR sequence showed that the P3 domain of the E. coli RNase P was able to be truncated to certain length and was replaceable, but could not be deleted in the ribozyme.
Collapse
Affiliation(s)
- Terumichi Tanaka
- Division of Bioscience and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Tempakucho, Toyohashi, Aichi 441-8580, Japan.
| | | | | |
Collapse
|
45
|
Dlakić M. 3D models of yeast RNase P/MRP proteins Rpp1p and Pop3p. RNA (NEW YORK, N.Y.) 2005; 11:123-127. [PMID: 15613537 PMCID: PMC1370701 DOI: 10.1261/rna.7128905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 11/08/2004] [Indexed: 05/24/2023]
Abstract
Sensitive profile searches and fold recognition were used to predict the structures of two yeast RNase P/MRP proteins. Rpp1p, which is one of the subunits common to eukaryotes and archaea, is predicted to adopt the seven-stranded TIM-barrel fold found in PHP phosphoesterases. Pop3p, initially thought to be one of the RNase P/MRP subunits unique to yeast, has been assigned the L7Ae/L30e fold. This RNA-binding fold is also present in human RNase P subunit Rpp38, raising the possibility that Pop3p and Rpp38 are functional homologs.
Collapse
|
46
|
Tritz R, Habita C, Robbins JM, Gomez GG, Kruse CA. Catalytic nucleic acid enzymes for the study and development of therapies in the central nervous system: Review Article. GENE THERAPY & MOLECULAR BIOLOGY 2005; 9A:89-106. [PMID: 16467915 PMCID: PMC1351129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nucleic acid enzymes have been used with great success for studying natural processes in the central nervous system (CNS). We first provide information on the structural and enzymatic differences of various ribozymes and DNAzymes. We then discuss how they have been used to explore new therapeutic approaches for treating diseases of the CNS. They have been tested in various systems modeling retinitis pigmentosum, proliferative vitreoretinopathy, Alzheimer's disease, and malignant brain tumors. For these models, effective targets for nucleic acid enzymes have been readily identified and the rules for selecting cleavage sites have been well established. The bulk of studies, including those from our laboratory, have emphasized their use for gliomas. With the availability of multiple excellent animal models to test glioma treatments, good progress has been made in the initial testing of nucleic acid enzymes for brain tumor therapy. However, opportunities still exist to significantly improve the delivery and efficacy of ribozymes to achieve effective treatment. The future holds significant potential for the molecular targeting and therapy of eye diseases, neurodegenerative disorders, and brain tumors with these unique treatment agents.
Collapse
Affiliation(s)
- Richard Tritz
- Division of Cancer Biology, La Jolla Institute for Molecular Medicine, San Diego, CA 92121
| | | | | | | | | |
Collapse
|
47
|
Holmes I. A probabilistic model for the evolution of RNA structure. BMC Bioinformatics 2004; 5:166. [PMID: 15507142 PMCID: PMC534097 DOI: 10.1186/1471-2105-5-166] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 10/26/2004] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND For the purposes of finding and aligning noncoding RNA gene- and cis-regulatory elements in multiple-genome datasets, it is useful to be able to derive multi-sequence stochastic grammars (and hence multiple alignment algorithms) systematically, starting from hypotheses about the various kinds of random mutation event and their rates. RESULTS Here, we consider a highly simplified evolutionary model for RNA, called "The TKF91 Structure Tree" (following Thorne, Kishino and Felsenstein's 1991 model of sequence evolution with indels), which we have implemented for pairwise alignment as proof of principle for such an approach. The model, its strengths and its weaknesses are discussed with reference to four examples of functional ncRNA sequences: a riboswitch (guanine), a zipcode (nanos), a splicing factor (U4) and a ribozyme (RNase P). As shown by our visualisations of posterior probability matrices, the selected examples illustrate three different signatures of natural selection that are highly characteristic of ncRNA: (i) co-ordinated basepair substitutions, (ii) co-ordinated basepair indels and (iii) whole-stem indels. CONCLUSIONS Although all three types of mutation "event" are built into our model, events of type (i) and (ii) are found to be better modeled than events of type (iii). Nevertheless, we hypothesise from the model's performance on pairwise alignments that it would form an adequate basis for a prototype multiple alignment and genefinding tool.
Collapse
Affiliation(s)
- Ian Holmes
- Department of Bioengineering, University of California, Berkeley 94720-1762, USA.
| |
Collapse
|
48
|
Bardeleben C, Moore RL, Wayne RK. Isolation and Molecular Evolution of the Selenocysteine tRNA (Cf TRSP) and RNase P RNA (Cf RPPH1) Genes in the Dog Family, Canidae. Mol Biol Evol 2004; 22:347-59. [PMID: 15496554 DOI: 10.1093/molbev/msi022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In an effort to identify rapidly evolving nuclear sequences useful for phylogenetic analyses of closely related species, we isolated two genes transcribed by RNA polymerase III (pol III), the selenocysteine tRNA gene (TRSP) and an RNase P RNA (RPPH1) gene from the domestic dog (Canis familiaris). We focus on genes transcribed by pol III because their coding regions are small (generally 100-300 base pairs [bp]) and their essential promoter elements are located within a couple of hundred bps upstream of the coding region. Therefore, we predicted that regions flanking the coding region and outside of the promoter elements would be free of constraint and would evolve rapidly. We amplified TRSP from 23 canids and RPPH1 from 12 canids and analyzed the molecular evolution of these genes and their utility as phylogenetic markers for resolving relationships among species in Canidae. We compared the rate of evolution of the gene-flanking regions to other noncoding regions of nuclear DNA (introns) and to the mitochondrial encoded COII gene. Alignment of TRSP from 23 canids revealed that regions directly adjacent to the coding region display high sequence variability. We discuss this pattern in terms of functional mechanisms of transcription. Although the flanking regions evolve no faster than introns, both genes were found to be useful phylogenetic markers, in part, because of the synapomorphic indels found in the flanking regions. Gene trees generated from the TRSP and RPPH1 loci were generally in agreement with the published mtDNA phylogeny and are the first phylogeny of Canidae based on nuclear sequences.
Collapse
Affiliation(s)
- Carolyne Bardeleben
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
| | | | | |
Collapse
|
49
|
Li Y, Altman S. In search of RNase P RNA from microbial genomes. RNA (NEW YORK, N.Y.) 2004; 10:1533-40. [PMID: 15337843 PMCID: PMC1370640 DOI: 10.1261/rna.7970404] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 07/06/2004] [Indexed: 05/19/2023]
Abstract
A simple procedure has been developed to quickly retrieve and validate the DNA sequence encoding the RNA subunit of ribonuclease P (RNase P RNA) from microbial genomes. RNase P RNA sequences were identified from 94% of bacterial and archaeal complete genomes where previously no RNase P RNA was annotated. A sequence was found in camelpox virus, highly conserved in all orthopoxviruses (including smallpox virus), which could fold into a putative RNase P RNA in terms of conserved primary features and secondary structure. New structure features of RNase P RNA that enable one to distinguish bacteria from archaea and eukarya were found. This RNA is yet another RNA that can be a molecular criterion to divide the living world into three domains (bacteria, archaea, and eukarya). The catalytic center of this RNA, and its detection from some environmental whole genome shotgun sequences, is also discussed.
Collapse
Affiliation(s)
- Yong Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
50
|
Walker SC, Avis JM. A conserved element in the yeast RNase MRP RNA subunit can participate in a long-range base-pairing interaction. J Mol Biol 2004; 341:375-88. [PMID: 15276830 DOI: 10.1016/j.jmb.2004.05.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 05/26/2004] [Indexed: 11/24/2022]
Abstract
RNase MRP is a ribonucleoprotein endoribonuclease involved in eukaryotic pre-rRNA processing. The enzyme possesses a putatively catalytic RNA subunit, structurally related to that of RNase P. A thorough structure analysis of Saccharomyces cerevisiae MRP RNA, entailing enzymatic and chemical probing, mutagenesis and thermal melting, identifies a previously unrecognised stem that occupies a position equivalent to the P7 stem of RNase P. Inclusion of this P7-like stem confers on yeast MRP RNA a greater degree of similarity to the core RNase P RNA structure than that described previously and better delimits domain 2, the proposed specificity domain. The additional stem is created by participation of a conserved sequence element (ymCR-II) in a long-range base-pairing interaction. There is potential for this base-pairing throughout the known yeast MRP RNA sequences. Formation of a P7-like stem is not required, however, for the pre-rRNA processing or essential function of RNase MRP. Mutants that can base-pair are nonetheless detrimental to RNase MRP function, indicating that the stem will form in vivo but that only the wild-type pairing is accommodated. Although the alternative MRP RNA structure described is clearly not part of the active RNase MRP enzyme, it would be the more stable structure in the absence of protein subunits and the probability that it represents a valid intermediate species in the process of yeast RNase MRP assembly is discussed.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biomolecular Sciences, UMIST, P.O. Box 88, Manchester, M60 1QD, UK
| | | |
Collapse
|