1
|
Le Rhun A, Tourasse NJ, Bonabal S, Iost I, Boissier F, Darfeuille F. Profiling the intragenic toxicity determinants of toxin-antitoxin systems: revisiting hok/Sok regulation. Nucleic Acids Res 2022; 51:e4. [PMID: 36271796 PMCID: PMC9841398 DOI: 10.1093/nar/gkac940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 10/20/2022] [Indexed: 01/29/2023] Open
Abstract
Type I toxin-antitoxin systems (T1TAs) are extremely potent bacterial killing systems difficult to characterize using classical approaches. To assess the killing capability of type I toxins and to identify mutations suppressing the toxin expression or activity, we previously developed the FASTBAC-Seq (Functional AnalysiS of Toxin-Antitoxin Systems in BACteria by Deep Sequencing) method in Helicobacter pylori. This method combines a life and death selection with deep sequencing. Here, we adapted and improved our method to investigate T1TAs in the model organism Escherichia coli. As a proof of concept, we revisited the regulation of the plasmidic hok/Sok T1TA system. We revealed the death-inducing phenotype of the Hok toxin when it is expressed from the chromosome in the absence of the antitoxin and recovered previously described intragenic toxicity determinants of this system. We identified nucleotides that are essential for the transcription, translation or activity of Hok. We also discovered single-nucleotide substitutions leading to structural changes affecting either the translation or the stability of the hok mRNA. Overall, we provide the community with an easy-to-use approach to widely characterize TA systems from diverse types and bacteria.
Collapse
Affiliation(s)
- Anaïs Le Rhun
- To whom correspondence should be addressed. Tel: +33 557574565;
| | - Nicolas J Tourasse
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Simon Bonabal
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Isabelle Iost
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Fanny Boissier
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Fabien Darfeuille
- Correspondence may also be addressed to Fabien Darfeuille. Tel: +33 557571014;
| |
Collapse
|
2
|
Variation Profile of the Orthotospovirus Genome. Pathogens 2020; 9:pathogens9070521. [PMID: 32610472 PMCID: PMC7400459 DOI: 10.3390/pathogens9070521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Orthotospoviruses are plant-infecting members of the family Tospoviridae (order Bunyavirales), have a broad host range and are vectored by polyphagous thrips in a circulative-propagative manner. Because diverse hosts and vectors impose heterogeneous selection constraints on viral genomes, the evolutionary arms races between hosts and their pathogens might be manifested as selection for rapid changes in key genes. These observations suggest that orthotospoviruses contain key genetic components that rapidly mutate to mediate host adaptation and vector transmission. Using complete genome sequences, we profiled genomic variation in orthotospoviruses. Results show that the three genomic segments contain hypervariable areas at homologous locations across species. Remarkably, the highest nucleotide variation mapped to the intergenic region of RNA segments S and M, which fold into a hairpin. Secondary structure analyses showed that the hairpin is a dynamic structure with multiple functional shapes formed by stems and loops, contains sites under positive selection and covariable sites. Accumulation and tolerance of mutations in the intergenic region is a general feature of orthotospoviruses and might mediate adaptation to host plants and insect vectors.
Collapse
|
3
|
Clabbers MTB, Olsthoorn RCL, Gultyaev AP. Tospovirus ambisense genomic RNA segments use almost complete repertoire of stable tetraloops in the intergenic region. ACTA ACUST UNITED AC 2014; 30:1800-4. [PMID: 24590440 DOI: 10.1093/bioinformatics/btu122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The intergenic regions of the ambisense RNA segments of viruses from the Tospovirus genus form large extended RNA structures that regulate virus replication. Using comparative structure analysis, we show the presence of conserved alternative conformations at the apical parts of these structures. In one conformation, a branched Y-shape, the 5'-proximal hairpin arms are mostly capped by exceptionally stable tetraloop motifs. The tetraloop hairpins are folded in both virus and virus-complementary sense RNAs, and different tetraloops can functionally replace each other. Folding simulations show that the branched Y-shape structures can undergo a conformational transition to alternative extended rod-like conformations. Functional importance of both alternatives is supported by nucleotide covariations. The balanced equilibrium between alternative structures is evidenced by native gel electrophoresis of mutant RNA transcripts with shifted equilibria. The tetraloops play a role in the stability and dynamics of structures but may also be recognized by proteins involved in translation and/or replication.
Collapse
Affiliation(s)
- Max T B Clabbers
- Institute of Chemistry, Leiden University, 2300 RA Leiden and Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Rene C L Olsthoorn
- Institute of Chemistry, Leiden University, 2300 RA Leiden and Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Alexander P Gultyaev
- Institute of Chemistry, Leiden University, 2300 RA Leiden and Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The NetherlandsInstitute of Chemistry, Leiden University, 2300 RA Leiden and Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Rubio L, Guerri J, Moreno P. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front Microbiol 2013; 4:151. [PMID: 23805130 PMCID: PMC3693128 DOI: 10.3389/fmicb.2013.00151] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/29/2013] [Indexed: 11/15/2022] Open
Abstract
RNA viruses have a great potential for genetic variation, rapid evolution and adaptation. Characterization of the genetic variation of viral populations provides relevant information on the processes involved in virus evolution and epidemiology and it is crucial for designing reliable diagnostic tools and developing efficient and durable disease control strategies. Here we performed an updated analysis of sequences available in Genbank and reviewed present knowledge on the genetic variability and evolutionary processes of viruses of the family Closteroviridae. Several factors have shaped the genetic structure and diversity of closteroviruses. (I) A strong negative selection seems to be responsible for the high genetic stability in space and time for some viruses. (2) Long distance migration, probably by human transport of infected propagative plant material, have caused that genetically similar virus isolates are found in distant geographical regions. (3) Recombination between divergent sequence variants have generated new genotypes and plays an important role for the evolution of some viruses of the family Closteroviridae. (4) Interaction between virus strains or between different viruses in mixed infections may alter accumulation of certain strains. (5) Host change or virus transmission by insect vectors induced changes in the viral population structure due to positive selection of sequence variants with higher fitness for host-virus or vector-virus interaction (adaptation) or by genetic drift due to random selection of sequence variants during the population bottleneck associated to the transmission process.
Collapse
Affiliation(s)
- Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | | | | |
Collapse
|
5
|
Fernández N, Fernandez-Miragall O, Ramajo J, García-Sacristán A, Bellora N, Eyras E, Briones C, Martínez-Salas E. Structural basis for the biological relevance of the invariant apical stem in IRES-mediated translation. Nucleic Acids Res 2011; 39:8572-85. [PMID: 21742761 PMCID: PMC3201876 DOI: 10.1093/nar/gkr560] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA structure plays a fundamental role in internal initiation of translation. Picornavirus internal ribosome entry site (IRES) are long, efficient cis-acting elements that recruit the ribosome to internal mRNA sites. However, little is known about long-range constraints determining the IRES RNA structure. Here, we sought to investigate the functional and structural relevance of the invariant apical stem of a picornavirus IRES. Mutation of this apical stem revealed better performance of G:C compared with C:G base pairs, demonstrating that the secondary structure solely is not sufficient for IRES function. In turn, mutations designed to disrupt the stem abolished IRES activity. Lack of tolerance to accept genetic variability in the apical stem was supported by the presence of coupled covariations within the adjacent stem-loops. SHAPE structural analysis, gel mobility-shift and microarrays-based RNA accessibility revealed that the apical stem contributes to maintain IRES RNA structure through the generation of distant interactions between two adjacent stem-loops. Our results demonstrate that a highly interactive structure constrained by distant interactions involving invariant G:C base pairs plays a key role in maintaining the RNA conformation necessary for IRES-mediated translation.
Collapse
Affiliation(s)
- Noemí Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
SASAOKA F, SUZUKI J, WATANABE Y, FUJIHARA M, HARASAWA R. Rapid Identification of Hemoplasma Species by Palindromic Nucleotide Substitutions at the GAAA Tetraloop Helix in the Specificity Domain of Ribonuclease P RNA. J Vet Med Sci 2011; 73:1517-20. [DOI: 10.1292/jvms.11-0247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Fumina SASAOKA
- Department of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Agriculture, Iwate University
| | - Jin SUZUKI
- Department of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Agriculture, Iwate University
| | - Yusaku WATANABE
- Department of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Agriculture, Iwate University
- Department of Applied Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University
| | - Masatoshi FUJIHARA
- Department of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Agriculture, Iwate University
- Department of Applied Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University
| | - Ryô HARASAWA
- Department of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Agriculture, Iwate University
- Department of Applied Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University
| |
Collapse
|
7
|
Abstract
Recent genomic analyses revealed a surprisingly large number of toxin-antitoxin loci in free-living prokaryotes. The antitoxins are proteins or antisense RNAs that counteract the toxins. Two antisense RNA-regulated toxin-antitoxin gene families, hok/sok and ldr, are unrelated sequence-wise but have strikingly similar properties at the level of gene and RNA organization. Recently, two SOS-induced toxins were found to be regulated by RNA antitoxins. One such toxin, SymE, exhibits similarity with MazE antitoxin and, surprisingly, inhibits translation. Thus, it is possible that an ancestral antitoxin gene evolved into the present toxin gene (symE) whose translation is repressed by an RNA antitoxin (SymR).
Collapse
Affiliation(s)
- Kenn Gerdes
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle NE2 4HH, UK.
| | | |
Collapse
|
8
|
Faridani OR, Nikravesh A, Pandey DP, Gerdes K, Good L. Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Res 2006; 34:5915-22. [PMID: 17065468 PMCID: PMC1635323 DOI: 10.1093/nar/gkl750] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Short regulatory RNAs are widespread in bacteria, and many function through antisense recognition of mRNA. Among the best studied antisense transcripts are RNA antitoxins that repress toxin mRNA translation. The hok/sok locus of plasmid R1 from Escherichia coli is an established model for RNA antitoxin action. Base-pairing between hok mRNA and Sok-antisense-RNA increases plasmid maintenance through post-segregational-killing of plasmid-free progeny cells. To test the model and the idea that sequestration of Sok-RNA activity could provide a novel antimicrobial strategy, we designed anti Sok peptide nucleic acid (PNA) oligomers that, according to the model, would act as competitive inhibitors of hok mRNA::Sok-RNA interactions. In hok/sok-carrying cells, anti Sok PNAs were more bactericidal than rifampicin. Also, anti Sok PNAs induced ghost cell morphology and an accumulation of mature hok mRNA, consistent with cell killing through synthesis of Hok protein. The results support the sense/antisense model for hok mRNA repression by Sok-RNA and demonstrate that antisense agents can be used to out-compete RNA::RNA interactions in bacteria. Finally, BLAST analyses of approximately 200 prokaryotic genomes revealed that many enteric bacteria have multiple hok/sok homologous and analogous RNA-regulated toxin-antitoxin loci. Therefore, it is possible to activate suicide in bacteria by targeting antitoxins.
Collapse
Affiliation(s)
| | | | - Deo Prakash Pandey
- Département de Biologie Cellulaire Université de GenèveSciences III 30 Quai Ernest-Ansermet 1211 Genève 4, Switzerland
| | - Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern DenmarkDK-5230 Odense M, Denmark
- Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle, NE2 4HH, UK
| | - Liam Good
- To whom correspondence should be addressed. Tel: +46 8 5248 6385; Fax: +46 8 32 39 50;
| |
Collapse
|
9
|
Cao S, Chen SJ. Free energy landscapes of RNA/RNA complexes: with applications to snRNA complexes in spliceosomes. J Mol Biol 2005; 357:292-312. [PMID: 16413034 PMCID: PMC2442757 DOI: 10.1016/j.jmb.2005.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 12/02/2005] [Accepted: 12/03/2005] [Indexed: 11/24/2022]
Abstract
We develop a statistical mechanical model for RNA/RNA complexes with both intramolecular and intermolecular interactions. As an application of the model, we compute the free energy landscapes, which give the full distribution for all the possible conformations, for U4/U6 and U2/U6 in major spliceosome and U4atac/U6atac and U12/U6atac in minor spliceosome. Different snRNA experiments found contrasting structures, our free energy landscape theory shows why these structures emerge and how they compete with each other. For yeast U2/U6, the model predicts that the two distinct experimental structures, the four-helix junction structure and the helix Ib-containing structure, can actually coexist and specifically compete with each other. In addition, the energy landscapes suggest possible mechanisms for the conformational switches in splicing. For instance, our calculation shows that coaxial stacking is essential for stabilizing the four-helix junction in yeast U2/U6. Therefore, inhibition of the coaxial stacking possibly by protein-binding may activate the conformational switch from the four-helix junction to the helix Ib-containing structure. Moreover, the change of the energy landscape shape gives information about the conformational changes. We find multiple (native-like and misfolded) intermediates formed through base-pairing rearrangements in snRNA complexes. For example, the unfolding of the U2/U6 undergoes a transition to a misfolded state which is functional, while in the unfolding of U12/U6atac, the functional helix Ib is found to be the last one to unfold and is thus the most stable structural component. Furthermore, the energy landscape gives the stabilities of all the possible (functional) intermediates and such information is directly related to splicing efficiency.
Collapse
Affiliation(s)
| | - Shi-Jie Chen
- *Corresponding author, E-mail address of the corresponding author:
| |
Collapse
|
10
|
Huthoff H, Girard F, Wijmenga SS, Berkhout B. Evidence for a base triple in the free HIV-1 TAR RNA. RNA (NEW YORK, N.Y.) 2004; 10:412-423. [PMID: 14970387 PMCID: PMC1370937 DOI: 10.1261/rna.5161304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 11/04/2003] [Indexed: 05/24/2023]
Abstract
We propose the existence of a novel base triple in the HIV-1 TAR hairpin. This triple is supported by covariation of loop residue 31 with residue 22, which is part of an unusual base pair with U40 below the 3-nucleotide bulge. A set of mutants was constructed to test the involvement of bases A22, U31, and U40 in a triple interaction. RNA structure probing, trans-activation assays, and structure modeling are consistent with the existence of this base triple in a bent conformation of the free TAR element. However, disruption of the base triple does not affect binding of a Tat-derived peptide. We therefore compared the structure of free and Tat-bound TAR RNA by footprinting and site-specific cross-linking analyses. These studies indicate that the Tat arginine-rich motif, in addition to its known binding site at the bulge, is in close contact with U31 in the TAR loop. Because binding of Tat to TAR is known to coincide with the formation of a base triple with residues U23, A27, and U38, we hypothesize that Tat binding and the associated straightening of TAR triggers the disruption of the (A22-U40)U31 triple.
Collapse
Affiliation(s)
- Hendrik Huthoff
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
11
|
van Lipzig R, Gultyaev AP, Pleij CWA, van Montagu M, Cornelissen M, Meulewaeter F. The 5' and 3' extremities of the satellite tobacco necrosis virus translational enhancer domain contribute differentially to stimulation of translation. RNA (NEW YORK, N.Y.) 2002; 8:229-36. [PMID: 11924567 PMCID: PMC1370248 DOI: 10.1017/s1355838202018071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The translational enhancer domain (TED) of satellite tobacco necrosis virus (STNV) RNA stimulates translation of uncapped RNAs autonomously. Here we set out to identify the 5' and 3' extremities of TED and features of these sequences with respect to translation. We found that both in wheat germ extract and in tobacco protoplasts, the 5' border is confined to 3 nt. Mutational analysis revealed that the autonomous function of TED is sensitive to 5' flanking sequences. At the 3' end of TED, 23 nt have a cumulative, quantitative effect on translation in wheat germ extract, whereas in tobacco protoplasts, the most 3' 14 nt of these 23 nt do not enhance translation. The 5' and 3' sequence requirements triggered the development of a new secondary structure model. In this model, TED folds into a phylogenetically conserved stem-loop structure in which the essential 5' nucleotides base-pair with the 3' nucleotides that stimulate translation both in vitro and in vivo. Importantly, the 14 3' nucleotides in TED that stimulate translation in the wheat germ extract only do not require the predicted base-pairing in order to function. The discrepancy between in vitro and in vivo sequence requirements thus correlates with potential base-pairing requirements, opening the possibility that TED contains two functional domains.
Collapse
|