1
|
Boesler C, Rigo N, Agafonov DE, Kastner B, Urlaub H, Will CL, Lührmann R. Stable tri-snRNP integration is accompanied by a major structural rearrangement of the spliceosome that is dependent on Prp8 interaction with the 5' splice site. RNA (NEW YORK, N.Y.) 2015; 21:1993-2005. [PMID: 26385511 PMCID: PMC4604437 DOI: 10.1261/rna.053991.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/21/2015] [Indexed: 05/22/2023]
Abstract
Exon definition is the predominant initial spliceosome assembly pathway in higher eukaryotes, but it remains much less well-characterized compared to the intron-defined assembly pathway. Addition in trans of an excess of 5'ss containing RNA to a splicing reaction converts a 37S exon-defined complex, formed on a single exon RNA substrate, into a 45S B-like spliceosomal complex with stably integrated U4/U6.U5 tri-snRNP. This 45S complex is compositonally and structurally highly similar to an intron-defined spliceosomal B complex. Stable tri-snRNP integration during B-like complex formation is accompanied by a major structural change as visualized by electron microscopy. The changes in structure and stability during transition from a 37S to 45S complex can be induced in affinity-purified cross-exon complexes by adding solely the 5'ss RNA oligonucleotide. This conformational change does not require the B-specific proteins, which are recruited during this stabilization process, or site-specific phosphorylation of hPrp31. Instead it is triggered by the interaction of U4/U6.U5 tri-snRNP components with the 5'ss sequence, most importantly between Prp8 and nucleotides at the exon-intron junction. These studies provide novel insights into the conversion of a cross-exon to cross-intron organized spliceosome and also shed light on the requirements for stable tri-snRNP integration during B complex formation.
Collapse
Affiliation(s)
- Carsten Boesler
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Norbert Rigo
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Dmitry E Agafonov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
2
|
Rhode BM, Hartmuth K, Urlaub H, Luhrmann R. Analysis of site-specific protein-RNA cross-links in isolated RNP complexes, combining affinity selection and mass spectrometry. RNA (NEW YORK, N.Y.) 2003; 9:1542-51. [PMID: 14624009 PMCID: PMC1370507 DOI: 10.1261/rna.5175703] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 09/03/2003] [Indexed: 05/22/2023]
Abstract
An important aspect of the assembly of RNPs, and in particular of spliceosomes, is the succession of proteins bound to any given site on the RNA. Protein-RNA cross-linking is a well-established technique for investigating this, but the identification of a cross-linked protein has so far relied upon the availability of antibodies for immunoprecipitation or Western blot studies. To facilitate identification of proteins independent of these techniques, site-specific protein-RNA cross-links were purified in a large scale, which were then used for mass spectrometry (MS). This approach was carried out by the use of a minimal pre-mRNA construct containing a single photoactivatable azidophenacyl group and an adjacent biotin-dT tag for affinity purification of the cross-linked product. To test the feasibility of the method, we purified cross-links to nucleotide 9 downstream of the 5' splice site of pre-mRNA in the spliceosomal complexes A ("pre-spliceosome") and H. By this method, we were able to identify several proteins by MS; the hnRNP proteins A2/B1 were cross-linked to the pre-mRNA in complex A, and FUSE 2/FBP (a homolog of the intronic splicing enhancer KSRP) was cross-linked in complex H.
Collapse
Affiliation(s)
- Britta M Rhode
- Max Planck Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
3
|
Lund M, Kjems J. Defining a 5' splice site by functional selection in the presence and absence of U1 snRNA 5' end. RNA (NEW YORK, N.Y.) 2002; 8:166-179. [PMID: 11911363 PMCID: PMC1370240 DOI: 10.1017/s1355838202010786] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pre-mRNA splicing in metazoans is mainly specified by sequences at the termini of introns. We have selected functional 5' splice sites from randomized intron sequences through repetitive rounds of in vitro splicing in HeLa cell nuclear extract. The consensus sequence obtained after one round of selection in normal extract closely resembled the consensus of natural occurring 5' splice sites, suggesting that the selection pressures in vitro and in vivo are similar. After three rounds of selection under competitive splicing conditions, the base pairing potential to the U1 snRNA increased, yielding a G100%U100%R94%A67%G89%U76%R83% intronic consensus sequence. Surprisingly, a nearly identical consensus sequence was obtained when the selection was performed in nuclear extract containing U1 snRNA with a deleted 5' end, suggesting that other factors than the U1 snRNA are involved in 5' splice site recognition. The importance of a consecutive complementarity between the 5' splice site and the U1 snRNA was analyzed systematically in the natural range for in vitro splicing efficiency and complex formation. Extended complementarity was inhibitory to splicing at a late step in spliceosome assembly when pre-mRNA substrates were incubated in normal extract, but favorable for splicing under competitive splicing conditions or in the presence of truncated U1 snRNA where transition from complex A to complex B occurred more rapidly. This suggests that stable U1 snRNA binding is advantageous for assembly of commitment complexes, but inhibitory for the entry of the U4/U6.U5 tri-snRNP, probably due to a delayed release of the U1 snRNP.
Collapse
Affiliation(s)
- Mette Lund
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
4
|
Ismaïli N, Sha M, Gustafson EH, Konarska MM. The 100-kda U5 snRNP protein (hPrp28p) contacts the 5' splice site through its ATPase site. RNA (NEW YORK, N.Y.) 2001; 7:182-93. [PMID: 11233976 PMCID: PMC1370077 DOI: 10.1017/s1355838201001807] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To identify splicing factors in proximity of the 5' splice site (5'SS), we followed a crosslinking profile of site-specifically modified, photoreactive RNA substrates. Upon U4/U5/U6 snRNP addition, the 5'SS RNA crosslinks in an ATP-dependent manner to U6 snRNA, an unidentified protein p27, and the 100-kDa U5 snRNP protein, a human ortholog of an ATPase/RNA helicase yPrp28p. The 5'SS:hPrp28p crosslink maps to the highly conserved TAT motif in proximity of the ATP-binding site in hPrp28p. We propose that hPrp28p acts as a helicase to unwind the 5'SS:U1 snRNA duplex, and at the same time as a 5'SS translocase, which, upon NTP-dependent conformational change, positions the 5'SS for pairing with U6 snRNA within the spliceosome. This repositioning of the 5'SS takes place regardless of whether the 5'SS is originally duplexed with U1 snRNA.
Collapse
Affiliation(s)
- N Ismaïli
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
5
|
Kuhn AN, Brow DA. Suppressors of a cold-sensitive mutation in yeast U4 RNA define five domains in the splicing factor Prp8 that influence spliceosome activation. Genetics 2000; 155:1667-82. [PMID: 10924465 PMCID: PMC1461211 DOI: 10.1093/genetics/155.4.1667] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The highly conserved splicing factor Prp8 has been implicated in multiple stages of the splicing reaction. However, assignment of a specific function to any part of the 280-kD U5 snRNP protein has been difficult, in part because Prp8 lacks recognizable functional or structural motifs. We have used a large-scale screen for Saccharomyces cerevisiae PRP8 alleles that suppress the cold sensitivity caused by U4-cs1, a mutant U4 RNA that blocks U4/U6 unwinding, to identify with high resolution five distinct regions of PRP8 involved in the control of spliceosome activation. Genetic interactions between two of these regions reveal a potential long-range intramolecular fold. Identification of a yeast two-hybrid interaction, together with previously reported results, implicates two other regions in direct and indirect contacts to the U1 snRNP. In contrast to the suppressor mutations in PRP8, loss-of-function mutations in the genes for two other splicing factors implicated in U4/U6 unwinding, Prp44 (Brr2/Rss1/Slt22/Snu246) and Prp24, show synthetic enhancement with U4-cs1. On the basis of these results we propose a model in which allosteric changes in Prp8 initiate spliceosome activation by (1) disrupting contacts between the U1 snRNP and the U4/U6-U5 tri-snRNP and (2) orchestrating the activities of Prp44 and Prp24.
Collapse
MESH Headings
- Amino Acid Sequence
- Cold Temperature
- Conserved Sequence
- Eukaryotic Initiation Factor-4E
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Molecular Sequence Data
- Mutation
- Oligonucleotides/genetics
- Peptide Initiation Factors/chemistry
- Peptide Initiation Factors/genetics
- Plasmids/genetics
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA Helicases
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA-Binding Proteins/metabolism
- Repressor Proteins/metabolism
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear
- Ribonucleoprotein, U5 Small Nuclear
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Homology, Amino Acid
- Spliceosomes/metabolism
- Suppression, Genetic
- Temperature
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- A N Kuhn
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706-1532, USA
| | | |
Collapse
|
6
|
Schmidt H, Richert K, Drakas RA, Käufer NF. spp42, identified as a classical suppressor of prp4-73, which encodes a kinase involved in pre-mRNA splicing in fission yeast, is a homologue of the splicing factor Prp8p. Genetics 1999; 153:1183-91. [PMID: 10545451 PMCID: PMC1460826 DOI: 10.1093/genetics/153.3.1183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have identified two classical extragenic suppressors, spp41 and spp42, of the temperature sensitive (ts) allele prp4-73. The prp4(+) gene of Schizosaccharomyces pombe encodes a protein kinase. Mutations in both suppressor genes suppress the growth and the pre-mRNA splicing defect of prp4-73(ts) at the restrictive temperature (36 degrees ). spp41 and spp42 are synthetically lethal with each other in the presence of prp4-73(ts), indicating a functional relationship between spp41 and spp42. The suppressor genes were mapped on the left arm of chromosome I proximal to the his6 gene. Based on our mapping data we isolated spp42 by screening PCR fragments for functional complementation of the prp4-73(ts) mutant at the restrictive temperature. spp42 encodes a large protein (p275), which is the homologue of Prp8p. This protein has been shown in budding yeast and mammalian cells to be a bona fide pre-mRNA splicing factor. Taken together with other recent genetic and biochemical data, our results suggest that Prp4 kinase plays an important role in the formation of catalytic spliceosomes.
Collapse
Affiliation(s)
- H Schmidt
- Institut für Genetik-Biozentrum, Technische Universitsät Braunschweig, 38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
7
|
Siatecka M, Reyes JL, Konarska MM. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center. Genes Dev 1999; 13:1983-93. [PMID: 10444596 PMCID: PMC316927 DOI: 10.1101/gad.13.15.1983] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1999] [Accepted: 06/24/1999] [Indexed: 11/25/2022]
Abstract
A U5 snRNP protein, hPrp8, interacts closely with the GU dinucleotide at the 5' splice site (5'SS), forming a specific UV-inducible cross-link. To test if this physical contact between the 5'SS and the carboxy-terminal region of Prp8 reflects a functional recognition of the 5'SS during spliceosome assembly, we mutagenized the corresponding region of yeast Prp8 and screened the resulting mutants for suppression of 5'SS mutations in vivo. All of the isolated prp8 alleles not only suppress 5'SS but also 3'SS mutations, affecting the second catalytic step. Suppression of the 5'SS mutations by prp8 alleles was also tested in the presence of U1-7U snRNA, a predicted suppressor of the U+2A mutation. As expected, U1-7U efficiently suppresses prespliceosome formation, and the first, but not the second, step of U+2A pre-mRNA splicing. Independently, Prp8 functionally interacts with both splice sites at the later stage of splicing, affecting the efficiency of the second catalytic step. The striking proximity of two of the prp8 suppressor mutations to the site of the 5'SS:hPrp8 cross-link suggests that some protein:5'SS contacts made before the first step may be subsequently extended to accommodate the 3'SS for the second catalytic step. Together, these results strongly implicate Prp8 in specific interactions at the catalytic center of the spliceosome.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Carrier Proteins
- Catalytic Domain
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Suppressor/genetics
- Genomic Library
- Introns/genetics
- Metallothionein/genetics
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phenotype
- RNA Splicing/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Nuclear/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear
- Ribonucleoprotein, U5 Small Nuclear
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae Proteins
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Suppression, Genetic
Collapse
Affiliation(s)
- M Siatecka
- The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
8
|
Johnson L, Gershon PD. RNA binding characteristics and overall topology of the vaccinia poly(A) polymerase-processivity factor-primer complex. Nucleic Acids Res 1999; 27:2708-21. [PMID: 10373588 PMCID: PMC148480 DOI: 10.1093/nar/27.13.2708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vaccinia virus-encoded heterodimer responsible for poly(A) tail elongation comprises a polyadenylylation catalytic subunit (VP55) and associated processivity factor (VP39). We show that monomeric VP39's affinity for RNA homopolymers follows the hierarchy poly(I) >poly(U) >>poly(G) >poly(A) >poly(C), that the heterodimer interacts stably with 40-45 nucleotide nucleic acid segments, and that its homopolymer preference for polyadenylylation priming is comparable to the VP39 affinity hierarchy (above). For oligonucleotide ligands possessing the previously-identified (rU)2-(N)25-rU heterodimer-binding motif, the heterodimer's affinity and base-type preference are mediated via both the (rU)2and rU portions, with the greater contribution coming from (rU)2. VP39's R107 sidechain contributes to specificity at the downstream rU. Substitution of each ribouridylate of the motif with either ribothymidine or 4-thiodeoxythymidine indicated that the downstream rU interacts with both heterodimer subunits, whereas the upstream (rU)2interacts only with VP55. A 'crosslinking SELEX' approach indicated VP39-base proximity around position -10 of a 4-thioribouridine/deoxycytidine ligand pool. Upon incubating the heterodimer with a panel of identical-sequence oligonucleotides derivatized with azidophenacyl bromide at various phosphate positions, those derivatized at positions -11 to -21 photocrosslinked to both subunits in a coordinated manner. This region may therefore pass through a 'cleft' or enclosed 'channel' at the subunit interface.
Collapse
Affiliation(s)
- L Johnson
- Department of Medical Biochemistry and Genetics/Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Abstract
Derivatization of RNA with heterobifunctional photocrosslinking reagents becomes an increasingly popular method for the analysis of structural properties of ribonucleoprotein complexes. This article describes a simple chemical modification-derivatization strategy used to introduce selected chemical groups at specific internal positions within the RNA ribose backbone. The strategy is based on the coupling of a haloacetyl adduct to a thiol residue in the phosphodiester bond. The use of a number of RNA probes derivatized with several different photoreactive groups can provide invaluable information on the structural distribution of components in complex ribonucleoprotein assemblies.
Collapse
Affiliation(s)
- M M Konarska
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
10
|
Reyes JL, Gustafson EH, Luo HR, Moore MJ, Konarska MM. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5' splice site. RNA (NEW YORK, N.Y.) 1999; 5:167-79. [PMID: 10024169 PMCID: PMC1369749 DOI: 10.1017/s1355838299981785] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A U5 snRNP protein, hPrp8, forms a UV-induced crosslink with the 5' splice site (5'SS) RNA within splicing complex B assembled in trans- as well as in cis-splicing reactions. Both yeast and human Prp8 interact with the 5'SS, branch site, polypyrimidine tract, and 3'SS during splicing. To begin to define functional domains in Prp8 we have mapped the site of the 5'SS crosslink within the hPrp8 protein. Immunoprecipitation analysis limited the site of crosslink to the C-terminal 5060-kDa segment of hPrp8. In addition, size comparison of the crosslink-containing peptides generated with different proteolytic reagents with the pattern of fragments predicted from the hPrp8 sequence allowed for mapping of the crosslink to a stretch of five amino acids in the C-terminal portion of hPrp8 (positions 1894-1898). The site of the 5'SS:hPrp8 crosslink falls within a segment spanning the previously defined polypyrimidine tract recognition domain in yPrp8, suggesting that an overlapping region of Prp8 may be involved both in the 5'SS and polypyrimidine tract recognition events. In the context of other known interactions of Prp8, these results suggest that this protein may participate in formation of the catalytic center of the spliceosome.
Collapse
Affiliation(s)
- J L Reyes
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
The pre-mRNA 5' splice site is recognized by the ACAGA box of U6 spliceosomal RNA prior to catalysis of splicing. We previously identified a mutant U4 spliceosomal RNA, U4-cs1, that masks the ACAGA box in the U4/U6 complex, thus conferring a cold-sensitive splicing phenotype in vivo. Here, we show that U4-cs1 blocks in vitro splicing in a temperature-dependent, reversible manner. Analysis of splicing complexes that accumulate at low temperature shows that U4-cs1 prevents U4/U6 unwinding, an essential step in spliceosome activation. A novel mutation in the evolutionarily conserved U5 snRNP protein Prp8 suppresses the U4-cs1 growth defect. We propose that wild-type Prp8 triggers unwinding of U4 and U6 RNAs only after structurally correct recognition of the 5' splice site by the U6 ACAGA box and that the mutation (prp8-201) relaxes control of unwinding.
Collapse
Affiliation(s)
- A N Kuhn
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706, USA
| | | | | |
Collapse
|