1
|
Tang F, Hummitzsch K, Rodgers RJ. RNAseq analysis of oocyte maturation from the germinal vesicle stage to metaphase II in pig and human. PLoS One 2024; 19:e0305893. [PMID: 39121087 PMCID: PMC11315340 DOI: 10.1371/journal.pone.0305893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/06/2024] [Indexed: 08/11/2024] Open
Abstract
During maturation oocytes at the germinal vesicle (GV) stage progress to metaphase II (MII). However, during in vitro maturation a proportion often fail to progress. To understand these processes, we employed RNA sequencing to examine the transcriptome profile of these three groups of oocytes from the pig. We compared our findings with similar public oocyte data from humans. The transcriptomes in oocytes that failed to progress was similar to those that did. We found in both species, the most upregulated genes in MII oocytes were associated with chromosome segregation and cell cycle processes, while the most down regulated genes were relevant to ribosomal and mitochondrial pathways. Moreover, those genes involved in chromosome segregation during GV to MII transition were conserved in pig and human. We also compared MII and GV oocyte transcriptomes at the isoform transcript level in both species. Several thousands of genes (including DTNBP1, MAPK1, RAB35, GOLGA7, ATP1A1 and ATP2B1) identified as not different in expression at a gene transcript level were found to have differences in isoform transcript levels. Many of these genes were involved in ATPase-dependent or GTPase-dependent intracellular transport in pig and human, respectively. In conclusion, our study suggests the failure to progress to MII in vitro may not be regulated at the level of the genome and that many genes are differentially regulated at the isoform level, particular those involved ATPase- or GTPase-dependent intracellular transport.
Collapse
Affiliation(s)
- Feng Tang
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Raymond J. Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Zhan X, Lu Y, Shi Y. Molecular basis for the activation of human spliceosome. Nat Commun 2024; 15:6348. [PMID: 39068178 PMCID: PMC11283556 DOI: 10.1038/s41467-024-50785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
The spliceosome executes pre-mRNA splicing through four sequential stages: assembly, activation, catalysis, and disassembly. Activation of the spliceosome, namely remodeling of the pre-catalytic spliceosome (B complex) into the activated spliceosome (Bact complex) and the catalytically activated spliceosome (B* complex), involves major flux of protein components and structural rearrangements. Relying on a splicing inhibitor, we have captured six intermediate states between the B and B* complexes: pre-Bact, Bact-I, Bact-II, Bact-III, Bact-IV, and post-Bact. Their cryo-EM structures, together with an improved structure of the catalytic step I spliceosome (C complex), reveal how the catalytic center matures around the internal stem loop of U6 snRNA, how the branch site approaches 5'-splice site, how the RNA helicase PRP2 rearranges to bind pre-mRNA, and how U2 snRNP undergoes remarkable movement to facilitate activation. We identify a previously unrecognized key role of PRP2 in spliceosome activation. Our study recapitulates a molecular choreography of the human spliceosome during its catalytic activation.
Collapse
Affiliation(s)
- Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Yigong Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Shao DJ, Wei YM, Yu ZQ, Dai X, Gao XQ. Arabidopsis AtPRP17 functions in embryo development by regulating embryonic patterning. PLANTA 2021; 254:58. [PMID: 34426887 DOI: 10.1007/s00425-021-03702-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis AtPRP17, a homolog of yeast splicing factor gene PRP17, is expressed in siliques and embryos and functions in embryo development via regulating embryonic patterning. Yeast splicing factor PRP17/CDC40 is essential for cell growth through involvement in cell cycle regulation. Arabidopsis genome encodes a homolog of PRP17, AtPRP17; however, its function in Arabidopsis development is unknown. This study showed that AtPRP17 was highly expressed in siliques and embryos, and the protein was localized in the nucleus. The loss-of-function mutation of AtPRP17 led to shrunken seeds in Arabidopsis mature siliques. Further analysis revealed that the defective mature seeds of the mutant resulted from abnormal embryos with shriveled cotyledons, unequal cotyledons, swollen and shortened hypocotyls, or shortened radicles. During embryogenesis, mutant embryos showed delayed development and defective patterning of the apical and base domains, such as inhibited cotyledons and disorganized quiescent center cells and columella. Our results suggested that AtPRP17 functions in Arabidopsis embryo development via regulating embryonic patterning.
Collapse
Affiliation(s)
- Dong Jie Shao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yi Ming Wei
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Zhong Qing Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
4
|
Petasny M, Bentata M, Pawellek A, Baker M, Kay G, Salton M. Splicing to Keep Cycling: The Importance of Pre-mRNA Splicing during the Cell Cycle. Trends Genet 2020; 37:266-278. [PMID: 32950269 DOI: 10.1016/j.tig.2020.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing is a fundamental process in mammalian gene expression, and alternative splicing plays an extensive role in generating protein diversity. Because the majority of genes undergo pre-mRNA splicing, most cellular processes depend on proper spliceosome function. We focus on the cell cycle and describe its dependence on pre-mRNA splicing and accurate alternative splicing. We outline the key cell-cycle factors and their known alternative splicing isoforms. We discuss different levels of pre-mRNA splicing regulation such as post-translational modifications and changes in the expression of splicing factors. We describe the effect of chromatin dynamics on pre-mRNA splicing during the cell cycle. In addition, we focus on spliceosome component SF3B1, which is mutated in many types of cancer, and describe the link between SF3B1 and its inhibitors and the cell cycle.
Collapse
Affiliation(s)
- Mayra Petasny
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
5
|
Kim S, Park J, Kim T, Lee JS. The functional study of human proteins using humanized yeast. J Microbiol 2020; 58:343-349. [PMID: 32342338 DOI: 10.1007/s12275-020-0136-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
The functional and optimal expression of genes is crucial for survival of all living organisms. Numerous experiments and efforts have been performed to reveal the mechanisms required for the functional and optimal expression of human genes. The yeast Saccharomyces cerevisiae has evolved independently of humans for billions of years. Nevertheless, S. cerevisiae has many conserved genes and expression mechanisms that are similar to those in humans. Yeast is the most commonly used model organism for studying the function and expression mechanisms of human genes because it has a relatively simple genome structure, which is easy to manipulate. Many previous studies have focused on understanding the functions and mechanisms of human proteins using orthologous genes and biological systems of yeast. In this review, we mainly introduce two recent studies that replaced human genes and nucleosomes with those of yeast. Here, we suggest that, although yeast is a relatively small eukaryotic cell, its humanization is useful for the direct study of human proteins. In addition, yeast can be used as a model organism in a broader range of studies, including drug screening.
Collapse
Affiliation(s)
- Seho Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Juhee Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Taekyung Kim
- Department of Biology Education, Pusan National University, Busan, 26241, Republic of Korea.
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Vanzyl EJ, Rick KRC, Blackmore AB, MacFarlane EM, McKay BC. Flow cytometric analysis identifies changes in S and M phases as novel cell cycle alterations induced by the splicing inhibitor isoginkgetin. PLoS One 2018; 13:e0191178. [PMID: 29338026 PMCID: PMC5770052 DOI: 10.1371/journal.pone.0191178] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/31/2017] [Indexed: 11/19/2022] Open
Abstract
The spliceosome is a large ribonucleoprotein complex that catalyzes the removal of introns from RNA polymerase II-transcribed RNAs. Spliceosome assembly occurs in a stepwise manner through specific intermediates referred to as pre-spliceosome complexes E, A, B, B* and C. It has been reported that small molecule inhibitors of the spliceosome that target the SF3B1 protein component of complex A lead to the accumulation of cells in the G1 and G2/M phases of the cell cycle. Here we performed a comprehensive flow cytometry analysis of the effects of isoginkgetin (IGG), a natural compound that interferes with spliceosome assembly at a later step, complex B formation. We found that IGG slowed cell cycle progression in multiple phases of the cell cycle (G1, S and G2) but not M phase. This pattern was somewhat similar to but distinguishable from changes associated with an SF3B1 inhibitor, pladienolide B (PB). Both drugs led to a significant decrease in nascent DNA synthesis in S phase, indicative of an S phase arrest. However, IGG led to a much more prominent S phase arrest than PB while PB exhibited a more pronounced G1 arrest that decreased the proportion of cells in S phase as well. We also found that both drugs led to a comparable decrease in the proportion of cells in M phase. This work indicates that spliceosome inhibitors affect multiple phases of the cell cycle and that some of these effects vary in an agent-specific manner despite the fact that they target splicing at similar stages of spliceosome assembly.
Collapse
Affiliation(s)
- Erin J. Vanzyl
- Department of Biology, Carleton University, Ottawa ON, Canada
| | | | | | | | - Bruce C. McKay
- Department of Biology, Carleton University, Ottawa ON, Canada
- Institute for Biochemistry, Carleton University, Ottawa ON, Canada
- * E-mail:
| |
Collapse
|
7
|
Friedenberg SG, Meurs KM, Mackay TFC. Evaluation of artificial selection in Standard Poodles using whole-genome sequencing. Mamm Genome 2016; 27:599-609. [PMID: 27510710 DOI: 10.1007/s00335-016-9660-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
Identifying regions of artificial selection within dog breeds may provide insights into genetic variation that underlies breed-specific traits or diseases-particularly if these traits or disease predispositions are fixed within a breed. In this study, we searched for runs of homozygosity (ROH) and calculated the d i statistic (which is based upon F ST) to identify regions of artificial selection in Standard Poodles using high-coverage, whole-genome sequencing data of 15 Standard Poodles and 49 dogs across seven other breeds. We identified consensus ROH regions ≥1 Mb in length and common to at least ten Standard Poodles covering 0.6 % of the genome, and d i regions that most distinguish Standard Poodles from other breeds covering 3.7 % of the genome. Within these regions, we identified enriched gene pathways related to olfaction, digestion, and taste, as well as pathways related to adrenal hormone biosynthesis, T cell function, and protein ubiquitination that could contribute to the pathogenesis of some Poodle-prevalent autoimmune diseases. We also validated variants related to hair coat and skull morphology that have previously been identified as being under selective pressure in Poodles, and flagged additional polymorphisms in genes such as ITGA2B, CBX4, and TNXB that may represent strong candidates for other common Poodle disorders.
Collapse
Affiliation(s)
- Steven G Friedenberg
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.
| | - Kathryn M Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, College of Sciences, North Carolina State University, 3510 Thomas Hall, Raleigh, NC, 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
8
|
Kong XX, Lv YR, Shao LP, Nong XY, Zhang GL, Zhang Y, Fan HX, Liu M, Li X, Tang H. HBx-induced MiR-1269b in NF-κB dependent manner upregulates cell division cycle 40 homolog (CDC40) to promote proliferation and migration in hepatoma cells. J Transl Med 2016; 14:189. [PMID: 27349221 PMCID: PMC4924318 DOI: 10.1186/s12967-016-0949-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Occurrence and progression of hepatocellular carcinoma (HCC) are associated with hepatitis B virus (HBV) infection. miR-1269b is up-regulated in HCC cells and tissues. However, the regulation of miR-1269b expression by HBV and the mechanism underlying the oncogenic activity of miR-1269b in HCC are unclear. METHODS Reverse transcription quantitative PCR (RT-qPCR) was used to measure the expression of miR-1269b and target genes in HCC tissues and cell lines. Western blot analysis was used to assess the expression of miR-1269b target genes and related proteins. Using luciferase reporter assays and EMSA, we identified the factors regulating the transcriptional level of miR-1269b. Colony formation, flow cytometry and cell migration assays were performed to evaluate the phenotypic changes caused by miR-1269b and its target in HCC cells. RESULTS We demonstrated that the expression levels of pre-miR-1269b and miR-1269b in HBV-positive HepG2.2.15 cells were dramatically increased compared with HBV-negative HepG2 cells. HBx was shown to facilitate translocation of NF-κB from the cytoplasm to the nucleus, and NF-κB binds to the promoter of miR-1269b to enhance its transcription. miR-1269b targets and up-regulates CDC40, a cell division cycle 40 homolog. CDC40 increases cell cycle progression, cell proliferation and migration. Rescue experiment indicated that CDC40 promotes malignancy induced by miR-1269b in HCC cells. CONCLUSION We found that HBx activates NF-κB to promote the expression of miR1269b, which augments CDC40 expression, contributing to malignancy in HCC. Our findings provide insights into the mechanisms underlying HBV-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xiao-Xiao Kong
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Yan-Ru Lv
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China.,The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li-Ping Shao
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Xiang-Yang Nong
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China.,The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guang-Ling Zhang
- Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan City, Hebei Province, China
| | - Yi Zhang
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Hong-Xia Fan
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Min Liu
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Xin Li
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China.
| |
Collapse
|
9
|
Wang KY, Ma J, Zhang FX, Yu MJ, Xue JS, Zhao JS. MicroRNA-378 inhibits cell growth and enhances L-OHP-induced apoptosis in human colorectal cancer. IUBMB Life 2015; 66:645-54. [PMID: 25328987 DOI: 10.1002/iub.1317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that participate in a variety of biological processes, and dysregulation of miRNAs is widely associated with cancer development and progression. MiR-378 is frequently downregulated in colorectal cancer (CRC) and colorectal cell lines; however, it has high serum levels. Bioinformatics analysis further deduced that CDC40 is a potential target of miR-378, and luciferase reporter assays confirmed the direct regulation of CDC40 by miR-378. CDC40 plays a key role in cell cycle progression through G1/S and G2/M and pre-mRNA splicing. Subsequently, we determined that miR-378 inhibits cell growth and the G1/S transition in CRC cells and that these effects were CDC40-dependent. Finally, miR-378 increased cell apoptosis induced by the chemotherapeutic drug L-OHP. Our data highlight the potential application of miR-378 as a tumor suppressor for CRC therapy and overcoming chemoresistance, and it may also be a potential tumor marker for CRC prognosis.
Collapse
Affiliation(s)
- Kai-Yu Wang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China; Department of General Surgery, Affiliated Hospital of Beihua University, Jilin, China
| | | | | | | | | | | |
Collapse
|
10
|
Kim S, Park T, Kon M. Cancer survival classification using integrated data sets and intermediate information. Artif Intell Med 2014; 62:23-31. [DOI: 10.1016/j.artmed.2014.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 12/11/2022]
|
11
|
Hamperl S, Cimprich KA. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 2014; 19:84-94. [PMID: 24746923 PMCID: PMC4051866 DOI: 10.1016/j.dnarep.2014.03.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell.
Collapse
Affiliation(s)
- Stephan Hamperl
- Department of Chemical, Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Karlene A Cimprich
- Department of Chemical, Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| |
Collapse
|
12
|
Ren L, McLean JR, Hazbun TR, Fields S, Vander Kooi C, Ohi MD, Gould KL. Systematic two-hybrid and comparative proteomic analyses reveal novel yeast pre-mRNA splicing factors connected to Prp19. PLoS One 2011; 6:e16719. [PMID: 21386897 PMCID: PMC3046128 DOI: 10.1371/journal.pone.0016719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/23/2010] [Indexed: 11/19/2022] Open
Abstract
Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1:1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold.
Collapse
Affiliation(s)
- Liping Ren
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Janel R. McLean
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tony R. Hazbun
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Stanley Fields
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Craig Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kathleen L. Gould
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Hofmann JC, Husedzinovic A, Gruss OJ. The function of spliceosome components in open mitosis. Nucleus 2010; 1:447-59. [PMID: 21327086 DOI: 10.4161/nucl.1.6.13328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022] Open
Abstract
Spatial separation of eukaryotic cells into the nuclear and cytoplasmic compartment permits uncoupling of DNA transcription from translation of mRNAs and allows cells to modify newly transcribed pre mRNAs extensively. Intronic sequences (introns), which interrupt the coding elements (exons), are excised ("spliced") from pre-mRNAs in the nucleus to yield mature mRNAs. This not only enables alternative splicing as an important source of proteome diversity, but splicing is also an essential process in all eukaryotes and knock-out or knock-down of splicing factors frequently results in defective cell proliferation and cell division. However, higher eukaryotes progress through cell division only after breakdown of the nucleus ("open mitosis"). Open mitosis suppresses basic nuclear functions such as transcription and splicing, but allows separate, mitotic functions of nuclear proteins in cell division. Mitotic defects arising after loss-of-function of splicing proteins therefore could be an indirect consequence of compromised splicing in the closed nucleus of the preceding interphase or reflect a direct contribution of splicing proteins to open mitosis. Although experiments to directly distinguish between these two alternatives have not been reported, indirect evidence exists for either hypotheses. In this review, we survey published data supporting an indirect function of splicing in open mitosis or arguing for a direct function of spliceosomal proteins in cell division.
Collapse
|
14
|
Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE, Meyer T, Cimprich KA. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell 2009; 35:228-39. [PMID: 19647519 DOI: 10.1016/j.molcel.2009.06.021] [Citation(s) in RCA: 421] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/21/2009] [Accepted: 06/26/2009] [Indexed: 12/26/2022]
Abstract
Signaling pathways that respond to DNA damage are essential for the maintenance of genome stability and are linked to many diseases, including cancer. Here, a genome-wide siRNA screen was employed to identify additional genes involved in genome stabilization by monitoring phosphorylation of the histone variant H2AX, an early mark of DNA damage. We identified hundreds of genes whose downregulation led to elevated levels of H2AX phosphorylation (gammaH2AX) and revealed links to cellular complexes and to genes with unclassified functions. We demonstrate a widespread role for mRNA-processing factors in preventing DNA damage, which in some cases is caused by aberrant RNA-DNA structures. Furthermore, we connect increased gammaH2AX levels to the neurological disorder Charcot-Marie-Tooth (CMT) syndrome, and we find a role for several CMT proteins in the DNA-damage response. These data indicate that preservation of genome stability is mediated by a larger network of biological processes than previously appreciated.
Collapse
Affiliation(s)
- Renee D Paulsen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Deckert J, Hartmuth K, Boehringer D, Behzadnia N, Will CL, Kastner B, Stark H, Urlaub H, Lührmann R. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol 2006; 26:5528-43. [PMID: 16809785 PMCID: PMC1592722 DOI: 10.1128/mcb.00582-06] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spliceosomal B complex is the substrate that undergoes catalytic activation leading to catalysis of pre-mRNA splicing. Previous characterization of this complex was performed in the presence of heparin, which dissociates less stably associated components. To obtain a more comprehensive inventory of the B complex proteome, we isolated this complex under low-stringency conditions using two independent methods. MS2 affinity-selected B complexes supported splicing when incubated in nuclear extract depleted of snRNPs. Mass spectrometry identified over 110 proteins in both independently purified B complex preparations, including approximately 50 non-snRNP proteins not previously found in the spliceosomal A complex. Unexpectedly, the heteromeric hPrp19/CDC5 complex and 10 additional hPrp19/CDC5-related proteins were detected, indicating that they are recruited prior to spliceosome activation. Electron microscopy studies revealed that MS2 affinity-selected B complexes exhibit a rhombic shape with a maximum dimension of 420 A and are structurally more homogeneous than B complexes treated with heparin. These data provide novel insights into the composition and structure of the spliceosome just prior to its catalytic activation and suggest a potential role in activation for proteins recruited at this stage. Furthermore, the spliceosomal complexes isolated here are well suited for complementation studies with purified proteins to dissect factor requirements for spliceosome activation and splicing catalysis.
Collapse
Affiliation(s)
- Jochen Deckert
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rasheva VI, Knight D, Bozko P, Marsh K, Frolov MV. Specific role of the SR protein splicing factor B52 in cell cycle control in Drosophila. Mol Cell Biol 2006; 26:3468-77. [PMID: 16611989 PMCID: PMC1447424 DOI: 10.1128/mcb.26.9.3468-3477.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E2F and retinoblastoma tumor suppressor protein pRB are important regulators of cell proliferation; however, the regulation of these proteins in vivo is not well understood. In Drosophila there are two E2F genes, an activator, de2f1, and a repressor, de2f2. The loss of de2f1 gives rise to the G(1)/S block accompanied by the repression of E2F-dependent transcription. These defects can be suppressed by mutation of de2f2. In this work, we show that the de2f1 mutant phenotype is rescued by the loss of the pre-mRNA splicing factor SR protein B52. Mutations in B52 restore S phase in clones of de2f1 mutant cells and phenocopy the loss of the de2f2 function. B52 acts upstream of de2f2 and plays a specific role in regulation of de2f2 pre-mRNA splicing. In B52-deficient cells, the level of dE2F2 protein is severely reduced and the expression of dE2F2-dependent genes is deregulated. Reexpression of the intronless copy of dE2F2 in B52-deficient cells restores the dE2F2-mediated repression. These results uncover a previously unrecognized role of the splicing factor in maintaining the G(1)/S block in vivo by specific regulation of the dE2F2 repressor function.
Collapse
Affiliation(s)
- Vanya I Rasheva
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 2352, MC 669, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
17
|
Cazalla D, Newton K, Cáceres JF. A novel SR-related protein is required for the second step of Pre-mRNA splicing. Mol Cell Biol 2005; 25:2969-80. [PMID: 15798186 PMCID: PMC1069619 DOI: 10.1128/mcb.25.8.2969-2980.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The SR family proteins and SR-related polypeptides are important regulators of pre-mRNA splicing. A novel SR-related protein of an apparent molecular mass of 53 kDa was isolated in a gene trap screen that identifies proteins which localize to the nuclear speckles. This novel protein possesses an arginine- and serine-rich domain and was termed SRrp53 (for SR-related protein of 53 kDa). In support for a role of this novel RS-containing protein in pre-mRNA splicing, we identified the mouse ortholog of the Saccharomyces cerevisiae U1 snRNP-specific protein Luc7p and the U2AF65-related factor HCC1 as interacting proteins. In addition, SRrp53 is able to interact with some members of the SR family of proteins and with U2AF35 in a yeast two-hybrid system and in cell extracts. We show that in HeLa nuclear extracts immunodepleted of SRrp53, the second step of pre-mRNA splicing is blocked, and recombinant SRrp53 is able to restore splicing activity. SRrp53 also regulates alternative splicing in a concentration-dependent manner. Taken together, these results suggest that SRrp53 is a novel SR-related protein that has a role both in constitutive and in alternative splicing.
Collapse
Affiliation(s)
- Demian Cazalla
- MRC Human Genetics Unit, Western General Hospital, Crewe Rd., Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | |
Collapse
|
18
|
Coghlan A, Wolfe KH. Origins of recently gained introns in Caenorhabditis. Proc Natl Acad Sci U S A 2004; 101:11362-7. [PMID: 15243155 PMCID: PMC509176 DOI: 10.1073/pnas.0308192101] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Indexed: 11/18/2022] Open
Abstract
The genomes of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae both contain approximately 100,000 introns, of which >6,000 are unique to one or the other species. To study the origins of new introns, we used a conservative method involving phylogenetic comparisons to animal orthologs and nematode paralogs to identify cases where an intron content difference between C. elegans and C. briggsae was caused by intron insertion rather than deletion. We identified 81 recently gained introns in C. elegans and 41 in C. briggsae. Novel introns have a stronger exon splice site consensus sequence than the general population of introns and show the same preference for phase 0 sites in codons over phases 1 and 2. More of the novel introns are inserted in genes that are expressed in the C. elegans germ line than expected by chance. Thirteen of the 122 gained introns are in genes whose protein products function in premRNA processing, including three gains in the gene for spliceosomal protein SF3B1 and two in the nonsense-mediated decay gene smg-2. Twenty-eight novel introns have significant DNA sequence identity to other introns, including three that are similar to other introns in the same gene. All of these similarities involve minisatellites or palindromes in the intron sequences. Our results suggest that at least some of the intron gains were caused by reverse splicing of a preexisting intron.
Collapse
Affiliation(s)
- Avril Coghlan
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
19
|
Dahan O, Kupiec M. The Saccharomyces cerevisiae gene CDC40/PRP17 controls cell cycle progression through splicing of the ANC1 gene. Nucleic Acids Res 2004; 32:2529-40. [PMID: 15133121 PMCID: PMC419462 DOI: 10.1093/nar/gkh574] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The timing of events in the cell cycle is of crucial importance, as any error can lead to cell death or cancerous growth. This accurate timing is accomplished through the activation of specific CDC genes. Mutations in the CDC40/PRP17 gene cause cell cycle arrest at the G2/M stage. It was previously found that the CDC40 gene encodes a pre-mRNA splicing factor, which participates in the second step of the splicing reaction. In this paper we dissect the mechanism by which pre-mRNA splicing affects cell cycle progression. We identify ANC1 as the target of CDC40 regulation. Deletion of the ANC1 intron relieves the cell cycle arrest and temperature sensitivity of cdc40 mutants. Furthermore, we identify, through point mutation analysis, specific residues in the ANC1 intron that are important for its splicing dependency on Cdc40p. Our results demonstrate a novel mechanism of cell cycle regulation that relies on the differential splicing of a subset of introns by specific splicing factors.
Collapse
Affiliation(s)
- Orna Dahan
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
20
|
Dahan O, Kupiec M. Mutations in genes of Saccharomyces cerevisiae encoding pre-mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint. Nucleic Acids Res 2002; 30:4361-70. [PMID: 12384582 PMCID: PMC137127 DOI: 10.1093/nar/gkf563] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous work has identified a group of genes whose products play important roles in two seemingly unrelated processes: cell cycle progression and splicing. The products of these genes show a network of physical and genetic interactions suggestive of the existence of a protein complex, the cell cycle and splicing complex (CSC). Here we analyze the genetic interactions between ISY1, SYF2 and NTC20, three non-essential components of the CSC. We show that mutations in ISY1 cause lethality in the absence of Ntc20p, and that the double mutant isy1Delta syf2Delta shows a temperature-dependent cell cycle arrest. This arrest is due to lower levels of alpha-tubulin, a protein encoded by TUB1 and TUB3, two intron-containing genes. We show that the low levels of alpha-tubulin in isy1Delta syf2Delta trigger activation of the spindle checkpoint, causing cell cycle arrest. Thus, our results have uncovered an unexpected role for pre-mRNA splicing in the maintenance of the fidelity of chromosome transmission during cell division.
Collapse
Affiliation(s)
- Orna Dahan
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
21
|
Shomron N, Malca H, Vig I, Ast G. Reversible inhibition of the second step of splicing suggests a possible role of zinc in the second step of splicing. Nucleic Acids Res 2002; 30:4127-37. [PMID: 12364591 PMCID: PMC140552 DOI: 10.1093/nar/gkf553] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A multicomponent complex of proteins and RNA is assembled on the newly synthesized pre-mRNA to form the spliceosome. This complex catalyzes a two-step transesterification reaction required to remove the introns and ligate the exons. To date, only six proteins have been found necessary for the second step of splicing in yeast, and their human homologs have been identified. We demonstrate that the addition of the selective chelator of zinc, 1,10-phenanthroline, to an in vitro mRNA splicing reaction causes a dose-dependent inhibition of the second step of splicing. This inhibition is accompanied by the accumulation of spliceosomes paused before completion of step two of the splicing reaction. The inhibition effect on the second step is due neither to snRNA degradation nor to direct binding to the mRNA, and is reversible by dialysis or add-back of zinc, but not of other divalent metals, at the beginning of the reaction. These findings suggest that the activity of a putative zinc-dependent metalloprotein(s) involved in the second step of splicing is affected. This study outlines a new method for specific reversible inhibition of the second step of splicing using external reagents, and suggests a possible role of divalent cations in the second step of mRNA splicing, most likely zinc.
Collapse
Affiliation(s)
- Noam Shomron
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | | | | | |
Collapse
|
22
|
Ohi MD, Gould KL. Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA (NEW YORK, N.Y.) 2002; 8:798-815. [PMID: 12088152 PMCID: PMC1370298 DOI: 10.1017/s1355838202025050] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Schizosaccharomyces pombe (Sp) Cdc5p and its Saccharomyces cerevisiae (Sc) ortholog, Cef1p, are essential components of the spliceosome. In S. cerevisiae, a subcomplex of the spliceosome that includes Cef1p can be isolated on its own; this has been termed the nineteen complex (Ntc) because it contains Prp19p. Components of the Ntc include Cef1p, Snt309p, Syf2p/Ntc31p, Ntc30p/lsy1p, Ntc20p and at least six unidentified proteins. We recently identified approximately 30 proteins that copurified with Cdc5p and Cef1p. Previously unidentified S. pombe proteins in this purification were called Cwfs for complexed with five and novel S. cerevisiae proteins were called Cwcs for complexed with Cef1p. Using these proteomics data coupled with available information regarding Ntc composition, we have investigated protein identities and interactions among Ntc components. Our data indicate that Cwc2p, Prp46p, Clf1p, and Syf1p most likely represent Ntc40p, Ntc50p, Ntc77p, and Ntc90p, respectively. We show that Sc Cwc2p interacts with Prp19p and is involved in pre-mRNA splicing. Sp cwf2+, the homolog of Sc CWC2, is allelic with the previously identified Sp prp3+. We present evidence that Sp Cwf7p, an essential protein with obvious homologs in many eukaryotes but not S. cerevisiae, is a functional counterpart of Sc Snt309p and binds Sp Cwf8p (a homolog of Sc Prp19p). Further, our data indicate that a mutation in the U-box of Prp19p disrupts these numerous protein interactions causing Cef1p degradation and Ntc instability.
Collapse
Affiliation(s)
- Melanie D Ohi
- Howard Hughes Medical Institute and Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
23
|
Ohi MD, Link AJ, Ren L, Jennings JL, McDonald WH, Gould KL. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol Cell Biol 2002; 22:2011-24. [PMID: 11884590 PMCID: PMC133674 DOI: 10.1128/mcb.22.7.2011-2024.2002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 09/19/2001] [Accepted: 12/20/2001] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe Cdc5p and its Saccharomyces cerevisiae ortholog, Cef1p, are essential Myb-related proteins implicated in pre-mRNA splicing and contained within large multiprotein complexes. Here we describe the tandem affinity purification (TAP) of Cdc5p- and Cef1p-associated complexes. Using transmission electron microscopy, we show that the purified Cdc5p complex is a discrete structure. The components of the S. pombe Cdc5p/S. cerevisiae Cef1p complexes (termed Cwfs or Cwcs, respectively) were identified using direct analysis of large protein complex (DALPC) mass spectrometry (A. J. Link et al., Nat. Biotechnol. 17:676-682, 1999). At least 26 proteins were detected in the Cdc5p/Cef1p complexes. Comparison of the polypeptides identified by S. pombe Cdc5p purification with those identified by S. cerevisiae Cef1p purification indicates that these two yeast complexes are nearly identical in composition. The majority of S. pombe Cwf proteins and S. cerevisiae Cwc proteins are known pre-mRNA splicing factors including core Sm and U2 and U5 snRNP components. In addition, the complex contains the U2, U5, and U6 snRNAs. Previously uncharacterized proteins were also identified, and we provide evidence that several of these novel factors are involved in pre-mRNA splicing. Our data represent the first comprehensive analysis of CDC5-associated proteins in yeasts, describe a discrete highly conserved complex containing novel pre-mRNA splicing factors, and demonstrate the power of DALPC for identification of components in multiprotein complexes.
Collapse
Affiliation(s)
- Melanie D Ohi
- Howard Hughes Medical Institute. Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
24
|
Rodríguez-Navarro S, Igual JC, Pérez-Ortín JE. SRC1: an intron-containing yeast gene involved in sister chromatid segregation. Yeast 2002; 19:43-54. [PMID: 11754482 DOI: 10.1002/yea.803] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Analysis of a three-member gene family in the yeast Saccharomyces cerevisiae has allowed the discovery of a new gene that comprises two contiguous open reading frames previously annotated as YML034w and YML033w. The gene contains a small intron with two alternative 5' splicing sites. It is specifically transcribed during G(2)/M in the cell cycle and after several hours of meiosis induction. Splicing of the mRNA is partially dependent on NAM8 but does not vary during meiosis or the cell cycle. Deletion of the gene induces a shortening of the anaphase and aggravates the phenotype of scc1 and esp1 conditional mutants, which suggests a direct role of the protein in sister chromatid separation.
Collapse
Affiliation(s)
- Susana Rodríguez-Navarro
- Departamento de Bioquímica y Biología Molecular, Universitat de València, C/ Dr. Moliner 50, E-46100 Burjassot, Spain
| | | | | |
Collapse
|
25
|
Dagher SF, Fu XD. Evidence for a role of Sky1p-mediated phosphorylation in 3' splice site recognition involving both Prp8 and Prp17/Slu4. RNA (NEW YORK, N.Y.) 2001; 7:1284-97. [PMID: 11565750 PMCID: PMC1370172 DOI: 10.1017/s1355838201016077] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The SRPK family of kinases is specific for RS domain-containing splicing factors and known to play a critical role in protein-protein interaction and intracellular distribution of their substrates in both yeast and mammalian cells. However, the function of these kinases in pre-mRNA splicing remains unclear. Here we report that SKY1, a SRPK family member in Saccharomyces cerevisiae, genetically interacts with PRP8 and PRP17/SLU4, both of which are involved in splice site selection during pre-mRNA splicing. Prp8 is essential for splicing and is known to interact with both 5' and 3' splice sites in the spliceosomal catalytic center, whereas Prp17/Slu4 is nonessential and is required only for efficient recognition of the 3' splice site. Interestingly, deletion of SKY1 was synthetically lethal with all prp17 mutants tested, but only with specific prp8 alleles in a domain implicated in governing fidelity of 3'AG recognition. Indeed, deletion of SKY1 specifically suppressed 3'AG mutations in ACT1-CUP1 splicing reporters. These results suggest for the first time that 3' AG recognition may be subject to phosphorylation regulation by Sky1p during pre-mRNA splicing.
Collapse
Affiliation(s)
- S F Dagher
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla 92093-0651, USA
| | | |
Collapse
|
26
|
Ben-Yehuda S, Dix I, Russell CS, McGarvey M, Beggs JD, Kupiec M. Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae. Genetics 2000; 156:1503-17. [PMID: 11102353 PMCID: PMC1461362 DOI: 10.1093/genetics/156.4.1503] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The PRP17/CDC40 gene of Saccharomyces cerevisiae functions in two different cellular processes: pre-mRNA splicing and cell cycle progression. The Prp17/Cdc40 protein participates in the second step of the splicing reaction and, in addition, prp17/cdc40 mutant cells held at the restrictive temperature arrest in the G2 phase of the cell cycle. Here we describe the identification of nine genes that, when mutated, show synthetic lethality with the prp17/cdc40Delta allele. Six of these encode known splicing factors: Prp8p, Slu7p, Prp16p, Prp22p, Slt11p, and U2 snRNA. The other three, SYF1, SYF2, and SYF3, represent genes also involved in cell cycle progression and in pre-mRNA splicing. Syf1p and Syf3p are highly conserved proteins containing several copies of a repeated motif, which we term RTPR. This newly defined motif is shared by proteins involved in RNA processing and represents a subfamily of the known TPR (tetratricopeptide repeat) motif. Using two-hybrid interaction screens and biochemical analysis, we show that the SYF gene products interact with each other and with four other proteins: Isy1p, Cef1p, Prp22p, and Ntc20p. We discuss the role played by these proteins in splicing and cell cycle progression.
Collapse
Affiliation(s)
- S Ben-Yehuda
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Russell CS, Ben-Yehuda S, Dix I, Kupiec M, Beggs JD. Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2000; 6:1565-72. [PMID: 11105756 PMCID: PMC1370026 DOI: 10.1017/s1355838200000984] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Through a genetic screen to search for factors that interact with Prp17/Cdc40p, a protein involved in both cell cycle progression and pre-mRNA splicing, we identify three novel factors, which we call Syf1p, Syf2p, and Syf3 (SYnthetic lethal with cdc Forty). Here we present evidence that all three proteins are spliceosome associated, that they associate weakly or transiently with U6 and U5 snRNAs, and that Syf1p and Syf3p (also known as Clf1p) are required for pre-mRNA splicing. In addition we show that depletion of Syf1p or Syf3p results in cell cycle arrest at the G2/M transition. Thus, like Prp17/Cdc40p, Syf1p and Syf3p are involved in two distinct cellular processes. We discuss the likelihood that Syf1p, Syf2p, and Syf3p are components of a protein complex that assembles into spliceosomes and also regulates cell cycle progression.
Collapse
Affiliation(s)
- C S Russell
- The Wellcome Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | | | |
Collapse
|
28
|
Lukowiak AA, Granneman S, Mattox SA, Speckmann WA, Jones K, Pluk H, Venrooij WJ, Terns RM, Terns MP. Interaction of the U3-55k protein with U3 snoRNA is mediated by the box B/C motif of U3 and the WD repeats of U3-55k. Nucleic Acids Res 2000; 28:3462-71. [PMID: 10982864 PMCID: PMC110750 DOI: 10.1093/nar/28.18.3462] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
U3 small nucleolar RNA (snoRNA) is a member of the Box C/D family of snoRNAs which functions in ribosomal RNA processing. U3-55k is a protein that has been found to interact with U3 but not other members of the Box C/D snoRNA family. We have found that interaction of the U3-55k protein with U3 RNA in vivo is mediated by the conserved Box B/C motif which is unique to U3 snoRNA. Mutation of Box B and Box C, but not of other conserved sequence elements, disrupted interaction of U3-55k with U3 RNA. Furthermore, a fragment of U3 containing only these two conserved elements was bound by U3-55k in vivo. RNA binding assays performed in vitro indicate that Box C may be the primary determinant of the interaction. We have cloned the cDNA encoding the Xenopus laevis U3-55k protein and find strong homology to the human sequence, including six WD repeats. Deletion of WD repeats or sequences near the C-terminus of U3-55k resulted in loss of association with U3 RNA and also loss of localization of U3-55k to the nucleolus, suggesting that protein-protein interactions contribute to the localization and RNA binding of U3-55k in vivo.
Collapse
Affiliation(s)
- A A Lukowiak
- Department of Biochemistry and Molecular Biology and Department of Genetics, University of Georgia, Life Science Building, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lindsey-Boltz LA, Chawla G, Srinivasan N, Vijayraghavan U, Garcia-Blanco MA. The carboxy terminal WD domain of the pre-mRNA splicing factor Prp17p is critical for function. RNA (NEW YORK, N.Y.) 2000; 6:1289-1305. [PMID: 10999606 PMCID: PMC1370002 DOI: 10.1017/s1355838200000327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In Saccharomyces cerevisiae, Prp17p is required for the efficient completion of the second step of pre-mRNA splicing. The function and interacting factors for this protein have not been elucidated. We have performed a mutational analysis of yPrp17p to identify protein domains critical for function. A series of deletions were made throughout the region spanning the N-terminal 158 amino acids of the protein, which do not contain any identified structural motifs. The C-terminal portion (amino acids 160-455) contains a WD domain containing seven WD repeats. We determined that a minimal functional Prp17p consists of the WD domain and 40 amino acids N-terminal to it. We generated a three-dimensional model of the WD repeats in Prp17p based on the crystal structure of the beta-transducin WD domain. This model was used to identify potentially important amino acids for in vivo functional characterization. Through analysis of mutations in four different loops of Prp17p that lie between beta strands in the WD repeats, we have identified four amino acids, 235TETG238, that are critical for function. These amino acids are predicted to be surface exposed and may be involved in interactions that are important for splicing. Temperature-sensitive prp17 alleles with mutations of these four amino acids are defective for the second step of splicing and are synthetically lethal with a U5 snRNA loop I mutation, which is also required for the second step of splicing. These data reinforce the functional significance of this region within the WD domain of Prp17p in the second step of splicing.
Collapse
Affiliation(s)
- L A Lindsey-Boltz
- Program in Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
30
|
Beales M, Flay N, McKinney R, Habara Y, Ohshima Y, Tani T, Potashkin J. Mutations in the large subunit of U2AF disrupt pre-mRNA splicing, cell cycle progression and nuclear structure. Yeast 2000; 16:1001-13. [PMID: 10923022 DOI: 10.1002/1097-0061(200008)16:11<1001::aid-yea605>3.0.co;2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prp2 gene of fission yeast has previously been shown to encode the large subunit of the splicing factor spU2AF. SpU2AF(59) is an evolutionarily conserved protein that has an arginine/serine-rich region and three RNA recognition motifs (RRMs). We have sequenced three temperature-sensitive alleles of prp2 and determined that the mutations result in single amino acid changes within one of the RRMs or between RRMs. All mutant alleles of prp2 have pre-mRNA splicing defects at the non-permissive temperature. Although the mutant strains are growth-arrested at 37 degrees C, they do not elongate like typical fission yeast cell cycle mutants. The DNA of the prp2(-) strains stains more intensely than a wild-type strain, suggesting that the chromatin may be condensed. Ultrastructural studies show differences in the mutant nuclei including a prominent distinction between the chromatin- and non-chromatin-enriched regions compared to the more homogenous wild-type nucleus. Two-hybrid assays indicate that some of the wild-type protein interactions are altered in the mutant strains. These results suggest that normal functioning of spU2AF(59) may be essential not only for pre-mRNA splicing but also for the maintenance of proper nuclear structure and normal cell cycle progression.
Collapse
Affiliation(s)
- M Beales
- Department of Cellular and Molecular Pharmacology, Finch University of Health Sciences/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Strezoska Z, Pestov DG, Lau LF. Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis. Mol Cell Biol 2000; 20:5516-28. [PMID: 10891491 PMCID: PMC86002 DOI: 10.1128/mcb.20.15.5516-5528.2000] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have identified and characterized a novel mouse protein, Bop1, which contains WD40 repeats and is highly conserved through evolution. bop1 is ubiquitously expressed in all mouse tissues examined and is upregulated during mid-G(1) in serum-stimulated fibroblasts. Immunofluorescence analysis shows that Bop1 is localized predominantly to the nucleolus. In sucrose density gradients, Bop1 from nuclear extracts cosediments with the 50S-80S ribonucleoprotein particles that contain the 32S rRNA precursor. RNase A treatment disrupts these particles and releases Bop1 into a low-molecular-weight fraction. A mutant form of Bop1, Bop1Delta, which lacks 231 amino acids in the N- terminus, is colocalized with wild-type Bop1 in the nucleolus and in ribonucleoprotein complexes. Expression of Bop1Delta leads to cell growth arrest in the G(1) phase and results in a specific inhibition of the synthesis of the 28S and 5.8S rRNAs without affecting 18S rRNA formation. Pulse-chase analyses show that Bop1Delta expression results in a partial inhibition in the conversion of the 36S to the 32S pre-rRNA and a complete inhibition of the processing of the 32S pre-rRNA to form the mature 28S and 5.8S rRNAs. Concomitant with these defects in rRNA processing, expression of Bop1Delta in mouse cells leads to a deficit in the cytosolic 60S ribosomal subunits. These studies thus identify Bop1 as a novel, nonribosomal mammalian protein that plays a key role in the formation of the mature 28S and 5.8S rRNAs and in the biogenesis of the 60S ribosomal subunit.
Collapse
MESH Headings
- Animals
- Cell Nucleolus/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Mice
- Mutation
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Repetitive Sequences, Amino Acid
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae Proteins
Collapse
Affiliation(s)
- Z Strezoska
- Department of Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60607-7170, USA
| | | | | |
Collapse
|
32
|
Jiang J, Horowitz DS, Xu RM. Crystal structure of the functional domain of the splicing factor Prp18. Proc Natl Acad Sci U S A 2000; 97:3022-7. [PMID: 10737784 PMCID: PMC16185 DOI: 10.1073/pnas.97.7.3022] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The splicing factor Prp18 is required for the second step of pre-mRNA splicing. We have isolated and determined the crystal structure of a large fragment of the Saccharomyces cerevisiae Prp18 that lacks the N-terminal 79 amino acids. This fragment, called Prp18Delta79, is fully active in yeast splicing in vitro and includes the sequences of Prp18 that have been evolutionarily conserved. The core structure of Prp18Delta79 is compact and globular, consisting of five alpha-helices that adopt a novel fold that we have designated the five-helix X-bundle. The structure suggests that one face of Prp18 interacts with the splicing factor Slu7, whereas the more evolutionarily conserved amino acids in Prp18 form the opposite face. The most highly conserved region of Prp18, a nearly invariant stretch of 19 aa, forms part of a loop between two alpha-helices and may interact with the U5 small nuclear ribonucleoprotein particles. The structure is consistent with a model in which Prp18 forms a bridge between Slu7 and the U5 small nuclear ribonucleoprotein particles.
Collapse
Affiliation(s)
- J Jiang
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
33
|
Ben-Yehuda S, Russell CS, Dix I, Beggs JD, Kupiec M. Extensive genetic interactions between PRP8 and PRP17/CDC40, two yeast genes involved in pre-mRNA splicing and cell cycle progression. Genetics 2000; 154:61-71. [PMID: 10628969 PMCID: PMC1460917 DOI: 10.1093/genetics/154.1.61] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biochemical and genetic experiments have shown that the PRP17 gene of the yeast Saccharomyces cerevisiae encodes a protein that plays a role during the second catalytic step of the splicing reaction. It was found recently that PRP17 is identical to the cell division cycle CDC40 gene. cdc40 mutants arrest at the restrictive temperature after the completion of DNA replication. Although the PRP17/CDC40 gene product is essential only at elevated temperatures, splicing intermediates accumulate in prp17 mutants even at the permissive temperature. In this report we describe extensive genetic interactions between PRP17/CDC40 and the PRP8 gene. PRP8 encodes a highly conserved U5 snRNP protein required for spliceosome assembly and for both catalytic steps of the splicing reaction. We show that mutations in the PRP8 gene are able to suppress the temperature-sensitive growth phenotype and the splicing defect conferred by the absence of the Prp17 protein. In addition, these mutations are capable of suppressing certain alterations in the conserved PyAG trinucleotide at the 3' splice junction, as detected by an ACT1-CUP1 splicing reporter system. Moreover, other PRP8 alleles exhibit synthetic lethality with the absence of Prp17p and show a reduced ability to splice an intron bearing an altered 3' splice junction. On the basis of these findings, we propose a model for the mode of interaction between the Prp8 and Prp17 proteins during the second catalytic step of the splicing reaction.
Collapse
Affiliation(s)
- S Ben-Yehuda
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
34
|
Luukkonen BG, Séraphin B. A conditional U5 snRNA mutation affecting pre-mRNA splicing and nuclear pre-mRNA retention identifies SSD1/SRK1 as a general splicing mutant suppressor. Nucleic Acids Res 1999; 27:3455-65. [PMID: 10446233 PMCID: PMC148587 DOI: 10.1093/nar/27.17.3455] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A combination of point mutations disrupting both stem 1 and stem 2 of U5 snRNA (U5AI) was found to confer a thermosensitive phenotype in vivo. In a strain expressing U5AI, pre-mRNA splicing was blocked before the first step through an inability of the mutant U5 snRNA to efficiently associate with the U4/U6 di-snRNP. Formation of early splicing complexes was not affected in extracts prepared from U5 snRNA mutant cells, while the capacity of these extracts to splice a pre-mRNA in vitro was greatly diminished. In addition, significant levels of a translation product derived from intron containing pre-mRNAs could be detected in vivo. The SSD1/SRK1 gene was identified as a multi-copy suppressor of the U5AI snRNA mutant. Single copy expression of SSD1/SRK1 was sufficient to suppress the thermosensitive phenotype, and high copy expression partially suppressed the splicing and U4/U6.U5 tri-snRNP assembly pheno-types. SSD1/SRK1 also suppressed thermosensitive mutations in the Prp18p and U1-70K proteins, while inhibiting growth of the cold sensitive U1-4U snRNA mutant at 30 degrees C. Thus we have identified SSD1/SRK1 as a general suppressor of splicing mutants.
Collapse
Affiliation(s)
- B G Luukkonen
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
35
|
Audibert A, Simonelig M. The suppressor of forked gene of Drosophila, which encodes a homologue of human CstF-77K involved in mRNA 3'-end processing, is required for progression through mitosis. Mech Dev 1999; 82:41-50. [PMID: 10354470 DOI: 10.1016/s0925-4773(99)00011-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Suppressor of forked (Su(f)) protein of Drosophila melanogaster is a homologue of the 77K subunit of human cleavage stimulation factor required for cleavage of pre-mRNAs before addition of poly(A). We have previously shown that the Su(f) protein is not ubiquitously distributed: it accumulates in dividing cells at various stages of Drosophila development. In this paper, we show that phenotypes of su(f) temperature-sensitive mutants result from a defect in cell proliferation. Analysis of the mitotic phenotype of su(f) temperature-sensitive alleles in larval brain and in imaginal discs reveals an increase in the number of metaphases with overcondensed chromosomes and asymmetric or reduced mitotic spindles. In contrast, neural differentiation in eye imaginal discs of the same mutant flies does not appear to be affected. These results indicate that su(f) is required during cell division for progression through metaphase. Taken together, these data suggest that a decrease in su(f) activity preferentially affects 3'-end formation of particular mRNAs, some of which are involved in mitosis, and are in agreement with a role of su(f) in the regulation of poly(A) site utilization.
Collapse
Affiliation(s)
- A Audibert
- Dynamique du Génome et Evolution, Institut Jacques Monod, Université Denis Diderot, 2, Place Jussieu, 75005, Paris, France
| | | |
Collapse
|
36
|
Chua K, Reed R. Human step II splicing factor hSlu7 functions in restructuring the spliceosome between the catalytic steps of splicing. Genes Dev 1999; 13:841-50. [PMID: 10197984 PMCID: PMC316594 DOI: 10.1101/gad.13.7.841] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The spliceosome catalyzes pre-mRNA splicing in two steps. After catalytic step I, a major remodeling of the spliceosome occurs to establish the active site for step II. Here, we report the isolation of a cDNA encoding hSlu7, the human homolog of the yeast second step splicing factor Slu7. We show that hSlu7 associates with the spliceosome late in the splicing pathway, but at a stage prior to recognition of the 3' splice site for step II. In the absence of hSlu7, splicing is stalled between the catalytic steps in a novel complex, the CDeltahSlu7 complex. We provide evidence that this complex differs significantly in structure from the known spliceosomal complexes, yet is a functional intermediate between the catalytic steps of splicing. Together, our observations indicate that hSlu7 is required for a structural alteration of the spliceosome prior to the establishment of the catalytically active spliceosome for step II.
Collapse
Affiliation(s)
- K Chua
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | | |
Collapse
|