1
|
Sharkey RE, Herbert JB, McGaha DA, Nguyen V, Schoeffler AJ, Dunkle JA. Three critical regions of the erythromycin resistance methyltransferase, ErmE, are required for function supporting a model for the interaction of Erm family enzymes with substrate rRNA. RNA (NEW YORK, N.Y.) 2022; 28:210-226. [PMID: 34795028 PMCID: PMC8906542 DOI: 10.1261/rna.078946.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
6-Methyladenosine modification of DNA and RNA is widespread throughout the three domains of life and often accomplished by a Rossmann-fold methyltransferase domain which contains conserved sequence elements directing S-adenosylmethionine cofactor binding and placement of the target adenosine residue into the active site. Elaborations to the conserved Rossman-fold and appended domains direct methylation to diverse DNA and RNA sequences and structures. Recently, the first atomic-resolution structure of a ribosomal RNA adenine dimethylase (RRAD) family member bound to rRNA was solved, TFB1M bound to helix 45 of 12S rRNA. Since erythromycin resistance methyltransferases are also members of the RRAD family, and understanding how these enzymes recognize rRNA could be used to combat their role in antibiotic resistance, we constructed a model of ErmE bound to a 23S rRNA fragment based on the TFB1M-rRNA structure. We designed site-directed mutants of ErmE based on this model and assayed the mutants by in vivo phenotypic assays and in vitro assays with purified protein. Our results and additional bioinformatic analyses suggest our structural model captures key ErmE-rRNA interactions and indicate three regions of Erm proteins play a critical role in methylation: the target adenosine binding pocket, the basic ridge, and the α4-cleft.
Collapse
Affiliation(s)
- Rory E Sharkey
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Johnny B Herbert
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Danielle A McGaha
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Vy Nguyen
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, Louisiana 70118, USA
| | - Allyn J Schoeffler
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, Louisiana 70118, USA
| | - Jack A Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
2
|
|
3
|
Hansen LH, Lobedanz S, Douthwaite S, Arar K, Wengel J, Kirpekar F, Vester B. Minimal substrate features for Erm methyltransferases defined by using a combinatorial oligonucleotide library. Chembiochem 2011; 12:610-4. [PMID: 21264994 DOI: 10.1002/cbic.201000606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Indexed: 11/08/2022]
Abstract
Erm methyltransferases are prevalent in pathogenic bacteria and confer resistance to macrolide, lincosamide, and streptogramin B antibiotics by specifically methylating the 23S ribosomal RNA at nucleotide A2058. We have identified motifs within the rRNA substrate that are required for methylation by Erm. Substrate molecules were constructed in a combinatorial manner from two separate sets (top and bottom strands) of short RNA sequences. Modifications, including LNA monomers with locked sugar residues, were incorporated into the substrates to stabilize their structures. In functional substrates, the A2058 methylation target (on the 13- to 19-nucleotide top strand) was displayed in an unpaired sequence immediately following a conserved irregular helix, and these are the specific structural features recognized by Erm. Erm methylation was enhanced by stabilizing the top-strand conformation with an LNA residue at G2056. The bottom strand (nine to 19 nucleotides in length) was required for methylation and was still functional after extensive modification, including substitution with a DNA sequence. Although it remains possible that Erm makes some unspecific contact with the bottom strand, the main role played by the bottom strand appears to be in maintaining the conformation of the top strand. The addition of multiple LNA residues to the top strand impeded methylation; this indicates that the RNA substrate requires a certain amount of flexibility for accommodation into the active site of Erm. The combinatorial approach for identifying small but functional RNA substrates is a step towards making RNA-Erm complexes suitable for cocrystal determination, and for designing molecules that might block the substrate-recognition site of the enzyme.
Collapse
Affiliation(s)
- Lykke H Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
4
|
Maravić G, Bujnicki JM, Feder M, Pongor S, Flögel M. Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions. Nucleic Acids Res 2003; 31:4941-9. [PMID: 12907737 PMCID: PMC169915 DOI: 10.1093/nar/gkg666] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Erm family of adenine-N(6) methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Hence, these proteins are important potential drug targets. Despite the availability of the NMR and crystal structures of two members of the family (ErmAM and ErmC', respectively) and extensive studies on the RNA substrate, the substrate-binding site and the amino acids involved in RNA recognition by the Erm MTases remain unknown. It has been proposed that the small C-terminal domain functions as a target-binding module, but this prediction has not been tested experimentally. We have undertaken structure-based mutational analysis of 13 charged or polar residues located on the predicted rRNA-binding surface of ErmC' with the aim to identify the area of protein-RNA interactions. The results of in vivo and in vitro analyses of mutant protein suggest that the key RNA-binding residues are located not in the small domain, but in the large catalytic domain, facing the cleft between the two domains. Based on the mutagenesis data, a preliminary three-dimensional model of ErmC' complexed with the minimal substrate was constructed. The identification of the RNA-binding site of ErmC' may be useful for structure-based design of novel drugs that do not necessarily bind to the cofactor-binding site common to many S-adenosyl-L- methionine-dependent MTases, but specifically block the substrate-binding site of MTases from the Erm family.
Collapse
MESH Headings
- Alanine/genetics
- Amino Acid Sequence
- Binding Sites/genetics
- Cell Division/drug effects
- Cell Division/genetics
- Drug Resistance, Bacterial/genetics
- Erythromycin/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Kinetics
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sequence Homology, Amino Acid
- Substrate Specificity
Collapse
Affiliation(s)
- Gordana Maravić
- Protein Structure and Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
5
|
Jin HJ, Yang YD. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr Purif 2002; 25:149-59. [PMID: 12071710 DOI: 10.1006/prep.2002.1621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The erm proteins confer resistance to the MLS (macrolide-lincosamide-streptogramin B) antibiotics in various microorganisms, including pathogens, through dimethylation of a single adenine residue (A2085: Bacillus subtilis coordinate) of the 23S rRNA to reduce the affinity of antibiotics, thereby enabling the cells to escape from the antibiotics' action, and this mechanism is predominantly adopted by microorganisms resistant to MLS antibiotics. ErmSF methyltransferase is one of the four gene products synthesized by Streptomyces fradiae NRRL 2338 to be resistant to its autogenous antibiotic, tylosin. In order to have a convenient source for the purification of milligram amounts, we expressed ErmSF in Escherichia coli using a T7 promoter-driven expression vector system, pET 23b, and the protein was expressed with a carboxy-terminal addition of six histidine residues in order to facilitate purification. Expression at 22 degrees C reduced the formation of insoluble aggregate, inclusion body, and resulted in accumulation of soluble hexahistidine-ErmSF up to 30% of total cell protein after 18 h. Metal-chelation chromatography yielded 126 mg of hexahistidine-ErmSF per liter of culture with a purity slightly greater than 95%. To examine the function of ErmSF in vivo and in vitro, its activity in E. coli (antibiotic susceptibility assay) andin vitro methyltransferase activity using in vitro-produced B. subtilis domain V, 434-, 257-, and 243-nt RNAs were investigated. The ErmSF in E. coli conferred resistance to erythromycin, whereas E. coli harboring an empty vector, pET23b, was susceptible. The purified recombinant protein successfully methylated domain V of 23S rRNA, which is known to contain all of the substrate elements recognized and to be methylated by erm proteins. However, the truncated substrates were methylated with decreased efficiencies. Almost all of domain V was monomethylated with less than 0.2 pM S-[methyl-(3)H]adenosylmethionine concentration. The roles of three structurally divided regions of domain V in recognition and methylation by ErmSF are proposed through kinetic studies using RNA substrates, in which each region is deleted, under the monomethylation condition.
Collapse
Affiliation(s)
- Hyung Jong Jin
- Department of Genetic Engineering, College of Natural Science, Kyunggi-Do, 445-743, Republic of Korea.
| | | |
Collapse
|
6
|
Hansen LH, Kirpekar F, Douthwaite S. Recognition of nucleotide G745 in 23 S ribosomal RNA by the rrmA methyltransferase. J Mol Biol 2001; 310:1001-10. [PMID: 11501991 DOI: 10.1006/jmbi.2001.4836] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methylation of the N1 position of nucleotide G745 in hairpin 35 of Escherichia coli 23 S ribosomal RNA (rRNA) is mediated by the methyltransferase enzyme RrmA. Lack of G745 methylation results in reduced rates of protein synthesis and growth. Addition of recombinant plasmid-encoded rrmA to an rrmA-deficient strain remedies these defects. Recombinant RrmA was purified and shown to retain its activity and specificity for 23 S rRNA in vitro. The recombinant enzyme was used to define the structures in the rRNA that are necessary for the methyltransferase reaction. Progressive truncation of the rRNA substrate shows that structures in stem-loops 33, 34 and 35 are required for methylation by RrmA. Multiple contacts between nucleotides in these stem-loops and RrmA were confirmed in footprinting experiments. No other RrmA contact was evident elsewhere in the rRNA. The RrmA contact sites on the rRNA are inaccessible in ribosomal particles and, consistent with this, 50 S subunits or 70 S ribosomes are not substrates for RrmA methylation. RrmA resembles the homologous methyltransferase TlrB (specific for nucleotide G748) as well as the Erm methyltransferases (nucleotide A2058), in that all these enzymes methylate their target nucleotides only in the free RNA. After assembly of the 50 S subunit, nucleotides G745, G748 and A2058 come to lie in close proximity lining the peptide exit channel at the site where macrolide, lincosamide and streptogramin B antibiotics bind.
Collapse
Affiliation(s)
- L H Hansen
- Department of Biochemistry and Molecular Biology, Odense University, Denmark
| | | | | |
Collapse
|
7
|
Liu M, Kirpekar F, Van Wezel GP, Douthwaite S. The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. Mol Microbiol 2000; 37:811-20. [PMID: 10972803 DOI: 10.1046/j.1365-2958.2000.02046.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
tlrB is one of four resistance genes encoded in the operon for biosynthesis of the macrolide tylosin in antibiotic-producing strains of Streptomyces fradiae. Introduction of tlrB into Streptomyces lividans similarly confers tylosin resistance. Biochemical analysis of the rRNA from the two Streptomyces species indicates that in vivo TlrB modifies nucleotide G748 within helix 35 of 23S rRNA. Purified recombinant TlrB retains its activity and specificity in vitro and modifies G748 in 23S rRNA as well as in a 74 nucleotide RNA containing helix 35 and surrounding structures. Modification is dependent on the presence of the methyl group donor, S-adenosyl methionine. Analysis of the 74-mer RNA substrate by biochemical and mass spectrometric methods shows that TlrB adds a single methyl group to the base of G748. Homologues of TlrB in other bacteria have been revealed through database searches, indicating that TlrB is the first member to be described in a new subclass of rRNA methyltransferases that are implicated in macrolide drug resistance.
Collapse
Affiliation(s)
- M Liu
- Department of Biochemistry and Molecular Biology, Odense University, Denmark
| | | | | | | |
Collapse
|
8
|
Nielsen AK, Douthwaite S, Vester B. Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase. RNA (NEW YORK, N.Y.) 1999; 5:1034-1041. [PMID: 10445878 PMCID: PMC1369827 DOI: 10.1017/s1355838299990349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Erm methyltransferases modify bacterial 23S ribosomal RNA at adenosine 2058 (A2058, Escherichia coli numbering) conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics. The motif that is recognized by Erm methyltransferases is contained within helix 73 of 23S rRNA and the adjacent single-stranded region around A2058. An RNA transcript of 72 nt that displays this motif functions as an efficient substrate for the ErmE methyltransferase. Pools of degenerate RNAs were formed by doping 34-nt positions that extend over and beyond the putative Erm recognition motif within the 72-mer RNA. The RNAs were passed through a series of rounds of methylation with ErmE. After each round, RNAs were selected that had partially or completely lost their ability to be methylated. After several rounds of methylation/selection, 187 subclones were analyzed. Forty-three of the subclones contained substitutions at single sites, and these are confined to 12 nucleotide positions. These nucleotides, corresponding to A2051-A2060, C2611, and A2614 in 23S rRNA, presumably comprise the RNA recognition motif for ErmE methyltransferase. The structure formed by these nucleotides is highly conserved throughout bacterial rRNAs, and is proposed to constitute the motif that is recognized by all the Erm methyltransferases.
Collapse
Affiliation(s)
- A K Nielsen
- Department of Molecular Biology, University of Odense, Denmark
| | | | | |
Collapse
|
9
|
Villsen ID, Vester B, Douthwaite S. ErmE methyltransferase recognizes features of the primary and secondary structure in a motif within domain V of 23 S rRNA. J Mol Biol 1999; 286:365-74. [PMID: 9973557 DOI: 10.1006/jmbi.1998.2504] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Erm methyltransferases confer resistance to macrolide, lincosamide and streptogramin B (MLS) antibiotics by methylation of a single adenosine base within bacterial 23 S ribosomal RNA. The ErmE methyltransferase, from the macrolide-producing bacterium Saccharopolyspora erythraea, recognizes a motif within domain V of the rRNA that specifically targets adenosine 2058 (A2058) for methylation. Here, we define the structure of the RNA motif by a combination of molecular genetics and biochemical probing. The core of the motif has the primary sequence 2056-GGAHA-2060, where H is any nucleotide except guanosine, and ErmE methylates at the adenosine in bold. For efficient recognition by ErmE, this sequence must be displayed within a particular secondary structure. An irregular stem (helix 73) is required immediately 5' to A2058, with an unpaired nucleotide, preferably a cytidine residue, at position 2055. Nucleotides 2611 to 2616 are collectively required to form part of the 3'-side of helix 73, but there is little or no restriction on the identities of individual nucleotides here. There are minor preferences in the identities of nucleotides 2051 to 2055 that are adjacent to the motif core, although their main role is in maintaining the irregular secondary structure. The essential elements of the ErmE motif are conserved in bacterial 23 S rRNAs, and thus presumably also form the recognition motif for other Erm methyltransferases.
Collapse
MESH Headings
- Adenosine/chemistry
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/metabolism
- Drug Resistance, Microbial
- Escherichia coli/chemistry
- Macrolides
- Methylation
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational/drug effects
- Point Mutation
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/drug effects
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/drug effects
- Substrate Specificity
Collapse
Affiliation(s)
- I D Villsen
- Department of Molecular Biology, Odense University, Campusvej 55, Odense M, DK-5230, Denmark
| | | | | |
Collapse
|