1
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Structural and functional consequences of mutating a proteobacteria-specific surface residue in the catalytic domain of Escherichia coli GluRS. FEBS Lett 2012; 586:1724-30. [PMID: 22584057 DOI: 10.1016/j.febslet.2012.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 11/22/2022]
Abstract
Nucleotides whose mutations seriously affect glutamylation efficiency are experimentally known for Escherichia coli tRNA(Glu). However, not much is known about functional hotspots on the complementary enzyme, glutamyl-tRNA synthetase (GluRS). From structural and functional studies on an Arg266Leu mutant of E. coli GluRS, we demonstrate that Arg266 is essential for efficient glutamylation of tRNA(Glu). Consistent with this result, we found that Arg266 is a conserved signature of proteobacterial GluRS. In contrast, most non-proteobacterial GluRS contain Leu, and never Arg, at this position. Our results imply a unique strategy of glutamylation of tRNA(Glu) in proteobacteria under phylum-specific evolutionary compulsions.
Collapse
|
3
|
Heat maps for intramolecular communication in an RNP enzyme encoding glutamine. Structure 2011; 19:386-96. [PMID: 21397189 DOI: 10.1016/j.str.2010.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/06/2010] [Accepted: 12/22/2010] [Indexed: 01/16/2023]
Abstract
Allosteric signaling within large ribonucleoproteins modulates both catalytic function and biological specificity, but the spatial extent and quantitative magnitudes of long-distance free-energy couplings have yet to be well characterized. Here, we employ pre-steady-state kinetics to generate a comprehensive mapping of intramolecular communication in the glutaminyl-tRNA synthetase:tRNA(Gln) complex. Alanine substitution at 29 positions across the protein-RNA interface reveals distinct coupling amplitudes for glutamine binding and aminoacyl-tRNA formation on the enzyme, respectively, implying the existence of multiple signaling pathways. Structural models suggest that long-range signal propagation from the tRNA anticodon is dynamically driven, whereas shorter pathways are mediated by induced-fit rearrangements. Seven protein contacts with the distal tRNA vertical arm each weaken glutamine binding affinity across distances up to 40 Å, demonstrating that negative allosteric coupling plays a key role in enforcing the selective RNA-amino acid pairing at the heart of the genetic code.
Collapse
|
4
|
Dasgupta S, Saha R, Dey C, Banerjee R, Roy S, Basu G. The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination. FEBS Lett 2009; 583:2114-20. [PMID: 19481543 DOI: 10.1016/j.febslet.2009.05.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 11/26/2022]
Abstract
Discrimination of tRNA(Gln) is an integral function of several bacterial glutamyl-tRNA synthetases (GluRS). The origin of the discrimination is thought to arise from unfavorable interactions between tRNA(Gln) and the anticodon-binding domain of GluRS. From experiments on an anticodon-binding domain truncated Escherichia coli (E. coli) GluRS (catalytic domain) and a chimeric protein, constructed from the catalytic domain of E. coli GluRS and the anticodon-binding domain of E. coli glutaminyl-tRNA synthetase (GlnRS), we show that both proteins discriminate against E. coli tRNA(Gln). Our results demonstrate that in addition to the anticodon-binding domain, tRNA(Gln) discriminatory elements may be present in the catalytic domain in E. coli GluRS as well.
Collapse
Affiliation(s)
- Saumya Dasgupta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | | | | | | | | | | |
Collapse
|
5
|
Severcan I, Geary C, Verzemnieks E, Chworos A, Jaeger L. Square-shaped RNA particles from different RNA folds. NANO LETTERS 2009; 9:1270-7. [PMID: 19239258 PMCID: PMC2664548 DOI: 10.1021/nl900261h] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The structural information encoding specific conformations of natural RNAs can be implemented within artificial RNA sequences to control both three-dimensional (3D) shape and self-assembling interfaces for nanotechnology and synthetic biology applications. We have identified three natural RNA motifs known to direct helical topology into approximately 90 degrees bends: a five-way tRNA junction, a three-way junction, and a two-helix bend. These three motifs, embedded within rationally designed RNAs (tectoRNA), were chosen for generating square-shaped tetrameric RNA nanoparticles. The ability of each motif to direct the formation of supramolecular assemblies was compared by both native gel assays and atomic force microscopy. While there are multiple structural solutions for building square-shaped RNA particles, differences in the thermodynamics and molecular dynamics of the 90 degrees motif can lead to different biophysical behaviors for the resulting supramolecular complexes. We demonstrate via structural assembly programming how the different 90 degrees motifs can preferentially direct the formation of either 2D or 3D assemblies.
Collapse
Affiliation(s)
- Isil Severcan
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106-9510
| | - Cody Geary
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106-9510
| | - Erik Verzemnieks
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106-9510
| | - Arkadiusz Chworos
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106-9510
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106-9510
- To whom correspondence should be addressed: Phone: 805-893-3628; Fax: 805-893-4120; Email;
| |
Collapse
|
6
|
Vasil'eva IA, Moor NA. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition. BIOCHEMISTRY (MOSCOW) 2007; 72:247-63. [PMID: 17447878 DOI: 10.1134/s0006297907030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes results of numerous (mainly functional) studies that have been accumulated over recent years on the problem of tRNA recognition by aminoacyl-tRNA synthetases. Development and employment of approaches that use synthetic mutant and chimeric tRNAs have demonstrated general principles underlying highly specific interaction in different systems. The specificity of interaction is determined by a certain number of nucleotides and structural elements of tRNA (constituting the set of recognition elements or specificity determinants), which are characteristic of each pair. Crystallographic structures available for many systems provide the details of the molecular basis of selective interaction. Diversity and identity of biochemical functions of the recognition elements make substantial contribution to the specificity of such interactions.
Collapse
Affiliation(s)
- I A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
7
|
Saks ME, Conery JS. Anticodon-dependent conservation of bacterial tRNA gene sequences. RNA (NEW YORK, N.Y.) 2007; 13:651-60. [PMID: 17379816 PMCID: PMC1852809 DOI: 10.1261/rna.345907] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The residues in tRNA that account for its tertiary fold and for its specific aminoacylation are well understood. In contrast, relatively little is known about the residues in tRNA that dictate its ability to transit the different sites of the ribosome. Yet protein synthesis cannot occur unless tRNA properly engages with the ribosome. This study analyzes tRNA gene sequences from 145 fully sequenced bacterial genomes. Grouping the sequences according to the anticodon triplet reveals that many residues in tRNA, including some that are distal to the anticodon loop, are conserved in an anticodon-dependent manner. These residues evade detection when tRNA genes are grouped according to amino acid family. The conserved residues include those at positions 32, 38, and 37 of the anticodon loop, which are already known to influence tRNA translational performance. Therefore, it seems likely that the newly detected anticodon-associated residues also influence tRNA performance on the ribosome. Remarkably, tRNA genes that belong to the same amino acid family and therefore share identical residues at the second and third anticodon positions have diverged, during bacterial evolution, into highly conserved groups that are defined by the residue at the first (wobble) anticodon position. Current ideas about the properties of tRNA and the translation mechanism do not fully account for this phenomenon. The results of the present study provide a foundation for studying the adaptation of individual tRNAs to the translation machinery and for future studies of the translation mechanism.
Collapse
Affiliation(s)
- Margaret E Saks
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
8
|
Gruic-Sovulj I, Uter N, Bullock T, Perona JJ. tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase. J Biol Chem 2005; 280:23978-86. [PMID: 15845536 DOI: 10.1074/jbc.m414260200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaminyl-tRNA synthetase generates Gln-tRNA(Gln) 10(7)-fold more efficiently than Glu-tRNA(Gln) and requires tRNA to synthesize the activated aminoacyl adenylate in the first step of the reaction. To examine the role of tRNA in amino acid activation more closely, several assays employing a tRNA analog in which the 2'-OH group at the 3'-terminal A76 nucleotide is replaced with hydrogen (tRNA(2'HGln)) were developed. These experiments revealed a 10(4)-fold reduction in kcat/Km in the presence of the analog, suggesting a direct catalytic role for tRNA in the activation reaction. The catalytic importance of the A76 2'-OH group in aminoacylation mirrors a similar role for this moiety that has recently been demonstrated during peptidyl transfer on the ribosome. Unexpectedly, tracking of Gln-AMP formation utilizing an alpha-32P-labeled ATP substrate in the presence of tRNA(2'HGln) showed that AMP accumulates 5-fold more rapidly than Gln-AMP. A cold-trapping experiment revealed that the nonenzymatic rate of Gln-AMP hydrolysis is too slow to account for the rapid AMP formation; hence, the hydrolysis of Gln-AMP to form glutamine and AMP must be directly catalyzed by the GlnRS x tRNA(2'HGln) complex. This hydrolysis of glutaminyl adenylate represents a novel reaction that is directly analogous to the pre-transfer editing hydrolysis of noncognate aminoacyl adenylates by editing synthetases such as isoleucyl-tRNA synthetase. Because glutaminyl-tRNA synthetase does not possess a spatially separate editing domain, these data demonstrate that a pre-transfer editing-like reaction can occur within the synthetic site of a class I tRNA synthetase.
Collapse
Affiliation(s)
- Ita Gruic-Sovulj
- Department of Chemistry and Biochemistry & Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | |
Collapse
|
9
|
Lee D, McClain WH. Aptamer redesigned tRNA is nonfunctional and degraded in cells. RNA (NEW YORK, N.Y.) 2004; 10:7-11. [PMID: 14681579 PMCID: PMC1370512 DOI: 10.1261/rna.5165804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 09/22/2003] [Indexed: 05/24/2023]
Abstract
An RNA aptamer derived from tRNA(Gln) isolated in vitro and a rationally redesigned tRNA(Gln) were used to address the relationship between structure and function of tRNA(Gln) aminoacylation in Escherichia coli. Two mutant tRNA(Gln) sequences were studied: an aptamer that binds 26-fold tighter to glutaminyl-tRNA synthetase than wild-type tRNA(Gln) in vitro, redesigned in the variable loop, and a mutant with near-normal aminoacylation kinetics for glutamine, redesigned to contain a long variable arm. Both mutants were tested in a tRNA(Gln) knockout strain of E. coli, but neither supported knockout cell growth. It was later found that both mutant tRNAs were present in very low amounts in the cell. These results reveal the difference between in vitro and in vivo studies, demonstrating the complexities of in vivo systems that have not been replicated in vitro.
Collapse
Affiliation(s)
- Dennis Lee
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706-1569, USA
| | | |
Collapse
|
10
|
Abstract
The crystal structure of ligand-free E. coli glutaminyl-tRNA synthetase (GlnRS) at 2.4 A resolution shows that substrate binding is essential to construction of a catalytically proficient active site. tRNA binding generates structural changes throughout the enzyme, repositioning key active site peptides that bind glutamine and ATP. The structure gives insight into longstanding questions regarding the tRNA dependence of glutaminyl adenylate formation, the coupling of amino acid and tRNA selectivities, and the roles of specific pathways for transmission of tRNA binding signals to the active site. Comparative analysis of the unliganded and tRNA-bound structures shows, in detail, how flexibility is built into the enzyme architecture and suggests that the induced-fit transitions are a key underlying determinant of both amino acid and tRNA specificity.
Collapse
Affiliation(s)
- Luke D Sherlin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
11
|
Bullock TL, Uter N, Nissan TA, Perona JJ. Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. J Mol Biol 2003; 328:395-408. [PMID: 12691748 DOI: 10.1016/s0022-2836(03)00305-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 2.5 A crystal structure of Escherichia coli glutaminyl-tRNA synthetase in a quaternary complex with tRNA(Gln), an ATP analog and glutamate reveals that the non-cognate amino acid adopts a distinct binding mode within the active site cleft. In contrast to the binding of cognate glutamine, one oxygen of the charged glutamate carboxylate group makes a direct ion-pair interaction with the strictly conserved Arg30 residue located in the first half of the dinucleotide fold domain. The nucleophilic alpha-carboxylate moiety of glutamate is mispositioned with respect to both the ATP alpha-phosphate and terminal tRNA ribose groups, suggesting that a component of amino acid discrimination resides at the catalytic step of the reaction. Further, the other side-chain carboxylate oxygen of glutamate is found in a position identical to that previously proposed to be occupied by the NH(2) group of the cognate glutamine substrate. At this position, the glutamate oxygen accepts hydrogen bonds from the hydroxyl moiety of Tyr211 and a water molecule. These findings demonstrate that amino acid specificity by GlnRS cannot arise from hydrogen bonds donated by the cognate glutamine amide to these same moieties, as previously suggested. Instead, Arg30 functions as a negative determinant to drive binding of non-cognate glutamate into a non-productive orientation. The poorly differentiated cognate amino acid-binding site in GlnRS may be a consequence of the late emergence of this enzyme from the eukaryotic lineage of glutamyl-tRNA synthetases.
Collapse
Affiliation(s)
- Timothy L Bullock
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | | | |
Collapse
|
12
|
Korencić D, Söll D, Ambrogelly A. A one-step method for in vitro production of tRNA transcripts. Nucleic Acids Res 2002; 30:e105. [PMID: 12384607 PMCID: PMC137149 DOI: 10.1093/nar/gnf104] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sequencing of a large number of microbial genomes has led to the discovery of new enzymes involved in tRNA biosynthesis and tRNA function. Preparation of a great variety of RNA molecules is, therefore, of major interest for biochemical characterization of these proteins. We describe a fast, cost-effective and efficient method for in vitro production of tRNA transcripts. T7 RNA polymerase requires a double-stranded DNA promoter in order to initiate transcription; however, elongation does not require a double-stranded DNA template. A partially double-stranded transcription template formed by annealing of a short oligonucleotide, complementary to the T7 promoter, to a larger oligonucleotide is shown to be a good substrate for in vitro transcription. This method allows rapid production of a variety of tRNA transcripts which can be aminoacylated well. This eliminates the need for cloning of tRNA genes, large-scale plasmid preparation and enzymatic digestion.
Collapse
Affiliation(s)
- Dragana Korencić
- Department of Molecular Biophysics and Biochemistry and. Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
13
|
Yaremchuk A, Kriklivyi I, Tukalo M, Cusack S. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J 2002; 21:3829-40. [PMID: 12110594 PMCID: PMC126118 DOI: 10.1093/emboj/cdf373] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bacterial tyrosyl-tRNA synthetases (TyrRS) possess a flexibly linked C-terminal domain of approximately 80 residues, which has hitherto been disordered in crystal structures of the enzyme. We have determined the structure of Thermus thermophilus TyrRS at 2.0 A resolution in a crystal form in which the C-terminal domain is ordered, and confirm that the fold is similar to part of the C-terminal domain of ribosomal protein S4. We have also determined the structure at 2.9 A resolution of the complex of T.thermophilus TyrRS with cognate tRNA(tyr)(G Psi A). In this structure, the C-terminal domain binds between the characteristic long variable arm of the tRNA and the anti-codon stem, thus recognizing the unique shape of the tRNA. The anticodon bases have a novel conformation with A-36 stacked on G-34, and both G-34 and Psi-35 are base-specifically recognized. The tRNA binds across the two subunits of the dimeric enzyme and, remarkably, the mode of recognition of the class I TyrRS for its cognate tRNA resembles that of a class II synthetase in being from the major groove side of the acceptor stem.
Collapse
Affiliation(s)
- Anna Yaremchuk
- European Molecular Biology Laboratory, Grenoble Outstation, c/o ILL, 156X, F-38042 Grenoble cedex 9, France and Institute of Molecular Biology and Genetics, NAS of Ukraine, 252627 Kiev-143, Ukraine Corresponding authors e-mail: or
| | - Ivan Kriklivyi
- European Molecular Biology Laboratory, Grenoble Outstation, c/o ILL, 156X, F-38042 Grenoble cedex 9, France and Institute of Molecular Biology and Genetics, NAS of Ukraine, 252627 Kiev-143, Ukraine Corresponding authors e-mail: or
| | - Michael Tukalo
- European Molecular Biology Laboratory, Grenoble Outstation, c/o ILL, 156X, F-38042 Grenoble cedex 9, France and Institute of Molecular Biology and Genetics, NAS of Ukraine, 252627 Kiev-143, Ukraine Corresponding authors e-mail: or
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, c/o ILL, 156X, F-38042 Grenoble cedex 9, France and Institute of Molecular Biology and Genetics, NAS of Ukraine, 252627 Kiev-143, Ukraine Corresponding authors e-mail: or
| |
Collapse
|
14
|
Vortler S, Pütz J, Giegé R. Manipulation of tRNA properties by structure-based and combinatorial in vitro approaches. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:291-334. [PMID: 11642365 DOI: 10.1016/s0079-6603(01)70020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The wide knowledge accumulated over the years on the structure and function of transfer RNAs (tRNAs) has allowed molecular biologists to decipher the rules underlying the function and the architecture of these molecules. These rules will be discussed and the implications for manipulating tRNA properties by structure-based and combinatorial in vitro approaches reviewed. Since most of the signals conferring function to tRNAs are located on the two distal extremities of their three-dimensional L shape, this implies that the structure of the RNA domain connecting these two extremities can be of different architecture and/or can be modified without disturbing individual functions. This concept is first supported by the existence in nature of RNAs of peculiar structures having tRNA properties, as well as by engineering experiments on natural tRNAs. The concept is further illustrated by examples of RNAs designed by combinatorial methods. The different procedures used to select RNAs or tRNA-mimics interacting with aminoacyl-tRNA synthetases or with elongation factors and to select tRNA-mimics aminoacylated by synthetases are presented, as well as the functional and structural characteristics of the selected molecules. Production and characteristics of aptameric RNAs fulfilling aminoacyl-tRNA synthetase functions and of RNAs selected to have affinities for amino acids are also described. Finally, properties of RNAs obtained by either the structure-based or the combinatorial methods are discussed in the light of the origin and evolution of the translation machinery, but also with a view to obtain new inhibitors targeting specific steps in translation.
Collapse
Affiliation(s)
- S Vortler
- Département Mécanismes et Macromolécules de la Synthèse, Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
15
|
Sherlin LD, Bullock TL, Nissan TA, Perona JJ, Lariviere FJ, Uhlenbeck OC, Scaringe SA. Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization. RNA (NEW YORK, N.Y.) 2001; 7:1671-1678. [PMID: 11720294 PMCID: PMC1370207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Preparation of large quantities of RNA molecules of a defined sequence is a prerequisite for biophysical analysis, and is particularly important to the determination of high-resolution structure by X-ray crystallography. We describe improved methods for the production of multimilligram quantities of homogeneous tRNAs, using a combination of chemical synthesis and enzymatic approaches. Transfer RNA half-molecules with a break in the anticodon loop were chemically synthesized on a preparative scale, ligated enzymatically, and cocrystallized with an aminoacyl-tRNA synthetase, yielding crystals diffracting to 2.4 A resolution. Multimilligram quantities of tRNAs with greatly reduced 3' heterogeneity were also produced via transcription by T7 RNA polymerase, utilizing chemically modified DNA half-molecule templates. This latter approach eliminates the need for large-scale plasmid preparations, and yields synthetase cocrystals diffracting to 2.3 A resolution at much lower RNA:protein stoichiometries than previously required. These two approaches developed for a tRNA-synthetase complex permit the detailed structural study of "atomic-group" mutants.
Collapse
Affiliation(s)
- L D Sherlin
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, 93106-9510, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Stenström CM, Holmgren E, Isaksson LA. Cooperative effects by the initiation codon and its flanking regions on translation initiation. Gene 2001; 273:259-65. [PMID: 11595172 DOI: 10.1016/s0378-1119(01)00584-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purine-rich Shine-Dalgarno (SD) sequence located a few bases upstream of the mRNA initiation codon supports translation initiation by complementary binding to the anti-SD in the 16S rRNA, close to its 3' end. AUG is the canonical initiation codon but the weaker UUG and GUG codons are also used for a minority of genes. The codon sequence of the downstream region (DR), including the +2 codon immediately following the initiation codon, is also important for initiation efficiency. We have studied the interplay between these three initiation determinants on gene expression in growing Escherichia coli. One optimal SD sequence (SD(+)) and one lacking any apparent complementarity to the anti-SD in 16S rRNA (SD(-)) were analyzed. The SD(+) and DR sequences affected initiation in a synergistic manner and large differences in the effects were found. The gene expression level associated with the most efficient of these DRs together with SD(-) was comparable to that of other DRs together with SD(+). The otherwise weak initiation codon UUG, but not GUG, was comparable with AUG in strength, if placed in the context of two of the DRs. The +2 codon was one, but not the only, determinant for this unexpectedly high efficiency of UUG.
Collapse
Affiliation(s)
- C M Stenström
- Department of Microbiology, Stockholm University, S-106 91, Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Abstract
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
18
|
Nissan TA, Perona JJ. Alternative designs for construction of the class II transfer RNA tertiary core. RNA (NEW YORK, N.Y.) 2000; 6:1585-1596. [PMID: 11105758 PMCID: PMC1370028 DOI: 10.1017/s1355838200001126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The structural requirements for assembly of functional class II transfer RNA core regions have been examined by sequence analysis and tested by reconstruction of alternative folds into the tertiary domain of Escherichia coli tRNA(2)Gln. At least four distinct designs have been identified that permit stable folding and efficient synthetase recognition, as assessed by thermal melting profiles and glutaminylation kinetics. Although most large variable-arm tRNAs found in nature possess an enlarged D-loop, lack of this feature can be compensated for by insertion of nucleotides either 3' to the variable loop or within the short acceptor/D-stem connector region. Rare pyrimidines at nt 9 in the core region can be accommodated in the class II framework, but only if specific nucleotides are present either in the D-loop or 3' to the variable arm. Glutaminyl-tRNA synthetase requires one or two unpaired uridines 3' to the variable arm to efficiently aminoacylate several of the class II frameworks. Because there are no specific enzyme contacts in the tRNAGln core region, these data suggest that tRNA discrimination by GlnRS depends in part on indirect readout of RNA sequence information.
Collapse
Affiliation(s)
- T A Nissan
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, 93106-9510, USA
| | | |
Collapse
|
19
|
Sherlin LD, Bullock TL, Newberry KJ, Lipman RS, Hou YM, Beijer B, Sproat BS, Perona JJ. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. J Mol Biol 2000; 299:431-46. [PMID: 10860750 DOI: 10.1006/jmbi.2000.3749] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The position of the tertiary Levitt pair between nucleotides 15 and 48 in the transfer RNA core region suggests a key role in stabilizing the joining of the two helical domains, and in maintaining the relative orientations of the D and variable loops. E. coli tRNA(Gln) possesses the canonical Pu15-Py48 trans pairing at this position (G15-C48), while the tRNA(Cys) species from this organism instead features an unusual G15-G48 pair. To explore the structural context dependence of a G15-G48 Levitt pair, a number of tRNA(Gln) species containing G15-G48 were constructed and evaluated as substrates for glutaminyl and cysteinyl-tRNA synthetases. The glutaminylation efficiencies of these mutant tRNAs are reduced by two to tenfold compared with native tRNA(Gln), consistent with previous findings that the tertiary core of this tRNA plays a role in GlnRS recognition. Introduction of tRNA(Cys) identity nucleotides at the acceptor and anticodon ends of tRNA(Gln) produced a tRNA substrate which was efficiently aminoacylated by CysRS, even though the tertiary core region of this species contains the tRNA(Gln) G15-C48 pair. Surprisingly, introduction of G15-G48 into the non-cognate tRNA(Gln) tertiary core then significantly impairs CysRS recognition. By contrast, previous work has shown that CysRS aminoacylates tRNA(Cys) core regions containing G15-G48 with much better efficiency than those with G15-C48. Therefore, tertiary nucleotides surrounding the Levitt pair must significantly modulate the efficiency of aminoacylation by CysRS. To explore the detailed nature of the structural interdependence, crystal structures of two tRNA(Gln) mutants containing G15-G48 were determined bound to GlnRS. These structures show that the larger purine ring of G48 is accommodated by rotation into the syn position, with the N7 nitrogen serving as hydrogen bond acceptor from several groups of G15. The G15-G48 conformations differ significantly compared to that observed in the native tRNA(Cys) structure bound to EF-Tu, further implicating an important role for surrounding nucleotides in maintaining the integrity of the tertiary core and its consequent ability to present crucial recognition determinants to aminoacyl-tRNA synthetases.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/chemistry
- Amino Acyl-tRNA Synthetases/metabolism
- Base Pairing/genetics
- Base Sequence
- Binding Sites
- Catalysis
- Crystallization
- Crystallography, X-Ray
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Hydrogen Bonding
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/genetics
- RNA, Transfer, Cys/metabolism
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Sequence Alignment
- Substrate Specificity
Collapse
Affiliation(s)
- L D Sherlin
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, Santa Barbara, CA, 93106-9510, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bullock TL, Sherlin LD, Perona JJ. Tertiary core rearrangements in a tight binding transfer RNA aptamer. NATURE STRUCTURAL BIOLOGY 2000; 7:497-504. [PMID: 10881199 DOI: 10.1038/75910] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Guided by an in vitro selection experiment designed to obtain tight binding aptamers of Escherichia coli glutamine specific tRNA (tRNAGln) for glutaminyl-tRNA synthetase (GlnRS), we have engineered a tRNA mutant in which the five-nucleotide variable loop sequence 5'-44CAUUC48-3' is replaced by 5'-44AGGU48-3'. This mutant tRNA binds to GlnRS with 30-fold improved affinity compared to the wild type. The 2.7 A cocrystal structure of the RNA aptamer-GlnRS complex reveals major rearrangements in the central tertiary core of the tRNA, while maintaining an RNA-protein interface identical to the wild type. The repacked RNA core features a novel hydrogen bonding arrangement of the trans Levitt pair G15-U48, a new sulfate binding pocket in the major groove, and increased hydrophobic stacking interactions among the bases. These data suggest that enhanced protein binding to a mutant globular RNA can arise from stabilization of RNA tertiary interactions rather than optimization of RNA-protein contacts.
Collapse
Affiliation(s)
- T L Bullock
- Department of Chemistry and Biochemistry and Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, 93106-9510, USA
| | | | | |
Collapse
|
21
|
Abstract
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon/genetics
- Base Pairing/genetics
- Base Sequence
- Conserved Sequence/genetics
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genes, Suppressor/genetics
- Genetic Engineering
- Glutamine/metabolism
- Kinetics
- Leucine/metabolism
- Mutation/genetics
- Nucleic Acid Conformation
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/classification
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/classification
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Serine/metabolism
- Structure-Activity Relationship
- Substrate Specificity
Collapse
|
22
|
Abstract
The aminoacyl-tRNA synthetases are an ancient group of enzymes that catalyze the covalent attachment of an amino acid to its cognate transfer RNA. The question of specificity, that is, how each synthetase selects the correct individual or isoacceptor set of tRNAs for each amino acid, has been referred to as the second genetic code. A wealth of structural, biochemical, and genetic data on this subject has accumulated over the past 40 years. Although there are now crystal structures of sixteen of the twenty synthetases from various species, there are only a few high resolution structures of synthetases complexed with cognate tRNAs. Here we review briefly the structural information available for synthetases, and focus on the structural features of tRNA that may be used for recognition. Finally, we explore in detail the insights into specific recognition gained from classical and atomic group mutagenesis experiments performed with tRNAs, tRNA fragments, and small RNAs mimicking portions of tRNAs.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
23
|
Constantinesco F, Motorin Y, Grosjean H. Characterisation and enzymatic properties of tRNA(guanine 26, N (2), N (2))-dimethyltransferase (Trm1p) from Pyrococcus furiosus. J Mol Biol 1999; 291:375-92. [PMID: 10438627 DOI: 10.1006/jmbi.1999.2976] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural gene TRM1 encoding tRNA(guanine 26, N (2), N (2))-dimethyltransferase (Trm1p) of the hyperthermophilic archaeon Pyrococcus furiosus was cloned and expressed in Escherichia coli. The corresponding recombinant enzyme (pfTrm1p) with a His6-tag at the N terminus was purified to homogeneity in three steps. The enzyme has a native molecular mass of 49 kDa (as determined by gel filtration) and is very stable to heat denaturation (t1/2at 95 degrees C is two hours). pfTrm1p is a monomer and forms a one to one complex with T7 transcripts of yeast tRNA(Phe). It methylates a single guanine residue at position 26 using S -adenosyl- l -methionine as donor of the methyl groups. Depending on the incubation temperature, the type of tRNA transcript and the ratio of enzyme to tRNA, m(2)G26 or m(2)2G26 was the main product. The addition of the second methyl group to N (2)guanine 26 takes place in vitro through a monomethylated intermediate, and the enzyme dissociates from its tRNA substrate between the two consecutive methylation reactions. Identity elements in tRNA for mono- and dimethylation reactions by the recombinant pfTrm1p were identified using in vitro T7 transcripts of 33 variants of tRNA(Asp)and tRNA(Phe)from yeast. The efficient dimethylation of G26 requires the presence of base-pairs C11.G24 and G10.C25 and a variable loop of five bases within a correct 3D-core of the tRNA molecule. These identity elements probably ensure the correct presentation of monomethylated m(2)G26 to the enzyme for the attachment of the second methyl group. In contrast, the structural requirements for monomethylation of the same guanine 26 are much more relaxed and tolerate variations in the base-pairs of the D-stem, in the size of the variable loop or distortions of the 3D-architecture of the tRNA molecule.
Collapse
Affiliation(s)
- F Constantinesco
- Laboratoire d'Enzymologie et Biochimie Structurales, C.N.R.S., 1 av. de la Terrasse, Gif-sur-Yvette, F-91198, France
| | | | | |
Collapse
|