1
|
Batista M, Langendijk-Genevaux P, Kwapisz M, Canal I, Phung DK, Plassart L, Capeyrou R, Moalic Y, Jebbar M, Flament D, Fichant G, Bouvier M, Clouet-d'Orval B. Evolutionary and functional insights into the Ski2-like helicase family in Archaea: a comparison of Thermococcales ASH-Ski2 and Hel308 activities. NAR Genom Bioinform 2024; 6:lqae026. [PMID: 38500564 PMCID: PMC10946056 DOI: 10.1093/nargab/lqae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
RNA helicases perform essential housekeeping and regulatory functions in all domains of life by binding and unwinding RNA molecules. The Ski2-like proteins are primordial helicases that play an active role in eukaryotic RNA homeostasis pathways, with multiple homologs having specialized functions. The significance of the expansion and diversity of Ski2-like proteins in Archaea, the third domain of life, has not yet been established. Here, by studying the phylogenetic diversity of Ski2-like helicases among archaeal genomes and the enzymatic activities of those in Thermococcales, we provide further evidence of the function of this protein family in archaeal metabolism of nucleic acids. We show that, in the course of evolution, ASH-Ski2 and Hel308-Ski2, the two main groups of Ski2-like proteins, have diverged in their biological functions. Whereas Hel308 has been shown to mainly act on DNA, we show that ASH-Ski2, previously described to be associated with the 5'-3' aRNase J exonuclease, acts on RNA by supporting an efficient annealing activity, but also an RNA unwinding with a 3'-5' polarity. To gain insights into the function of Ski2, we also analyse the transcriptome of Thermococcus barophilus ΔASH-Ski2 mutant strain and provide evidence of the importance of ASH-Ski2 in cellular metabolism pathways related to translation.
Collapse
Affiliation(s)
- Manon Batista
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | | | - Marta Kwapisz
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Isabelle Canal
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Duy Khanh Phung
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Laura Plassart
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Régine Capeyrou
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Yann Moalic
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Didier Flament
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Gwennaele Fichant
- LMGM, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Marie Bouvier
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Béatrice Clouet-d'Orval
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| |
Collapse
|
2
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Vester K, Metz A, Huber S, Loll B, Wahl MC. Conformation-dependent ligand hot spots in the spliceosomal RNA helicase BRR2. Acta Crystallogr D Struct Biol 2023; 79:304-317. [PMID: 36974964 PMCID: PMC10071561 DOI: 10.1107/s2059798323001778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
The conversion of hits to leads in drug discovery involves the elaboration of chemical core structures to increase their potency. In fragment-based drug discovery, low-molecular-weight compounds are tested for protein binding and are subsequently modified, with the tacit assumption that the binding mode of the original hit will be conserved among the derivatives. However, deviations from binding mode conservation are rather frequently observed, but potential causes of these alterations remain incompletely understood. Here, two crystal forms of the spliceosomal RNA helicase BRR2 were employed as a test case to explore the consequences of conformational changes in the target protein on the binding behaviour of fragment derivatives. The initial fragment, sulfaguanidine, bound at the interface between the two helicase cassettes of BRR2 in one crystal form. Second-generation compounds devised by structure-guided docking were probed for their binding to BRR2 in a second crystal form, in which the original fragment-binding site was altered due to a conformational change. While some of the second-generation compounds retained binding to parts of the original site, others changed to different binding pockets of the protein. A structural bioinformatics analysis revealed that the fragment-binding sites correspond to predicted binding hot spots, which strongly depend on the protein conformation. This case study offers an example of extensive binding-mode changes during hit derivatization, which are likely to occur as a consequence of multiple binding hot spots, some of which are sensitive to the flexibility of the protein.
Collapse
Affiliation(s)
- Karen Vester
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Alexander Metz
- Drug Design Group, Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Simon Huber
- Drug Design Group, Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Markus C. Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
4
|
Best K, Ikeuchi K, Kater L, Best D, Musial J, Matsuo Y, Berninghausen O, Becker T, Inada T, Beckmann R. Structural basis for clearing of ribosome collisions by the RQT complex. Nat Commun 2023; 14:921. [PMID: 36801861 PMCID: PMC9938168 DOI: 10.1038/s41467-023-36230-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
Translation of aberrant messenger RNAs can cause stalling of ribosomes resulting in ribosomal collisions. Collided ribosomes are specifically recognized to initiate stress responses and quality control pathways. Ribosome-associated quality control facilitates the degradation of incomplete translation products and requires dissociation of the stalled ribosomes. A central event is therefore the splitting of collided ribosomes by the ribosome quality control trigger complex, RQT, by an unknown mechanism. Here we show that RQT requires accessible mRNA and the presence of a neighboring ribosome. Cryogenic electron microscopy of RQT-ribosome complexes reveals that RQT engages the 40S subunit of the lead ribosome and can switch between two conformations. We propose that the Ski2-like helicase 1 (Slh1) subunit of RQT applies a pulling force on the mRNA, causing destabilizing conformational changes of the small ribosomal subunit, ultimately resulting in subunit dissociation. Our findings provide conceptual framework for a helicase-driven ribosomal splitting mechanism.
Collapse
Affiliation(s)
- Katharina Best
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Ken Ikeuchi
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Lukas Kater
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Daniel Best
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Joanna Musial
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| |
Collapse
|
5
|
Wang J, Xiao X, Li S, Jiang H, Sun W, Wang P, Zhang Q. Landscape of pathogenic variants in six pre-mRNA processing factor genes for retinitis pigmentosa based on large in-house data sets and database comparisons. Acta Ophthalmol 2022; 100:e1412-e1425. [PMID: 35138024 DOI: 10.1111/aos.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Variants in six genes encoding pre-mRNA processing factors (PRPFs) are a common cause of autosomal dominant retinitis pigmentosa (ADRP). This study aims to determine the characteristics of potential pathogenic variants (PPVs) in the six genes. METHODS Variants in six PRPF genes were identified from in-house exome sequencing data. PPVs were identified based on comparative bioinformatics analysis, clinical phenotypes and the ACMG/AMP guidelines. The features of PPVs were revealed by comparative analysis of in-house data set, gnomAD and previously published literature. RESULTS Totally, 36 heterozygous PPVs, including 19 novels, were detected from 45 families, which contributed to 4.4% (45/1019) of RP cases. These PPVs were distributed in PRPF31 (17/45, 37.8%), SNRNP200 (12/45, 26.7%), PRPF8 (10/45, 22.2%) and PRPF3 (6/45, 13.3%) but not in PRPF6 or PRPF4. Different types of PPVs were predominant in different PRPF genes, such as loss-of-function variants in PRPF31 and missense variants in the five remaining genes. The clustering of PPVs in specific regions was observed in SNRNP200, PRPF8 and PRPF3. The pathogenicity for certain classes of variants in these genes, such as loss-of-function variants in PRPF6 and missense variants in PRPF31 and PRPF4, requires careful consideration and further validation. The predominant fundus changes were early macular involvement, widespread RPE atrophy and pigmentation in the mid- and far-peripheral retina. CONCLUSION Systemic comparative analysis may shed light on the characterization of PPVs in these genes. Our findings provide a brief landscape of PPVs in PRPF genes and the associated phenotypes and emphasize the careful classification of pathogenicity for certain types of variants that warrant further characterization.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongmei Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Bergfort A, Preußner M, Kuropka B, Ilik İA, Hilal T, Weber G, Freund C, Aktaş T, Heyd F, Wahl MC. A multi-factor trafficking site on the spliceosome remodeling enzyme BRR2 recruits C9ORF78 to regulate alternative splicing. Nat Commun 2022; 13:1132. [PMID: 35241646 PMCID: PMC8894380 DOI: 10.1038/s41467-022-28754-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
The intrinsically unstructured C9ORF78 protein was detected in spliceosomes but its role in splicing is presently unclear. We find that C9ORF78 tightly interacts with the spliceosome remodeling factor, BRR2, in vitro. Affinity purification/mass spectrometry and RNA UV-crosslinking analyses identify additional C9ORF78 interactors in spliceosomes. Cryogenic electron microscopy structures reveal how C9ORF78 and the spliceosomal B complex protein, FBP21, wrap around the C-terminal helicase cassette of BRR2 in a mutually exclusive manner. Knock-down of C9ORF78 leads to alternative NAGNAG 3'-splice site usage and exon skipping, the latter dependent on BRR2. Inspection of spliceosome structures shows that C9ORF78 could contact several detected spliceosome interactors when bound to BRR2, including the suggested 3'-splice site regulating helicase, PRPF22. Together, our data establish C9ORF78 as a late-stage splicing regulatory protein that takes advantage of a multi-factor trafficking site on BRR2, providing one explanation for suggested roles of BRR2 during splicing catalysis and alternative splicing.
Collapse
Affiliation(s)
- Alexandra Bergfort
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Yale University, Molecular Biophysics and Biochemistry, New Haven, CT, USA
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Berlin, Germany
| | | | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Berlin, Germany
| | - Gert Weber
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Christian Freund
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Berlin, Germany
| | - Tuğçe Aktaş
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany.
| |
Collapse
|
7
|
Bergfort A, Hilal T, Kuropka B, Ilik İA, Weber G, Aktaş T, Freund C, Wahl MC. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2938-2958. [PMID: 35188580 PMCID: PMC8934646 DOI: 10.1093/nar/gkac087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and their recycling after splicing require numerous assembly/recycling factors whose modes of action are often poorly understood. The intrinsically disordered TSSC4 protein has been identified as a nuclear-localized U5 snRNP and U4/U6-U5 tri-snRNP assembly/recycling factor, but how TSSC4’s intrinsic disorder supports TSSC4 functions remains unknown. Using diverse interaction assays and cryogenic electron microscopy-based structural analysis, we show that TSSC4 employs four conserved, non-contiguous regions to bind the PRPF8 Jab1/MPN domain and the SNRNP200 helicase at functionally important sites. It thereby inhibits SNRNP200 helicase activity, spatially aligns the proteins, coordinates formation of a U5 sub-module and transiently blocks premature interaction of SNRNP200 with at least three other spliceosomal factors. Guided by the structure, we designed a TSSC4 variant that lacks stable binding to the PRPF8 Jab1/MPN domain or SNRNP200 in vitro. Comparative immunoprecipitation/mass spectrometry from HEK293 nuclear extract revealed distinct interaction profiles of wild type TSSC4 and the variant deficient in PRPF8/SNRNP200 binding with snRNP proteins, other spliceosomal proteins as well as snRNP assembly/recycling factors and chaperones. Our findings elucidate molecular strategies employed by an intrinsically disordered protein to promote snRNP assembly, and suggest multiple TSSC4-dependent stages during snRNP assembly/recycling.
Collapse
Affiliation(s)
- Alexandra Bergfort
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, D-14195, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Thielallee 63, D-14195, Berlin, Germany
| | - İbrahim Avşar Ilik
- Max Planck Institute for Molecular Genetics, Ihnestr. 63, D-14195 Berlin, Germany
| | - Gert Weber
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | - Tuğçe Aktaş
- Max Planck Institute for Molecular Genetics, Ihnestr. 63, D-14195 Berlin, Germany
| | - Christian Freund
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, D-14195, Berlin, Germany
| | - Markus C Wahl
- To whom correspondence should be addressed. Tel: +49 30 838 53456; Fax: +49 30 8384 53456;
| |
Collapse
|
8
|
Absmeier E, Vester K, Ghane T, Burakovskiy D, Milon P, Imhof P, Rodnina MV, Santos KF, Wahl MC. Long-range allostery mediates cooperative adenine nucleotide binding by the Ski2-like RNA helicase Brr2. J Biol Chem 2021; 297:100829. [PMID: 34048711 PMCID: PMC8220420 DOI: 10.1016/j.jbc.2021.100829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Brr2 is an essential Ski2-like RNA helicase that exhibits a unique structure among the spliceosomal helicases. Brr2 harbors a catalytically active N-terminal helicase cassette and a structurally similar but enzymatically inactive C-terminal helicase cassette connected by a linker region. Both cassettes contain a nucleotide-binding pocket, but it is unclear whether nucleotide binding in these two pockets is related. Here we use biophysical and computational methods to delineate the functional connectivity between the cassettes and determine whether occupancy of one nucleotide-binding site may influence nucleotide binding at the other cassette. Our results show that Brr2 exhibits high specificity for adenine nucleotides, with both cassettes binding ADP tighter than ATP. Adenine nucleotide affinity for the inactive C-terminal cassette is more than two orders of magnitude higher than that of the active N-terminal cassette, as determined by slow nucleotide release. Mutations at the intercassette surfaces and in the connecting linker diminish the affinity of adenine nucleotides for both cassettes. Moreover, we found that abrogation of nucleotide binding at the C-terminal cassette reduces nucleotide binding at the N-terminal cassette 70 Å away. Molecular dynamics simulations identified structural communication lines that likely mediate these long-range allosteric effects, predominantly across the intercassette interface. Together, our results reveal intricate networks of intramolecular interactions in the complex Brr2 RNA helicase, which fine-tune its nucleotide affinities and which could be exploited to regulate enzymatic activity during splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Karen Vester
- Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tahereh Ghane
- Computational Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Dmitry Burakovskiy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Pohl Milon
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Petra Imhof
- Computational Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Karine F Santos
- Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Markus C Wahl
- Structural Biochemistry, Freie Universität Berlin, Berlin, Germany; Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
| |
Collapse
|
9
|
Absmeier E, Wahl MC. Characterization of the Brr2 RNA Helicase and Its Regulation by Other Spliceosomal Proteins Using Gel-Based U4/U6 Di-snRNA Binding and Unwinding Assays. Methods Mol Biol 2021; 2209:193-215. [PMID: 33201471 DOI: 10.1007/978-1-0716-0935-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Functional aspects of nucleic acid helicases can be interrogated by various in vitro methods, using purified components, including nucleic acid binding and unwinding assays. Here we describe detailed protocols for the production and purification of the spliceosomal Ski2-like RNA helicase, Brr2, and one of its regulatory factors, the Jab1 domain of the Prp8 protein from yeast. Furthermore, we include a production protocol for radioactively labeled yeast U4/U6 di-snRNA substrate. We describe polyacrylamide gel-based assays to investigate Brr2's RNA binding and unwinding activities. The purification protocols and activity assays can be easily adapted for the purification and functional interrogation of other helicases, cofactors, and RNA substrates.
Collapse
Affiliation(s)
- Eva Absmeier
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge, UK
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.
| |
Collapse
|
10
|
Vester K, Santos KF, Kuropka B, Weise C, Wahl MC. The inactive C-terminal cassette of the dual-cassette RNA helicase BRR2 both stimulates and inhibits the activity of the N-terminal helicase unit. J Biol Chem 2019; 295:2097-2112. [PMID: 31914407 DOI: 10.1074/jbc.ra119.010964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/27/2019] [Indexed: 11/06/2022] Open
Abstract
The RNA helicase bad response to refrigeration 2 homolog (BRR2) is required for the activation of the spliceosome before the first catalytic step of RNA splicing. BRR2 represents a distinct subgroup of Ski2-like nucleic acid helicases whose members comprise tandem helicase cassettes. Only the N-terminal cassette of BRR2 is an active ATPase and can unwind substrate RNAs. The C-terminal cassette represents a pseudoenzyme that can stimulate RNA-related activities of the N-terminal cassette. However, the molecular mechanisms by which the C-terminal cassette modulates the activities of the N-terminal unit remain elusive. Here, we show that N- and C-terminal cassettes adopt vastly different relative orientations in a crystal structure of BRR2 in complex with an activating domain of the spliceosomal Prp8 protein at 2.4 Å resolution compared with the crystal structure of BRR2 alone. Likewise, inspection of BRR2 structures within spliceosomal complexes revealed that the cassettes occupy different relative positions and engage in different intercassette contacts during different splicing stages. Engineered disulfide bridges that locked the cassettes in two different relative orientations had opposite effects on the RNA-unwinding activity of the N-terminal cassette, with one configuration enhancing and the other configuration inhibiting RNA unwinding compared with the unconstrained protein. Moreover, we found that differences in relative positioning of the cassettes strongly influence RNA-stimulated ATP hydrolysis by the N-terminal cassette. Our results indicate that the inactive C-terminal cassette of BRR2 can both positively and negatively affect the activity of the N-terminal helicase unit from a distance.
Collapse
Affiliation(s)
- Karen Vester
- Structural Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Takustrasse 63, D-14195 Berlin, Germany
| | - Karine F Santos
- Structural Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Takustrasse 63, D-14195 Berlin, Germany
| | - Benno Kuropka
- Protein Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Christoph Weise
- Protein Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Markus C Wahl
- Structural Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Takustrasse 63, D-14195 Berlin, Germany; Macromolecular Crystallography Group, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany.
| |
Collapse
|
11
|
Molecular Mechanism Underlying Inhibition of Intrinsic ATPase Activity in a Ski2-like RNA Helicase. Structure 2019; 28:236-243.e3. [PMID: 31859026 DOI: 10.1016/j.str.2019.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022]
Abstract
RNA-dependent NTPases can act as RNA/RNA-protein remodeling enzymes and typically exhibit low NTPase activity in the absence of RNA/RNA-protein substrates. How futile intrinsic NTP hydrolysis is prevented is frequently not known. The ATPase/RNA helicase Brr2 belongs to the Ski2-like family of nucleic acid-dependent NTPases and is an integral component of the spliceosome. Comprehensive nucleotide binding and hydrolysis studies are not available for a member of the Ski2-like family. We present crystal structures of Chaetomium thermophilum Brr2 in the apo, ADP-bound, and ATPγS-bound states, revealing nucleotide-induced conformational changes and a hitherto unknown ATPγS binding mode. Our results in conjunction with Brr2 structures in other molecular contexts reveal multiple molecular mechanisms that contribute to the inhibition of intrinsic ATPase activity, including an N-terminal region that restrains the RecA-like domains in an open conformation and exclusion of an attacking water molecule, and suggest how RNA substrate binding can lead to ATPase stimulation.
Collapse
|
12
|
An Allosteric Network for Spliceosome Activation Revealed by High-Throughput Suppressor Analysis in Saccharomyces cerevisiae. Genetics 2019; 212:111-124. [PMID: 30898770 DOI: 10.1534/genetics.119.301922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
Selection of suppressor mutations that correct growth defects caused by substitutions in an RNA or protein can reveal functionally important molecular structures and interactions in living cells. This approach is particularly useful for the study of complex biological pathways involving many macromolecules, such as premessenger RNA (pre-mRNA) splicing. When a sufficiently large number of suppressor mutations is obtained and structural information is available, it is possible to generate detailed models of molecular function. However, the laborious and expensive task of identifying suppressor mutations in whole-genome selections limits the utility of this approach. Here I show that a custom targeted sequencing panel can greatly accelerate the identification of suppressor mutations in the Saccharomyces cerevisiae genome. Using a panel that targets 112 genes encoding pre-mRNA splicing factors, I identified 27 unique mutations in six protein-coding genes that each overcome the cold-sensitive block to spliceosome activation caused by a substitution in U4 small nuclear RNA. When mapped to existing structures of spliceosomal complexes, the identified suppressors implicate specific molecular contacts between the proteins Brr2, Prp6, Prp8, Prp31, Sad1, and Snu114 as functionally important in an early step of catalytic activation of the spliceosome. This approach shows great promise for elucidating the allosteric cascade of molecular interactions that direct accurate and efficient pre-mRNA splicing and should be broadly useful for understanding the dynamics of other complex biological assemblies or pathways.
Collapse
|
13
|
Studying structure and function of spliceosomal helicases. Methods 2017; 125:63-69. [PMID: 28668587 DOI: 10.1016/j.ymeth.2017.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 12/27/2022] Open
Abstract
The splicing of eukaryotic precursor mRNAs requires the activity of at least three DEAD-box helicases, one Ski2-like helicase and four DEAH-box helicases. High resolution structures for five of these spliceosomal helicases were obtained by means of X-ray crystallography. Additional low resolution structural information could be derived from single particle cryo electron microscopy and small angle X-ray scattering. The functional characterization includes biochemical methods to measure the ATPase and helicase activities. This review gives an overview on the techniques used to gain insights in to the structure and function of spliceosomal helicases.
Collapse
|
14
|
Iwatani-Yoshihara M, Ito M, Klein MG, Yamamoto T, Yonemori K, Tanaka T, Miwa M, Morishita D, Endo S, Tjhen R, Qin L, Nakanishi A, Maezaki H, Kawamoto T. Discovery of Allosteric Inhibitors Targeting the Spliceosomal RNA Helicase Brr2. J Med Chem 2017; 60:5759-5771. [PMID: 28586220 DOI: 10.1021/acs.jmedchem.7b00461] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brr2 is an RNA helicase belonging to the Ski2-like subfamily and an essential component of spliceosome. Brr2 catalyzes an ATP-dependent unwinding of the U4/U6 RNA duplex, which is a critical step for spliceosomal activation. An HTS campaign using an RNA-dependent ATPase assay and initial SAR study identified two different Brr2 inhibitors, 3 and 12. Cocrystal structures revealed 3 binds to an unexpected allosteric site between the C-terminal and the N-terminal helicase cassettes, while 12 binds an RNA-binding site inside the N-terminal cassette. Selectivity profiling indicated the allosteric inhibitor 3 is more Brr2-selective than the RNA site binder 12. Chemical optimization of 3 using SBDD culminated in the discovery of the potent and selective Brr2 inhibitor 9 with helicase inhibitory activity. Our findings demonstrate an effective strategy to explore selective inhibitors for helicases, and 9 could be a promising starting point for exploring molecular probes to elucidate biological functions and the therapeutic relevance of Brr2.
Collapse
Affiliation(s)
| | | | - Michael G Klein
- Department of Structural Biology, Takeda California Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | | | | | | | | | | | | | - Richard Tjhen
- Department of Structural Biology, Takeda California Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Ling Qin
- Department of Structural Biology, Takeda California Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | | | | | | |
Collapse
|
15
|
Ezquerra-Inchausti M, Barandika O, Anasagasti A, Irigoyen C, López de Munain A, Ruiz-Ederra J. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa. Sci Rep 2017; 7:39652. [PMID: 28045043 PMCID: PMC5206707 DOI: 10.1038/srep39652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/24/2016] [Indexed: 01/24/2023] Open
Abstract
Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes.
Collapse
Affiliation(s)
| | - Olatz Barandika
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ander Anasagasti
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Cristina Irigoyen
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,Department of Ophthalmology, Donostia University Hospital, San Sebastián, Spain
| | - Adolfo López de Munain
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,Department of Neurology, Donostia University Hospital, San Sebastián, Spain.,CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain.,Department of Neurosciences, University of the Basque Country UPV-EHU, Spain
| | - Javier Ruiz-Ederra
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| |
Collapse
|
16
|
Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast step II catalytically activated spliceosome. Science 2016; 355:149-155. [PMID: 27980089 DOI: 10.1126/science.aak9979] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Abstract
Each cycle of precursor messenger RNA (pre-mRNA) splicing comprises two sequential reactions, first freeing the 5' exon and generating an intron lariat-3' exon and then ligating the two exons and releasing the intron lariat. The second reaction is executed by the step II catalytically activated spliceosome (known as the C* complex). Here, we present the cryo-electron microscopy structure of a C* complex from Saccharomyces cerevisiae at an average resolution of 4.0 angstroms. Compared with the preceding spliceosomal complex (C complex), the lariat junction has been translocated by 15 to 20 angstroms to vacate space for the incoming 3'-exon sequences. The step I splicing factors Cwc25 and Yju2 have been dissociated from the active site. Two catalytic motifs from Prp8 (the 1585 loop and the β finger of the ribonuclease H-like domain), along with the step II splicing factors Prp17 and Prp18 and other surrounding proteins, are poised to assist the second transesterification. These structural features, together with those reported for other spliceosomal complexes, yield a near-complete mechanistic picture on the splicing cycle.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Absmeier E, Becke C, Wollenhaupt J, Santos KF, Wahl MC. Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2. Cell Cycle 2016; 16:100-112. [PMID: 27880071 DOI: 10.1080/15384101.2016.1255384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Christian Becke
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Jan Wollenhaupt
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Karine F Santos
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Markus C Wahl
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany.,b Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography , Berlin , Germany
| |
Collapse
|
18
|
Absmeier E, Santos KF, Wahl MC. Functions and regulation of the Brr2 RNA helicase during splicing. Cell Cycle 2016; 15:3362-3377. [PMID: 27792457 DOI: 10.1080/15384101.2016.1249549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pre-mRNA splicing entails the stepwise assembly of an inactive spliceosome, its catalytic activation, splicing catalysis and spliceosome disassembly. Transitions in this reaction cycle are accompanied by compositional and conformational rearrangements of the underlying RNA-protein interaction networks, which are driven and controlled by 8 conserved superfamily 2 RNA helicases. The Ski2-like helicase, Brr2, provides the key remodeling activity during spliceosome activation and is additionally implicated in the catalytic and disassembly phases of splicing, indicating that Brr2 needs to be tightly regulated during splicing. Recent structural and functional analyses have begun to unravel how Brr2 regulation is established via multiple layers of intra- and inter-molecular mechanisms. Brr2 has an unusual structure, including a long N-terminal region and a catalytically inactive C-terminal helicase cassette, which can auto-inhibit and auto-activate the enzyme, respectively. Both elements are essential, also serve as protein-protein interaction devices and the N-terminal region is required for stable Brr2 association with the tri-snRNP, tri-snRNP stability and retention of U5 and U6 snRNAs during spliceosome activation in vivo. Furthermore, a C-terminal region of the Prp8 protein, comprising consecutive RNase H-like and Jab1/MPN-like domains, can both up- and down-regulate Brr2 activity. Biochemical studies revealed an intricate cross-talk among the various cis- and trans-regulatory mechanisms. Comparison of isolated Brr2 to electron cryo-microscopic structures of yeast and human U4/U6•U5 tri-snRNPs and spliceosomes indicates how some of the regulatory elements exert their functions during splicing. The various modulatory mechanisms acting on Brr2 might be exploited to enhance splicing fidelity and to regulate alternative splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Karine F Santos
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Markus C Wahl
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany.,b Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography , Berlin , Germany
| |
Collapse
|
19
|
Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast activated spliceosome at 3.5 Å resolution. Science 2016; 353:904-11. [PMID: 27445306 DOI: 10.1126/science.aag0291] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022]
Abstract
Pre-messenger RNA (pre-mRNA) splicing is carried out by the spliceosome, which undergoes an intricate assembly and activation process. Here, we report an atomic structure of an activated spliceosome (known as the B(act) complex) from Saccharomyces cerevisiae, determined by cryo-electron microscopy at an average resolution of 3.52 angstroms. The final refined model contains U2 and U5 small nuclear ribonucleoprotein particles (snRNPs), U6 small nuclear RNA (snRNA), nineteen complex (NTC), NTC-related (NTR) protein, and a 71-nucleotide pre-mRNA molecule, which amount to 13,505 amino acids from 38 proteins and a combined molecular mass of about 1.6 megadaltons. The 5' exon is anchored by loop I of U5 snRNA, whereas the 5' splice site (5'SS) and the branch-point sequence (BPS) of the intron are specifically recognized by U6 and U2 snRNA, respectively. Except for coordination of the catalytic metal ions, the RNA elements at the catalytic cavity of Prp8 are mostly primed for catalysis. The catalytic latency is maintained by the SF3b complex, which encircles the BPS, and the splicing factors Cwc24 and Prp11, which shield the 5' exon-5'SS junction. This structure, together with those determined earlier, outlines a molecular framework for the pre-mRNA splicing reaction.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Substrate-assisted mechanism of RNP disruption by the spliceosomal Brr2 RNA helicase. Proc Natl Acad Sci U S A 2016; 113:7798-803. [PMID: 27354531 DOI: 10.1073/pnas.1524616113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Brr2 RNA helicase disrupts the U4/U6 di-small nuclear RNA-protein complex (di-snRNP) during spliceosome activation via ATP-driven translocation on the U4 snRNA strand. However, it is unclear how bound proteins influence U4/U6 unwinding, which regions of the U4/U6 duplex the helicase actively unwinds, and whether U4/U6 components are released as individual molecules or as subcomplexes. Here, we set up a recombinant Brr2-mediated U4/U6 di-snRNP disruption system, showing that sequential addition of the U4/U6 proteins small nuclear ribonucleoprotein-associated protein 1 (Snu13), pre-mRNA processing factor 31 (Prp31), and Prp3 to U4/U6 di-snRNA leads to a stepwise decrease of Brr2-mediated U4/U6 unwinding, but that unwinding is largely restored by a Brr2 cofactor, the C-terminal Jab1/MPN domain of the Prp8 protein. Brr2-mediated U4/U6 unwinding was strongly inhibited by mutations in U4/U6 di-snRNAs that diminish the ability of U6 snRNA to adopt an alternative conformation but leave the number and kind of U4/U6 base pairs unchanged. Irrespective of the presence of the cofactor, the helicase segregated a Prp3-Prp31-Snu13-U4/U6 RNP into an intact Prp31-Snu13-U4 snRNA particle, free Prp3, and free U6 snRNA. Together, these observations suggest that Brr2 translocates only a limited distance on the U4 snRNA strand and does not actively release RNA-bound proteins. Unwinding is then completed by the partially displaced U6 snRNA adopting an alternative conformation, which leads to dismantling of the Prp3-binding site on U4/U6 di-snRNA but leaves the Prp31- and Snu13-binding sites on U4 snRNA unaffected. In this fashion, Brr2 can activate the spliceosome by stripping U6 snRNA of all precatalytic binding partners, while minimizing logistic requirements for U4/U6 di-snRNP reassembly after splicing.
Collapse
|
21
|
Abstract
A majority of human genes contain non-coding intervening sequences – introns that must be precisely excised from the pre-mRNA molecule. This event requires the coordinated action of five major small nuclear ribonucleoprotein particles (snRNPs) along with additional non-snRNP splicing proteins. Introns must be removed with nucleotidal precision, since even a single nucleotide mistake would result in a reading frame shift and production of a non-functional protein. Numerous human inherited diseases are caused by mutations that affect splicing, including mutations in proteins which are directly involved in splicing catalysis. One of the most common hereditary diseases associated with mutations in core splicing proteins is retinitis pigmentosa (RP). So far, mutations in more than 70 genes have been connected to RP. While the majority of mutated genes are expressed specifically in the retina, eight target genes encode for ubiquitous core snRNP proteins (Prpf3, Prpf4, Prpf6, Prpf8, Prpf31, and SNRNP200/Brr2) and splicing factors (RP9 and DHX38). Why mutations in spliceosomal proteins, which are essential in nearly every cell in the body, causes a disease that displays such a tissue-specific phenotype is currently a mystery. In this review, we recapitulate snRNP functions, summarize the missense mutations which are found in spliceosomal proteins as well as their impact on protein functions and discuss specific models which may explain why the retina is sensitive to these mutations.
Collapse
Affiliation(s)
- Šárka Růžičková
- a Department of RNA Biology , Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - David Staněk
- a Department of RNA Biology , Institute of Molecular Genetics AS CR , Prague , Czech Republic
| |
Collapse
|
22
|
Ledoux S, Guthrie C. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity. J Biol Chem 2016; 291:11954-65. [PMID: 27072132 DOI: 10.1074/jbc.m115.710848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 11/06/2022] Open
Abstract
Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices.
Collapse
Affiliation(s)
- Sarah Ledoux
- From the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Christine Guthrie
- From the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
23
|
Vichas A, Laurie MT, Zallen JA. The Ski2-family helicase Obelus regulates Crumbs alternative splicing and cell polarity. J Cell Biol 2016; 211:1011-24. [PMID: 26644515 PMCID: PMC4674277 DOI: 10.1083/jcb.201504083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The conserved Ski2-family helicase Obelus regulates alternative splicing of the Crumbs polarity protein to control epithelial polarity and junctional organization in Drosophila. Alternative splicing can have profound consequences for protein activity, but the functions of most alternative splicing regulators are not known. We show that Obelus, a conserved Ski2-family helicase, is required for cell polarity and adherens junction organization in the Drosophila melanogaster embryo. In obelus mutants, epithelial cells display an expanded apical domain, aggregation of adherens junctions at the cell membrane, and microtubule-dependent defects in centrosome positioning. Through whole-genome transcriptome analysis, we found that Obelus is required for the alternative splicing of a small number of transcripts in the early embryo, including the pre-mRNA that encodes the apical polarity protein Crumbs. In obelus mutants, inclusion of an alternative exon results in increased expression of a Crumbs isoform that contains an additional epidermal growth factor–like repeat in the extracellular domain. Overexpression of this alternative Crumbs isoform recapitulates the junctional aggregation and centrosome positioning defects of obelus mutants. These results indicate that regulation of Crumbs alternative splicing by the Obelus helicase modulates epithelial polarity during development.
Collapse
Affiliation(s)
- Athea Vichas
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Matthew T Laurie
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jennifer A Zallen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
24
|
de Almeida RA, O'Keefe RT. The NineTeen Complex (NTC) and NTC-associated proteins as targets for spliceosomal ATPase action during pre-mRNA splicing. RNA Biol 2015; 12:109-14. [PMID: 25654271 PMCID: PMC4615276 DOI: 10.1080/15476286.2015.1008926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pre-mRNA splicing is an essential step in gene expression that removes intron sequences efficiently and accurately to produce a mature mRNA for translation. It is the large and dynamic RNA-protein complex called the spliceosome that catalyzes intron removal. To carry out splicing the spliceosome not only needs to assemble correctly with the pre-mRNA but the spliceosome requires extensive remodelling of its RNA and protein components to execute the 2 steps of intron removal. Spliceosome remodelling is achieved through the action of ATPases that target both RNA and proteins to produce spliceosome conformations competent for each step of spliceosome activation, catalysis and disassembly. An increasing amount of research has pointed to the spliceosome associated NineTeen Complex (NTC) of proteins as targets for the action of a number of the spliceosomal ATPases during spliceosome remodelling. In this point-of-view article we present the latest findings on the changes in the NTC that occur following ATPase action that are required for spliceosome activation, catalysis and disassembly. We proposed that the NTC is one of the main targets of ATPase action during spliceosome remodelling required for pre-mRNA splicing.
Collapse
|
25
|
Absmeier E, Wollenhaupt J, Mozaffari-Jovin S, Becke C, Lee CT, Preussner M, Heyd F, Urlaub H, Lührmann R, Santos KF, Wahl MC. The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation. Genes Dev 2015; 29:2576-87. [PMID: 26637280 PMCID: PMC4699386 DOI: 10.1101/gad.271528.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/13/2015] [Indexed: 01/06/2023]
Abstract
In this study, Absmeier et al. used a combination of X-ray crystallography, cross-linking/mass spectrometry, and in vivo and in vitro biochemical functional investigations to investigate the structural organization, functions, and molecular mechanisms of the NTR of the Brr2 helicase. The findings reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel regulation of Brr2-dependent splicing. The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation.
Collapse
Affiliation(s)
- Eva Absmeier
- Laboratory of Structural Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Jan Wollenhaupt
- Laboratory of Structural Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Christian Becke
- Laboratory of Structural Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Chung-Tien Lee
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Georg-August-Universität, D-37099 Göttingen, Germany
| | - Marco Preussner
- Laboratory of RNA Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Georg-August-Universität, D-37099 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Karine F Santos
- Laboratory of Structural Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
26
|
Hardin JW, Warnasooriya C, Kondo Y, Nagai K, Rueda D. Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET. Nucleic Acids Res 2015; 43:10963-74. [PMID: 26503251 PMCID: PMC4678811 DOI: 10.1093/nar/gkv1011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
In large ribonucleoprotein machines, such as ribosomes and spliceosomes, RNA functions as an assembly scaffold as well as a critical catalytic component. Protein binding to the RNA scaffold can induce structural changes, which in turn modulate subsequent binding of other components. The spliceosomal U4/U6 di-snRNP contains extensively base paired U4 and U6 snRNAs, Snu13, Prp31, Prp3 and Prp4, seven Sm and seven LSm proteins. We have studied successive binding of all protein components to the snRNA duplex during di-snRNP assembly by electrophoretic mobility shift assay and accompanying conformational changes in the U4/U6 RNA 3-way junction by single-molecule FRET. Stems I and II of the duplex were found to co-axially stack in free RNA and function as a rigid scaffold during the entire assembly, but the U4 snRNA 5' stem-loop adopts alternative orientations each stabilized by Prp31 and Prp3/4 binding accounting for altered Prp3/4 binding affinities in presence of Prp31.
Collapse
Affiliation(s)
- John W Hardin
- Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Chandani Warnasooriya
- Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Yasushi Kondo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Rueda
- Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| |
Collapse
|
27
|
Liu YC, Cheng SC. Functional roles of DExD/H-box RNA helicases in Pre-mRNA splicing. J Biomed Sci 2015; 22:54. [PMID: 26173448 PMCID: PMC4503299 DOI: 10.1186/s12929-015-0161-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/29/2015] [Indexed: 01/30/2023] Open
Abstract
Splicing of precursor mRNA takes place via two consecutive steps of transesterification catalyzed by a large ribonucleoprotein complex called the spliceosome. The spliceosome is assembled through ordered binding to the pre-mRNA of five small nuclear RNAs and numerous protein factors, and is disassembled after completion of the reaction to recycle all components. Throughout the splicing cycle, the spliceosome changes its structure, rearranging RNA-RNA, RNA-protein and protein-protein interactions, for positioning and repositioning of splice sites. DExD/H-box RNA helicases play important roles in mediating structural changes of the spliceosome by unwinding of RNA duplexes or disrupting RNA-protein interactions. DExD/H-box proteins are also implicated in the fidelity control of the splicing process at various steps. This review summarizes the functional roles of DExD/H-box proteins in pre-mRNA splicing according to studies conducted mostly in yeast and will discuss the concept of the complicated splicing reaction based on recent findings.
Collapse
Affiliation(s)
- Yen-Chi Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| |
Collapse
|
28
|
Absmeier E, Rosenberger L, Apelt L, Becke C, Santos KF, Stelzl U, Wahl MC. A noncanonical PWI domain in the N-terminal helicase-associated region of the spliceosomal Brr2 protein. ACTA ACUST UNITED AC 2015; 71:762-71. [DOI: 10.1107/s1399004715001005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022]
Abstract
The spliceosomal RNA helicase Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. Brr2 exhibits an unusual organization with tandem helicase units, each comprising dual RecA-like domains and a Sec63 homology unit, preceded by a more than 400-residue N-terminal helicase-associated region. Whereas recent crystal structures have provided insights into the molecular architecture and regulation of the Brr2 helicase region, little is known about the structural organization and function of its N-terminal part. Here, a near-atomic resolution crystal structure of a PWI-like domain that resides in the N-terminal region ofChaetomium thermophilumBrr2 is presented. CD spectroscopic studies suggested that this domain is conserved in the yeast and human Brr2 orthologues. Although canonical PWI domains act as low-specificity nucleic acid-binding domains, no significant affinity of the unusual PWI domain of Brr2 for a broad spectrum of DNAs and RNAs was detected in band-shift assays. Consistently, theC. thermophilumBrr2 PWI-like domain, in the conformation seen in the present crystal structure, lacks an expanded positively charged surface patch as observed in at least one canonical, nucleic acid-binding PWI domain. Instead, in a comprehensive yeast two-hybrid screen against human spliceosomal proteins, fragments of the N-terminal region of human Brr2 were found to interact with several other spliceosomal proteins. At least one of these interactions, with the Prp19 complex protein SPF27, depended on the presence of the PWI-like domain. The results suggest that the N-terminal region of Brr2 serves as a versatile protein–protein interaction platform in the spliceosome and that some interactions require or are reinforced by the PWI-like domain.
Collapse
|
29
|
Kahlscheuer ML, Widom J, Walter NG. Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines. Methods Enzymol 2015; 558:539-570. [PMID: 26068753 PMCID: PMC4886477 DOI: 10.1016/bs.mie.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spliceosomes are multimegadalton RNA-protein complexes responsible for the faithful removal of noncoding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition, and versatile structural dynamics. Single-molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues toward studying the mechanisms of biomolecular machines isolated directly from complex biological specimens, such as cell extracts. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy in exemplary single-molecule pull-down FRET studies of the yeast spliceosome and discuss the broad application potential of this technique.
Collapse
Affiliation(s)
- Matthew L Kahlscheuer
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
30
|
Zhang L, Li X, Hill RC, Qiu Y, Zhang W, Hansen KC, Zhao R. Brr2 plays a role in spliceosomal activation in addition to U4/U6 unwinding. Nucleic Acids Res 2015; 43:3286-97. [PMID: 25670679 PMCID: PMC4381053 DOI: 10.1093/nar/gkv062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 01/19/2015] [Indexed: 12/22/2022] Open
Abstract
Brr2 is a DExD/H-box RNA helicase that is responsible for U4/U6 unwinding, a critical step in spliceosomal activation. Brr2 is a large protein (∼250 kD) that consists of an N-terminal domain (∼500 residues) with unknown function and two Hel308-like modules that are responsible for RNA unwinding. Here we demonstrate that removal of the entire N-terminal domain is lethal to Saccharomyces cerevisiae and deletion of the N-terminal 120 residues leads to splicing defects and severely impaired growth. This N-terminal truncation does not significantly affect Brr2's helicase activity. Brr2-Δ120 can be successfully assembled into the tri-snRNP (albeit at a lower level than the WT Brr2) and the spliceosomal B complex. However, the truncation significantly impairs spliceosomal activation, leading to a dramatic reduction of U5, U6 snRNAs and accumulation of U1 snRNA in the Bact complex. The N-terminal domain of Brr2 does not seem to be directly involved in regulating U1/5'ss unwinding. Instead, the N-terminal domain seems to be critical for retaining U5 and U6 snRNPs during/after spliceosomal activation through its interaction with snRNAs and possibly other spliceosomal proteins, revealing a new role of Brr2 in spliceosomal activation in addition to U4/U6 unwinding.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yan Qiu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Wenzheng Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Cordin O, Hahn D, Alexander R, Gautam A, Saveanu C, Barrass JD, Beggs JD. Brr2p carboxy-terminal Sec63 domain modulates Prp16 splicing RNA helicase. Nucleic Acids Res 2014; 42:13897-910. [PMID: 25428373 PMCID: PMC4267655 DOI: 10.1093/nar/gku1238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RNA helicases are essential for virtually all cellular processes, however, their regulation is poorly understood. The activities of eight RNA helicases are required for pre-mRNA splicing. Amongst these, Brr2p is unusual in having two helicase modules, of which only the amino-terminal helicase domain appears to be catalytically active. Using genetic and biochemical approaches, we investigated interaction of the carboxy-terminal helicase module, in particular the carboxy-terminal Sec63-2 domain, with the splicing RNA helicase Prp16p. Combining mutations in BRR2 and PRP16 suppresses or enhances physical interaction and growth defects in an allele-specific manner, signifying functional interactions. Notably, we show that Brr2p Sec63-2 domain can modulate the ATPase activity of Prp16p in vitro by interfering with its ability to bind RNA. We therefore propose that the carboxy-terminal helicase module of Brr2p acquired a regulatory function that allows Brr2p to modulate the ATPase activity of Prp16p in the spliceosome by controlling access to its RNA substrate/cofactor.
Collapse
Affiliation(s)
- Olivier Cordin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK IBPC, CNRS FRE 3630, 13, rue Pierre & Marie Curie, 75005 Paris, France
| | - Daniela Hahn
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Ross Alexander
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Amit Gautam
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Cosmin Saveanu
- Institut Pasteur, CNRS UMR3525, 25-28 rue du docteur Roux, 75015 Paris, France
| | - J David Barrass
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| |
Collapse
|
32
|
Wang J, Tadeo X, Hou H, Andrews S, Moresco JJ, Yates JR, Nagy PL, Jia S. Tls1 regulates splicing of shelterin components to control telomeric heterochromatin assembly and telomere length. Nucleic Acids Res 2014; 42:11419-32. [PMID: 25245948 PMCID: PMC4191416 DOI: 10.1093/nar/gku842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Heterochromatin preferentially forms at repetitive DNA elements through RNAi-mediated targeting of histone-modifying enzymes. It was proposed that splicing factors interact with the RNAi machinery or regulate the splicing of repeat transcripts to directly participate in heterochromatin assembly. Here, by screening the fission yeast deletion library, we comprehensively identified factors required for telomeric heterochromatin assembly, including a novel gene tls1+. Purification of Tls1 and mass spectrometry analysis of its interacting proteins show that Tls1 associates with the spliceosome subunit Brr2. RNA sequencing analysis shows that the splicing of a subset of mRNAs are affected in tls1Δ cells, including mRNAs of shelterin components rap1+ and poz1+. Importantly, replacing rap1+ and poz1+ with their cDNAs significantly alleviated heterochromatin defects of tls1Δ cells, suggesting that the missplicing of shelterin components is the cause of such defects, and that splicing factors regulate telomeric heterochromatin through the proper splicing of heterochromatin factors. In addition to its role in telomeric heterochromatin assembly, Tls1-mediated splicing of shelterin mRNAs also regulates telomere length. Given that its human homologue C9ORF78 also associates with the spliceosome and is overexpressed in multiple cancer cell lines, our results suggest that C9ORF78 overexpression might alter the proper splicing of genes during cancer progression.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Xavier Tadeo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Haitong Hou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stuart Andrews
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter L Nagy
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
33
|
Nancollis V, Ruckshanthi JPD, Frazer LN, O'Keefe RT. The U5 snRNA internal loop 1 is a platform for Brr2, Snu114 and Prp8 protein binding during U5 snRNP assembly. J Cell Biochem 2014; 114:2770-84. [PMID: 23857713 PMCID: PMC4065371 DOI: 10.1002/jcb.24625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 06/26/2013] [Indexed: 12/25/2022]
Abstract
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre-mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri-snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Verity Nancollis
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
34
|
Mozaffari-Jovin S, Wandersleben T, Santos KF, Will CL, Lührmann R, Wahl MC. Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biol 2014; 11:298-312. [PMID: 24643059 DOI: 10.4161/rna.28353] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For each round of pre-mRNA splicing, a spliceosome is assembled anew on its substrate. RNA-protein remodeling events required for spliceosome assembly, splicing catalysis, and spliceosome disassembly are driven and controlled by a conserved group of ATPases/RNA helicases. The activities of most of these enzymes are timed by their recruitment to the spliceosome. The Brr2 enzyme, however, which mediates spliceosome catalytic activation, is a stable subunit of the spliceosome, and thus, requires special regulation. Recent structural and functional studies have revealed diverse mechanisms whereby an RNaseH-like and a Jab1/MPN-like domain of the Prp8 protein regulate Brr2 activity during splicing both positively and negatively. Reversible Brr2 inhibition might in part be achieved via an intrinsically unstructured element of the Prp8 Jab1/MPN domain, a concept widespread in biological systems. Mutations leading to changes in the Prp8 Jab1/MPN domain, which are linked to a severe form of retinitis pigmentosa, disrupt Jab1/MPN-mediated regulation of Brr2.
Collapse
Affiliation(s)
- Sina Mozaffari-Jovin
- Dept. of Cellular Biochemistry; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11; Göttingen, Germany
| | - Traudy Wandersleben
- Laboratory of Structural Biochemistry; Freie Universität Berlin; Takustr. 6; Berlin, Germany
| | - Karine F Santos
- Laboratory of Structural Biochemistry; Freie Universität Berlin; Takustr. 6; Berlin, Germany
| | - Cindy L Will
- Dept. of Cellular Biochemistry; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11; Göttingen, Germany
| | - Reinhard Lührmann
- Dept. of Cellular Biochemistry; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11; Göttingen, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry; Freie Universität Berlin; Takustr. 6; Berlin, Germany
| |
Collapse
|
35
|
Wlodaver AM, Staley JP. The DExD/H-box ATPase Prp2p destabilizes and proofreads the catalytic RNA core of the spliceosome. RNA (NEW YORK, N.Y.) 2014; 20:282-94. [PMID: 24442613 PMCID: PMC3923124 DOI: 10.1261/rna.042598.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/30/2013] [Indexed: 05/25/2023]
Abstract
After undergoing massive RNA and protein rearrangements during assembly, the spliceosome undergoes a final, more subtle, ATP-dependent rearrangement that is essential for catalysis. This rearrangement requires the DEAH-box protein Prp2p, an RNA-dependent ATPase. Prp2p has been implicated in destabilizing interactions between the spliceosome and the protein complexes SF3 and RES, but a role for Prp2p in destabilizing RNA-RNA interactions has not been explored. Using directed molecular genetics in budding yeast, we have found that a cold-sensitive prp2 mutation is suppressed not only by mutations in SF3 and RES components but also by a range of mutations that disrupt the spliceosomal catalytic core element U2/U6 helix I, which is implicated in juxtaposing the 5' splice site and branch site and in positioning metal ions for catalysis within the context of a putative catalytic triplex; indeed, mutations in this putative catalytic triplex also suppressed a prp2 mutation. Remarkably, we also found that prp2 mutations rescue lethal mutations in U2/U6 helix I. These data provide evidence that RNA elements that comprise the catalytic core are already formed at the Prp2p stage and that Prp2p destabilizes these elements, directly or indirectly, both to proofread spliceosome activation and to promote reconfiguration of the spliceosome to a fully competent, catalytic conformation.
Collapse
|
36
|
Galej WP, Nguyen THD, Newman AJ, Nagai K. Structural studies of the spliceosome: zooming into the heart of the machine. Curr Opin Struct Biol 2014; 25:57-66. [PMID: 24480332 PMCID: PMC4045393 DOI: 10.1016/j.sbi.2013.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
Spliceosomes are large, dynamic ribonucleoprotein complexes that catalyse the removal of introns from messenger RNA precursors via a two-step splicing reaction. The recent crystal structure of Prp8 has revealed Reverse Transcriptase-like, Linker and Endonuclease-like domains. The intron branch-point cross-link with the Linker domain of Prp8 in active spliceosomes and together with suppressors of 5' and 3' splice site mutations this unambiguously locates the active site cavity. Structural and mechanistic similarities with group II self-splicing introns have encouraged the notion that the spliceosome is at heart a ribozyme, and recently the ligands for two catalytic magnesium ions were identified within U6 snRNA. They position catalytic divalent metal ions in the same way as Domain V of group II intron RNA, suggesting that the spliceosome and group II intron use the same catalytic mechanisms.
Collapse
Affiliation(s)
- Wojciech P Galej
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Thi Hoang Duong Nguyen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
37
|
Nguyen THD, Li J, Galej WP, Oshikane H, Newman AJ, Nagai K. Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. Structure 2014; 21:910-19. [PMID: 23727230 PMCID: PMC3677097 DOI: 10.1016/j.str.2013.04.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/08/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022]
Abstract
The U5 small nuclear ribonucleoprotein particle (snRNP) helicase Brr2 disrupts the U4/U6 small nuclear RNA (snRNA) duplex and allows U6 snRNA to engage in an intricate RNA network at the active center of the spliceosome. Here, we present the structure of yeast Brr2 in complex with the Jab1/MPN domain of Prp8, which stimulates Brr2 activity. Contrary to previous reports, our crystal structure and mutagenesis data show that the Jab1/MPN domain binds exclusively to the N-terminal helicase cassette. The residues in the Jab1/MPN domain, whose mutations in human Prp8 cause the degenerative eye disease retinitis pigmentosa, are found at or near the interface with Brr2, clarifying its molecular pathology. In the cytoplasm, Prp8 forms a precursor complex with U5 snRNA, seven Sm proteins, Snu114, and Aar2, but after nuclear import, Brr2 replaces Aar2 to form mature U5 snRNP. Our structure explains why Aar2 and Brr2 are mutually exclusive and provides important insights into the assembly of U5 snRNP. We report the structure of Brr2 helicase in complex with the Jab1/MPN domain of Prp8 Retinitis pigmentosa mutations in the Jab1/MPN domain of Prp8 disrupt this complex Mechanism is proposed for the U4/U6 snRNA duplex unwinding and spliceosome activation The Brr2-Jab1/MPN and Aar2-Prp8 complexes provide insight into U5 snRNP biogenesis
Collapse
|
38
|
Sad1 counteracts Brr2-mediated dissociation of U4/U6.U5 in tri-snRNP homeostasis. Mol Cell Biol 2013; 34:210-20. [PMID: 24190974 DOI: 10.1128/mcb.00837-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Sad1 protein was previously identified in a screen for factors involved in the assembly of the U4/U6 di-snRNP particle. Sad1 is required for pre-mRNA splicing both in vivo and in vitro, and its human orthologue has been shown to associate with U4/U6.U5 tri-snRNP. We show here that Sad1 plays a role in maintaining a functional form of the tri-snRNP by promoting the association of U5 snRNP with U4/U6 di-snRNP. In the absence of Sad1, the U4/U6.U5 tri-snRNP dissociates into U5 and U4/U6 upon ATP hydrolysis and cannot bind to the spliceosome. The separated U4/U6 and U5 can reassociate upon incubation more favorably in the absence of ATP and in the presence of Sad1. Brr2 is responsible for mediating ATP-dependent dissociation of the tri-snRNP. Our results demonstrate a role of Sad1 in maintaining the integrity of the tri-snRNP by counteracting Brr2-mediated dissociation of tri-snRNP and provide insights into homeostasis of the tri-snRNP.
Collapse
|
39
|
Zhang X, Lai TYY, Chiang SWY, Tam POS, Liu DTL, Chan CKM, Pang CP, Zhao C, Chen LJ. Contribution of SNRNP200 sequence variations to retinitis pigmentosa. Eye (Lond) 2013; 27:1204-13. [PMID: 23887765 DOI: 10.1038/eye.2013.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/21/2013] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Mutations in the SNRNP200 gene have been reported to cause autosomal dominant retinitis pigmentosa (adRP). In this study, we evaluate the mutation profile of SNRNP200 in a cohort of southern Chinese RP patients. METHODS Twenty adRP patients from 11 families and 165 index patients with non-syndromic RP with mixed inheritance patterns were screened for mutations in the mutation hotspots of SNRNP200. These included exons 12-16, 22-32, and 38-45, which covered the two helicase ATP-binding domains in DEAD-box and two sec-63 domains. The targeted regions were amplified by polymerase chain reaction and analyzed by direct DNA sequencing, followed by in silico analyses. RESULTS Totally 26 variants were identified, 18 of which were novel. Three non-synonymous variants (p.C502R, p.R1779H and p.I698V) were found exclusively in patients. Two of them, p.C502R and p.R1779H, were each identified in one simplex RP patient, whereas p.I698V occurred in one patient with unknown inheritance pattern. All three residues are highly conserved in SNRNP200 orthologs. Nevertheless, only p.C502R and p.R1779H were predicted to affect protein function by in silico analyses, suggesting these two variants are likely to be disease-causing mutations. Notably, all mutations previously identified in other study populations were not detected in this study. CONCLUSIONS Our results reveal a distinct mutation profile of the SNRNP200 gene in a southern Chinese cohort of RP patients. The identification of two novel candidate mutations in two respective patients affirmed that SNRNP200 contributes to a proportion of overall RP.
Collapse
Affiliation(s)
- X Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mozaffari-Jovin S, Wandersleben T, Santos KF, Will CL, Lührmann R, Wahl MC. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 2013; 341:80-4. [PMID: 23704370 DOI: 10.1126/science.1237515] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Ski2-like RNA helicase Brr2 is a core component of the spliceosome that must be tightly regulated to ensure correct timing of spliceosome activation. Little is known about mechanisms of regulation of Ski2-like helicases by protein cofactors. Here we show by crystal structure and biochemical analyses that the Prp8 protein, a major regulator of the spliceosome, can insert its C-terminal tail into Brr2's RNA-binding tunnel, thereby intermittently blocking Brr2's RNA-binding, adenosine triphosphatase, and U4/U6 unwinding activities. Inefficient Brr2 repression is the only recognizable phenotype associated with certain retinitis pigmentosa-linked Prp8 mutations that map to its C-terminal tail. Our data show how a Ski2-like RNA helicase can be reversibly inhibited by a protein cofactor that directly competes with RNA substrate binding.
Collapse
Affiliation(s)
- Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Zhang L, Li X, Zhao R. Structural analyses of the pre-mRNA splicing machinery. Protein Sci 2013; 22:677-92. [PMID: 23592432 DOI: 10.1002/pro.2266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/03/2023]
Abstract
Pre-mRNA splicing is a critical event in the gene expression pathway of all eukaryotes. The splicing reaction is catalyzed by the spliceosome, a huge protein-RNA complex that contains five snRNAs and hundreds of different protein factors. Understanding the structure of this large molecular machinery is critical for understanding its function. Although the highly dynamic nature of the spliceosome, in both composition and conformation, posed daunting challenges to structural studies, there has been significant recent progress on structural analyses of the splicing machinery, using electron microscopy, crystallography, and nuclear magnetic resonance. This review discusses key recent findings in the structural analyses of the spliceosome and its components and how these findings advance our understanding of the function of the splicing machinery.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
42
|
Ehsani A, Alluin JV, Rossi JJ. Cell cycle abnormalities associated with differential perturbations of the human U5 snRNP associated U5-200kD RNA helicase. PLoS One 2013; 8:e62125. [PMID: 23637979 PMCID: PMC3639242 DOI: 10.1371/journal.pone.0062125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 03/19/2013] [Indexed: 12/04/2022] Open
Abstract
Splicing of pre-messenger RNAs into functional messages requires a concerted assembly of proteins and small RNAs that identify the splice junctions and facilitate cleavage of exon-intron boundaries and ligation of exons. One of the key steps in the splicing reaction is the recruitment of a tri-snRNP harboring the U5/U4/U6 snRNPs. The U5 snRNP is also required for both steps of splicing and exon-exon joining. One of the key components of the tri-snRNP is the U5 200kd helicase. The human U5-200kD gene isolated from Hela cells encodes a 200 kDa protein with putative RNA helicase function. Surprisingly, little is known about the functional role of this protein in humans. Therefore, we have investigated the role of the U5-200kD RNA helicase in mammalian cell culture. We created and expressed a dominant negative domain I mutant of the RNA helicase in HEK293 cells and used RNAi to downregulate expression of the endogenous protein. Transient and stable expression of the domain I mutant U5-200kD protein using an ecdysone-inducible system and transient expression of an anti-U5-200kD short hairpin RNA (shRNA) resulted in differential splicing and growth defects in the 293/EcR cells. Cell cycle analysis of the dominant negative clones revealed delayed exit from the G2/M phase of the cell cycle due to a mild splicing defect. In contrast to the domain I dominant negative mutant expressing cells, transient expression of an anti-U5-200kD shRNA resulted in a pronounced S phase arrest and a minute splicing defect. Collectively, this work demonstrates for the first time establishment of differential human cell culture splicing and cell cycle defect models due to perturbed levels of an essential core splicing factor.
Collapse
Affiliation(s)
- Ali Ehsani
- Department of Molecular and Cellular Biology, and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jessica V. Alluin
- Department of Molecular and Cellular Biology, and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - John J. Rossi
- Department of Molecular and Cellular Biology, and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Chang TH, Tung L, Yeh FL, Chen JH, Chang SL. Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:764-74. [PMID: 23454554 DOI: 10.1016/j.bbagrm.2013.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 01/09/2023]
Abstract
In eukaryotes, many genes are transcribed as precursor messenger RNAs (pre-mRNAs) that contain exons and introns, the latter of which must be removed and exons ligated to form the mature mRNAs. This process is called pre-mRNA splicing, which occurs in the nucleus. Although the chemistry of pre-mRNA splicing is identical to that of the self-splicing Group II introns, hundreds of proteins and five small nuclear RNAs (snRNAs), U1, U2, U4, U5, and U6, are essential for executing pre-mRNA splicing. Spliceosome, arguably the most complex cellular machine made up of all those proteins and snRNAs, is responsible for carrying out pre-mRNA splicing. In contrast to the transcription and the translation machineries, spliceosome is formed anew onto each pre-mRNA and undergoes a series of highly coordinated reconfigurations to form the catalytic center. This amazing process is orchestrated by a number of DExD/H-proteins that are the focus of this article, which aims to review the field in general and to project the exciting challenges and opportunities ahead. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
44
|
Nielsen KH, Staley JP. Spliceosome activation: U4 is the path, stem I is the goal, and Prp8 is the keeper. Let's cheer for the ATPase Brr2! Genes Dev 2013; 26:2461-7. [PMID: 23154979 DOI: 10.1101/gad.207514.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During pre-mRNA splicing, the spliceosome is activated for catalysis by unwinding base-paired U4/U6 small nuclear RNAs, a step that must be precisely timed. We know that unwinding requires the ATPase Brr2, but the mechanism and regulation of unwinding have been understood poorly. In the November 1, 2012, issue of Genes & Development, Hahn and colleagues (pp. 2408-2421) and Mozaffari-Jovin and colleagues (pp. 2422-2434) defined a pathway for U4/U6 unwinding. Moreover, Mozaffari-Jovin and colleagues suggested a mechanism for regulating Brr2.
Collapse
Affiliation(s)
- Klaus H Nielsen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
45
|
Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev 2013; 26:2408-21. [PMID: 23124065 DOI: 10.1101/gad.199307.112] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brr2p is one of eight RNA helicases involved in pre-mRNA splicing. Detailed understanding of the functions of Brr2p and other spliceosomal helicases has been limited by lack of knowledge of their in vivo substrates. To address this, sites of direct Brr2p-RNA interaction were identified by in vivo UV cross-linking in budding yeast. Cross-links identified in the U4 and U6 small nuclear RNAs (snRNAs) suggest U4/U6 stem I as a Brr2p substrate during spliceosome activation. Further Brr2p cross-links were identified in loop 1 of the U5 snRNA and near splice sites and 3' ends of introns, suggesting the possibility of a previously uncharacterized function for Brr2p in the catalytic center of the spliceosome. Consistent with this, mutant brr2-G858R reduced second-step splicing efficiency and enhanced cross-linking to 3' ends of introns. Furthermore, RNA sequencing indicated preferential inhibition of splicing of introns with structured 3' ends. The Brr2-G858Rp cross-linking pattern in U6 was consistent with an open conformation for the catalytic center of the spliceosome during first-to-second-step transition. We propose a previously unsuspected function for Brr2p in driving conformational rearrangements that lead to competence for the second step of splicing.
Collapse
|
46
|
Abstract
In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.
Collapse
Affiliation(s)
- Olivier Cordin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
47
|
Abstract
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.
Collapse
|
48
|
Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc Natl Acad Sci U S A 2012; 109:17418-23. [PMID: 23045696 DOI: 10.1073/pnas.1208098109] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Assembly of a spliceosome, catalyzing precursor-messenger RNA splicing, involves multiple RNA-protein remodeling steps, driven by eight conserved DEXD/H-box RNA helicases. The 250-kDa Brr2 enzyme, which is essential for U4/U6 di-small nuclear ribonucleoprotein disruption during spliceosome catalytic activation and for spliceosome disassembly, is the only member of this group that is permanently associated with the spliceosome, thus requiring its faithful regulation. At the same time, Brr2 represents a unique subclass of superfamily 2 nucleic acid helicases, containing tandem helicase cassettes. Presently, the mechanistic and regulatory consequences of this unconventional architecture are unknown. Here we show that in human Brr2, two ring-like helicase cassettes intimately interact and functionally cooperate and how retinitis pigmentosa-linked Brr2 mutations interfere with the enzyme's function. Only the N-terminal cassette harbors ATPase and helicase activities in isolation. Comparison with other helicases and mutational analyses show how it threads single-stranded RNA, and structural features suggest how it can load onto an internal region of U4/U6 di-snRNA. Although the C-terminal cassette does not seem to engage RNA in the same fashion, it binds ATP and strongly stimulates the N-terminal helicase. Mutations at the cassette interface, in an intercassette linker or in the C-terminal ATP pocket, affect this cross-talk in diverse ways. Together, our results reveal the structural and functional interplay between two helicase cassettes in a tandem superfamily 2 enzyme and point to several sites through which Brr2 activity may be regulated.
Collapse
|
49
|
Johnson SJ, Jackson RN. Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 2012; 10:33-43. [PMID: 22995828 DOI: 10.4161/rna.22101] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ski2-like RNA helicases are large multidomain proteins involved in a variety of RNA processing and degradation events. Recent structures of Mtr4, Ski2 and Brr2 provide our first view of these intricate helicases. Here we review these structures, which reveal a conserved ring-like architecture that extends beyond the canonical RecA domains to include a winged helix and ratchet domain. Comparison of apo- and RNA-bound Mtr4 structures suggests a role for the winged helix domain as a molecular hub that coordinates RNA interacting events throughout the helicase. Unique accessory domains provide expanded diversity and functionality to each Ski2-like family member. A common theme is the integration of Ski2-like RNA helicases into larger protein assemblies. We describe the central role of Mtr4 and Ski2 in formation of complexes that activate RNA decay by the eukaryotic exosome. The current structures provide clues into what promises to be a fascinating view of these dynamic assemblies.
Collapse
Affiliation(s)
- Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA.
| | | |
Collapse
|
50
|
Liu T, Jin X, Zhang X, Yuan H, Cheng J, Lee J, Zhang B, Zhang M, Wu J, Wang L, Tian G, Wang W. A novel missense SNRNP200 mutation associated with autosomal dominant retinitis pigmentosa in a Chinese family. PLoS One 2012; 7:e45464. [PMID: 23029027 PMCID: PMC3446876 DOI: 10.1371/journal.pone.0045464] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/22/2012] [Indexed: 11/18/2022] Open
Abstract
The SNRNP200 gene encodes hBrr2, a helicase essential for pre-mRNA splicing. Six mutations in SNRNP200 have recently been discovered to be associated with autosomal dominant retinitis pigmentosa (adRP). In this work, we analyzed a Chinese family with adRP and identified a novel missense mutation in SNRNP200. To identify the genetic defect in this family, exome of the proband was captured and sequencing analysis was performed to exclude known genetic defects and find possible pathogenic mutations. Subsequently, candidate mutations were validated in affected family members using Sanger sequencing. A novel missense mutation, c.2653C>G transition (p.Q885E), in exon 20 of SNRNP200 was identified. The mutation co-segregated with the disease phenotype over four generations and was absent in 100 normal unaffected individuals. This mutation occurs at highly conserved position in hBrr2 and is predicted to have a functional impact, suggesting that hBrr2-dependent small nuclear riboproteins (snRNPs) unwinding and spliceosome activation is important in the pathogenesis of some variants of RP.
Collapse
Affiliation(s)
- Tiecheng Liu
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
- Department of Ophthalmology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| | - Xin Jin
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Xuemin Zhang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Huijun Yuan
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Jing Cheng
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Janet Lee
- Department of Ophthalmology and Shiley Eye Center, University of California San Diego, La Jolla, California, United States of America
| | - Baoquan Zhang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Maonian Zhang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Jing Wu
- Department of Science and Technology, BGI-Tianjin, Tianjin, China
| | - Lijuan Wang
- Department of Reproductive Health, BGI-Shenzhen, Shenzhen, China
| | - Geng Tian
- Department of Science and Technology, BGI-Tianjin, Tianjin, China
| | - Weifeng Wang
- Department of Gastroenterology and Hepatology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| |
Collapse
|