1
|
Effect of forage to concentrate ratio in complete diets offered to sheep on voluntary food intake and some digestive parameters. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1357729800051651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractTwelve mature ewes were used to study the effect of forage: concentrate ratio in complete diets on voluntary intake and some digestive characteristics. Diets consisted of four combinations of chopped lucerne hay and a concentrate (390 g cracked barley grains, 440 g cracked maize grains and 170 g soya-bean meal per kg of concentrate) in the following proportions (fresh matter basis): 0·8:0·2 (C20), 0·6:0·4 (C40), 0·4:0·6 (C60) and 0·2:0·8 (C80). Diets were offered over two 42-day periods and, in each of them, three sheep received one of the four diets, with the restriction that no animal received the same diet in both periods. Chromium Ill-mordanted fibre was used as a marker to estimate passage rate of digest a and microbial nitrogen supply (MNS) was estimated from the urinary excretion of purine derivatives. The increase in the proportion of concentrate affected linearly (P< 0·05) the voluntary intake of food, the mean values being 36·8, 37·9, 36·3 and 30·0 g dry matter (DM) per kg live weight per day for C20, C40, C60 and C80 diets, respectively. Apparent digestibility of DM, organic matter (OM) and crude protein increased linearly (P< 0·01) with the proportion of concentrate in the diet, whereas that of cellulose evolved auadratically (P< 0·05), reaching a minimum value in the C80 diet. Digestible OM intake was unaffected (P> 0·05) by the proportion of concentrate in the diet. Both particulate passage rate from the rumen and through the caecum and proximal colon decreased linearly (P< 0·05) as concentrate proportion in the diet increased. MNS (g/day) was not affected (P> 0·05) by the diet, whereas its efficiency (g/kg digestible OM intake) tended (P< 0·10) to increase with the proportion of concentrate in the diet.
Collapse
|
2
|
Tuyen DV, Tolosa XM, Poppi DP, McLennan SR. Effect of varying the proportion of molasses in the diet on intake, digestion and microbial protein production by steers. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present experiment was conducted to determine the efficiency of microbial protein production in the rumen and intake by cattle fed high-molasses diets. Intake and microbial crude protein (MCP) production were measured along with the concentration of rumen ammonia-nitrogen (N) and volatile fatty acids (VFA), pH and the rate of digestion of roughage in the rumen. Eight Brahman crossbred steers weighing 211 ± 19.3 (± s.d.) kg were used in a double 4 × 4 Latin square design. Steers were allocated to one of four total mixed rations: control (pangola hay only), 25M (25% molasses/urea mix + 75% hay), 50M (50% molasses/urea + 50% hay), and 75M (75% molasses/urea + 25% hay). The production and efficiency of production of MCP (EMCP) of the diet increased quadratically as the level of molasses in the diet increased. The EMCP from the molasses/urea mix was estimated as 166 g MCP/kg digestible organic matter (DOM), a relatively high value. Intake of dry matter (DM) and DOM increased quadratically, reaching a peak when molasses was ~50% (as fed) of the ration. Digestibility of DM increased quadratically and that of neutral detergent fibre decreased linearly with increasing level of molasses in the diet. Molasses inclusion in the diet had no effect on rumen pH, ammonia and VFA concentration in the rumen fluid, plasma urea-N, urine pH or ruminal fractional outflow rate of ytterbium-labelled particles and Cr-EDTA. It was concluded that a diet with a high level of molasses (>50%) and supplemented with adequate N had high EMCP, and that low MCP production was not a factor limiting intake or performance of cattle consuming high-molasses diets.
Collapse
|
3
|
Abstract
AbstractEight change-over design experiments (each a duplicated 3 × 3 Latin square design using six rumen-fistulated wether sheep, live weight 50 to 60 kg) measured rumen fermentation patterns for 24 perennial ryegrass silages. Sheep were offered 800 g dry matter (DM) per day of each silage in two equal meals at 09.00 and 17.00 h. Samples of rumen liquor were taken on days 19 and 21 of each 21-day period, at 08.50 h and at 1·5-h intervals until 16.30 h. Rumen samples were analysed by gas chromatography; silages by high-performance liquid chromatography and by near infra-red reflectance spectroscopy (NIRS) using samples scanned after drying at 100°C (NIRSdry) or in the fresh state (NIRSwet).Mean intake of DM was 737 g/day. The range of silage composition was as follows (mean, range, s.d., g/kg DM unless specified): metabolizable energy (ME MJ/kg DM) 11·1, 8·8 to 12·6, 0·81; pH 4·0, 3·6 to 5·0, 0·34; lactic acid 86, 4 to 139, 42·6; butyric acid 4·7, 0·1 to 46·7,10·2. Rumen measurements varied substantially both diurnally and between silages. Mean diurnal rumen values for the 24 silages (mean, range, s.d.) were: pH 6·76, 6·55 to 7·09, 0·155; ammonia (mg/l) 132, 70 to 247, 47·7; total volatile fatty acids (TVFA mmol/l) 58·2, 45·8 to 72·0, 8·97; (acetate+butyrate)/propionate (ABP) 3·2, 2·2 to 4·8, 0·56.Partial least-square models were developed to predict rumen fermentation (means for six sampling times) using either the silage chemical composition (CHEM g/kg DM unless specified: DM, ME (MJ/kg DM), crude protein (CP), ammonia (NH3, g N per kg total N), neutralizingvalue (meq per kg DM), sugar, lactic, formic, acetic, propionic and butyric acids and ethanol) or silage NIRSdry or NIRSwet. Prediction performance was assessed comparing values for R2, standard error of cross validation (SECV) and SD/SECV (s.d. of reference population! SECV) obtained by the ‘leave one out’ cross validation method. NIRSwet gave slightly better prediction accuracy overall than NIRSdry but both were superior to prediction from chemical composition. Values for R2, SECV and SD/SECV for pH were 0·23, 0·14, 1·09; 0·76, 0·08, 2·01 and 0·72, 0·08, 1·89 for CHEM, NIRSdry and NIRSwet respectively. Corresponding values for rumen ammonia (mg/l) were 0·48, 35·2, 1·35; 0·69, 27·1, 1·76 and 0·70, 26·3, 1·81; for TVFA 0·52, 6·73, 1·33; 0·80, 4·06, 2·21 and 0·93, 2·47, 3·63; for rumen ABP ratio 0·69, 0·32, 1·78; 0·76, 0·30,1·88; 0·72, 0·30,1·85. The silage predictors with greatest influence in the CHEM model for rumen ABP ratio were sugar, CP and lactic acid (negative) and butyrate and ethanol (positive). NIRS shows considerable promise as a means of predicting rumen fermentation of animals given grass silage diets.
Collapse
|
4
|
Moss AR, Givens D. The effect of supplementing grass silage with soya bean meal on digestibility, in sacco degradability, rumen fermentation and methane production in sheep. Anim Feed Sci Technol 2002. [DOI: 10.1016/s0377-8401(02)00022-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Araba A, Byers F, Guessous F. Patterns of rumen fermentation in bulls fed barley/molasses diets. Anim Feed Sci Technol 2002. [DOI: 10.1016/s0377-8401(01)00357-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|