1
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
2
|
Koistinen VM, Haldar S, Tuomainen M, Lehtonen M, Klåvus A, Draper J, Lloyd A, Beckmann M, Bal W, Ross AB, Brandt K, Fawcett L, Seal C, Hanhineva K. Metabolic changes in response to varying whole-grain wheat and rye intake. NPJ Sci Food 2024; 8:8. [PMID: 38291073 PMCID: PMC10828387 DOI: 10.1038/s41538-024-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Epidemiological studies have shown associations between whole-grain intake and lowered disease risk. A sufficient level of whole-grain intake to reach the health benefits has not been established, and there is limited knowledge about the impact of whole-grain intake on metabolite levels. In this clinical intervention study, we aimed to identify plasma and urine metabolites associated with two different intake levels of whole-grain wheat and rye and to correlate them with clinical plasma biomarkers. Healthy volunteers (N = 68) were divided into two groups receiving either whole-grain wheat or whole-grain rye in two four-week interventions with 48 and 96 g/d of whole grains consumed. The metabolomics of the plasma samples was performed with UPLC-QTOF-MS. Plasma alkylresorcinols were quantified with GC-MS and plasma and urinary mammalian lignans with HPLC-ECD. The high-dose intervention impacted the metabolite profile, including microbial metabolites, more in the rye-enriched diet compared with wheat. Among the increased metabolites were alkylresorcinol glucuronides, sinapyl alcohol, and pipecolic acid betaine, while the decreased metabolites included acylcarnitines and ether lipids. Plasma alkylresorcinols, urinary enterolactone, and total mammalian lignans reflected the study diets in a dose-dependent manner. Several key metabolites linked with whole-grain consumption and gut microbial metabolism increased in a linear manner between the two interventions. The results reveal that an increase in whole-grain intake, particularly rye, is strongly reflected in the metabolite profile, is correlated with clinical variables, and suggests that a diet rich in whole grains promotes the growth and/or metabolism of microbes producing potentially beneficial microbial metabolites.
Collapse
Affiliation(s)
- Ville M Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland.
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovations (SIFBI), Yong Loo Lin School of Medicine, Singapore, 117599, Singapore
| | - Marjo Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - John Draper
- Department of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UK
| | - Amanda Lloyd
- Department of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UK
| | - Manfred Beckmann
- Department of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UK
| | - Wendy Bal
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Kirsten Brandt
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lee Fawcett
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Seal
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Food and Nutrition Science Division, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Shestopalov AV, Gaponov AM, Zabolotneva AA, Appolonova SA, Markin PA, Borisenko OV, Tutelyan AV, Rumyantsev AG, Teplyakova ED, Shin VF, Savchuk DV, Volkova NI, Ganenko LA, Makarov VV, Yudin SM, Rumyantsev SA. Alkylresorcinols: New Potential Bioregulators in the Superorganism System (Human–Microbiota). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Long-term whole-grain rye and wheat consumption and their associations with selected biomarkers of inflammation, endothelial function, and cardiovascular disease. Eur J Clin Nutr 2020; 75:123-132. [PMID: 32782386 DOI: 10.1038/s41430-020-00714-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/29/2020] [Accepted: 08/04/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Whole-grain (WG) intake has been associated with a lowered risk of developing type 2 diabetes, cardiovascular disease, and some cancers in epidemiological studies. Reduced subclinical inflammation could be one important mechanism behind such associations. This study investigated whether high long-term WG rye and wheat intakes were associated with lower concentrations of biomarkers of inflammation, endothelial function, and protein biomarkers associated with cardiovascular disease. SUBJECTS/METHODS We assessed WG intake by food frequency questionnaire (FFQ) and by measuring alkylresorcinols (ARs) in plasma and adipose tissue, respectively. Selected biomarkers in free-living 109 women and 149 men were analyzed from two clinical subcohort studies (Swedish Mammography Cohort-Clinical (SMC-C) and Cohort of Swedish Men-Clinical (COSM-C), respectively. Total WG rye and wheat (WGRnW) and the ratio of WG rye to WG rye and wheat (WGR/WGRnW) were estimated from FFQs. ARs were measured in plasma and adipose tissue by gas chromatography-mass spectrometry (GC-MS) and the biomarkers by ELISA. RESULTS We found no consistent associations between WG intake assessed by different methods and the selected biomarkers. However, WGRnW intake was inversely associated with cathepsin S (P-trend < 0.05) and total AR and C17:0/C21:0 in plasma were inversely associated with the endostatin concentration (P-trend < 0.05) adjusted for BMI, age, and sex. CONCLUSION The results give limited support to the hypothesis that a high WG wheat and rye intake is associated with lower concentrations of common biomarkers of inflammation and CVD that have previously been reported inversely associated with WG intake or an overall healthy lifestyle.
Collapse
|
5
|
Biomarkers of Whole-Grain and Cereal-Fiber Intake in Human Studies: A Systematic Review of the Available Evidence and Perspectives. Nutrients 2019; 11:nu11122994. [PMID: 31817759 PMCID: PMC6950731 DOI: 10.3390/nu11122994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
High whole-grain consumption is related to better health outcomes. The specific physiological effect of these compounds is still unrevealed, partly because the accurate estimation of the intake of whole grains from dietary assessments is difficult and prone to bias, due to the complexity of the estimation of the intake by the consumer. A biomarker of whole-grain intake and type of whole-grain intake would be useful for quantifying the exposure to whole-grain intake. In this review, we aim to review the evidence on the potential biomarkers for whole-grain intake in the literature. We conducted a systematic search in Medline, Embase, Web of Science, and the Cochrane database. In total, 39 papers met the inclusion criteria following the PRISMA guidelines and were included. The relative validity, responsiveness, and reproducibility of these markers were assessed for short-, medium-, and long-term exposure as important criteria for the potential use of these biomarkers from a clinical and research perspective. We found three major groups of biomarkers: (1) alkylresorcinol, as well as its homologs and metabolites, assessed in plasma, adipose tissue biopsies, erythrocyte membranes, and urine; (2) avenacosides, assessed in urine samples; and (3) benzoxazinoid-derived phenylacetamide sulfates, assessed in blood and urine samples. The reviewed biomarkers may be used for improved assessment of associations between whole-grain intake and health outcomes.
Collapse
|
6
|
Long-Term Whole Grain Wheat and Rye Intake Reflected by Adipose Tissue Alkylresorcinols and Breast Cancer: A Case-Cohort Study. Nutrients 2019; 11:nu11020465. [PMID: 30813337 PMCID: PMC6412439 DOI: 10.3390/nu11020465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/30/2022] Open
Abstract
Whole grain rye (WGR) and whole grain wheat (WGW) have been suggested to protect against the development of breast cancer. In this study, we estimated long-term intake of WGR and WGW, using both a food frequency questionnaire (FFQ) and alkylresorcinol concentrations in adipose tissue biopsies, in relation to the risk of developing invasive breast cancer in a case-cohort study (n = 414 in the case group, n = 933 in the subcohort group) on the Danish “Diet, Cancer and Health” cohort. The median follow-up time of the subcohort was 5.3 years. Total WGR and WGW intake estimated with FFQ or reflected by total alkylresorcinol concentration in adipose tissue was not significantly associated with risk of breast cancer. However, after adjustment for total WGR and WGW intake, women in the highest quartile of relative WGR intake, reflected by the alkylresorcinol C17:0/C21:0 ratio, had a higher risk of overall breast cancer and estrogen-receptor-positive (ER+) breast cancer than women in the lowest quartile of relative WGR intake, while the risk of estrogen-receptor-negative (ER-) breast cancer incidence was unaffected. Similar results were obtained with the FFQ data. Based on these data, further investigation of the role of specific grain types in reducing or increasing breast cancer risk, and their overall impact on health, is warranted.
Collapse
|