1
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Ruff SE, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells. PLoS Biol 2024; 22:e3002638. [PMID: 38990824 PMCID: PMC11239054 DOI: 10.1371/journal.pbio.3002638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/24/2024] [Indexed: 07/13/2024] Open
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single-cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing 8 new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nanoscale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal noncanonical amino acid tagging (BONCAT), we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Virginia Edgcomb
- Woods Hole Oceanographic Institution, Falmouth, Massachusetts, United States of America
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
2
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Emil Ruff S, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacterial consortia are metabolically differentiated and not clonal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568837. [PMID: 38076927 PMCID: PMC10705294 DOI: 10.1101/2023.11.27.568837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing eight new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nano-scale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal non-canonical amino acid tagging (BONCAT) we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543
| | | | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
3
|
Zhao Y, Zhang W, Pan H, Chen J, Cui K, Wu LF, Lin W, Xiao T, Zhang W, Liu J. Insight into the metabolic potential and ecological function of a novel Magnetotactic Nitrospirota in coral reef habitat. Front Microbiol 2023; 14:1182330. [PMID: 37342564 PMCID: PMC10278575 DOI: 10.3389/fmicb.2023.1182330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Magnetotactic bacteria (MTB) within the Nitrospirota phylum play important roles in biogeochemical cycles due to their outstanding ability to biomineralize large amounts of magnetite magnetosomes and intracellular sulfur globules. For several decades, Nitrospirota MTB were believed to only live in freshwater or low-salinity environments. While this group have recently been found in marine sediments, their physiological features and ecological roles have remained unclear. In this study, we combine electron microscopy with genomics to characterize a novel population of Nitrospirota MTB in a coral reef area of the South China Sea. Both phylogenetic and genomic analyses revealed it as representative of a novel genus, named as Candidatus Magnetocorallium paracelense XS-1. The cells of XS-1 are small and vibrioid-shaped, and have bundled chains of bullet-shaped magnetite magnetosomes, sulfur globules, and cytoplasmic vacuole-like structures. Genomic analysis revealed that XS-1 has the potential to respire sulfate and nitrate, and utilize the Wood-Ljungdahl pathway for carbon fixation. XS-1 has versatile metabolic traits that make it different from freshwater Nitrospirota MTB, including Pta-ackA pathway, anaerobic sulfite reduction, and thiosulfate disproportionation. XS-1 also encodes both the cbb3-type and the aa3-type cytochrome c oxidases, which may function as respiratory energy-transducing enzymes under high oxygen conditions and anaerobic or microaerophilic conditions, respectively. XS-1 has multiple copies of circadian related genes in response to variability in coral reef habitat. Our results implied that XS-1 has a remarkable plasticity to adapt the environment and can play a beneficial role in coral reef ecosystems.
Collapse
Affiliation(s)
- Yicong Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | | | - Kaixuan Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Aix Marseille University, CNRS, LCB, IM2B, IMM, Marseille, France
| | - Wei Lin
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jia Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Schaible GA, Kohtz AJ, Cliff J, Hatzenpichler R. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME COMMUNICATIONS 2022; 2:52. [PMID: 37938730 PMCID: PMC9723565 DOI: 10.1038/s43705-022-00134-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 05/08/2023]
Abstract
Microscopic and spectroscopic techniques are commonly applied to study microbial cells but are typically used on separate samples, resulting in population-level datasets that are integrated across different cells with little spatial resolution. To address this shortcoming, we developed a workflow that correlates several microscopic and spectroscopic techniques to generate an in-depth analysis of individual cells. By combining stable isotope probing (SIP), fluorescence in situ hybridization (FISH), scanning electron microscopy (SEM), confocal Raman microspectroscopy (Raman), and nano-scale secondary ion mass spectrometry (NanoSIMS), we illustrate how individual cells can be thoroughly interrogated to obtain information about their taxonomic identity, structure, physiology, and metabolic activity. Analysis of an artificial microbial community demonstrated that our correlative approach was able to resolve the activity of single cells using heavy water SIP in conjunction with Raman and/or NanoSIMS and establish their taxonomy and morphology using FISH and SEM. This workflow was then applied to a sample of yet uncultured multicellular magnetotactic bacteria (MMB). In addition to establishing their identity and activity, backscatter electron microscopy (BSE), NanoSIMS, and energy-dispersive X-ray spectroscopy (EDS) were employed to characterize the magnetosomes within the cells. By integrating these techniques, we demonstrate a cohesive approach to thoroughly study environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | - Anthony J Kohtz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
5
|
A Novel Isolate of Spherical Multicellular Magnetotactic Prokaryotes Has Two Magnetosome Gene Clusters and Synthesizes Both Magnetite and Greigite Crystals. Microorganisms 2022; 10:microorganisms10050925. [PMID: 35630369 PMCID: PMC9145555 DOI: 10.3390/microorganisms10050925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Multicellular magnetotactic prokaryotes (MMPs) are a unique group of magnetotactic bacteria that are composed of 10–100 individual cells and show coordinated swimming along magnetic field lines. MMPs produce nanometer-sized magnetite (Fe3O4) and/or greigite (Fe3S4) crystals—termed magnetosomes. Two types of magnetosome gene cluster (MGC) that regulate biomineralization of magnetite and greigite have been found. Here, we describe a dominant spherical MMP (sMMP) species collected from the intertidal sediments of Jinsha Bay, in the South China Sea. The sMMPs were 4.78 ± 0.67 μm in diameter, comprised 14–40 cells helical symmetrically, and contained bullet-shaped magnetite and irregularly shaped greigite magnetosomes. Two sets of MGCs, one putatively related to magnetite biomineralization and the other to greigite biomineralization, were identified in the genome of the sMMP, and two sets of paralogous proteins (Mam and Mad) that may function separately and independently in magnetosome biomineralization were found. Phylogenetic analysis indicated that the sMMPs were affiliated with Deltaproteobacteria. This is the first direct report of two types of magnetosomes and two sets of MGCs being detected in the same sMMP. The study provides new insights into the mechanism of biomineralization of magnetosomes in MMPs, and the evolutionary origin of MGCs.
Collapse
|
6
|
Occurrence of south- and north-seeking multicellular magnetotactic prokaryotes in a coastal lagoon in the South Hemisphere. Int Microbiol 2021; 25:309-323. [PMID: 34738176 DOI: 10.1007/s10123-021-00218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Magnetotactic bacteria (MTB) response to the magnetic field can be classified into north-seeking (NS) and south-seeking (SS), which usually depends on their inhabiting site in the North and South Hemisphere, respectively. However, uncommon inverted polarity was observed on both hemispheres. Here, we studied magnetotactic multicellular prokaryotes (MMPs) from a coastal lagoon in Brazil collected in April and August 2014. MMPs from the first sampling period presented both magnetotactic behaviors, while MMPs collected in August/2014 were only SS. Phylogenetic analysis based on the 16S rRNA coding gene showed that these organisms belong to the Deltaproteobacteria class. The 16S rRNA gene sequences varied among MMPs regardless of the sampling period, and similarity values were not related to the type of magnetotactic response presented by the microorganisms. Therefore, differences in the magnetotactic behavior might result from the physiological state of MMPs, the availability of resources, or the instability of the chemical gradient in the environment. This is the first report of NS magnetotactic behavior on MMPs from the South Hemisphere.
Collapse
|
7
|
Keim CN, da Silva DM, de Melo RD, Acosta-Avalos D, Farina M, de Barros HL. Swimming behavior of the multicellular magnetotactic prokaryote 'Candidatus Magnetoglobus multicellularis' near solid boundaries and natural magnetic grains. Antonie van Leeuwenhoek 2021; 114:1899-1913. [PMID: 34478018 DOI: 10.1007/s10482-021-01649-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
The magnetotactic yet uncultured species 'Candidatus Magnetoglobus multicellularis' is a spherical, multicellular ensemble of bacterial cells able to align along magnetic field lines while swimming propelled by flagella. Magnetotaxis is due to intracytoplasmic, membrane-bound magnetic crystals called magnetosomes. The net magnetic moment of magnetosomes interacts with local magnetic fields, imparting the whole microorganism a torque. Previous works investigated 'Ca. M. multicellularis' behavior when free swimming in water; however, they occur in sediments where bumping into solid particles must be routine. In this work, we investigate the swimming trajectories of 'Ca. M. multicellularis' close to solid boundaries using video microscopy. We applied magnetic fields 0.25-8.0 mT parallel to the optical axis of a light microscope, such that microorganisms were driven upwards towards a coverslip. Because their swimming trajectories approach cylindrical helixes, circular profiles would be expected. Nevertheless, at fields 0.25-1.1 mT, most trajectory projections were roughly sinusoidal, and net movements were approximately perpendicular to applied magnetic fields. Closed loops appeared in some trajectory projections at 1.1 mT, which could indicate a transition to the loopy profiles observed at magnetic fields ≥ 2.15 mT. The behavior of 'Ca. M. multicellularis' near natural magnetic grains showed that they were temporarily trapped by the particle's magnetic field but could reverse the direction of movement to flee away. Our results show that interactions of 'Ca. M. multicellularis with solid boundaries and magnetic grains are complex and possibly involve mechano-taxis.
Collapse
Affiliation(s)
- Carolina N Keim
- Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Daniel Mendes da Silva
- Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Roger Duarte de Melo
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Daniel Acosta-Avalos
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Lins de Barros
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| |
Collapse
|
8
|
de Melo RD, Leão P, Abreu F, Acosta-Avalos D. The swimming orientation of multicellular magnetotactic prokaryotes and uncultured magnetotactic cocci in magnetic fields similar to the geomagnetic field reveals differences in magnetotaxis between them. Antonie van Leeuwenhoek 2019; 113:197-209. [PMID: 31535336 DOI: 10.1007/s10482-019-01330-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
Abstract
Magnetotactic bacteria have intracellular chains of magnetic nanoparticles, conferring to their cellular body a magnetic moment that permits the alignment of their swimming trajectories to the geomagnetic field lines. That property is known as magnetotaxis and makes them suitable for the study of bacterial motion. The present paper studies the swimming trajectories of uncultured magnetotactic cocci and of the multicellular magnetotactic prokaryote 'Candidatus Magnetoglobus multicellularis' exposed to magnetic fields lower than 80 μT. It was assumed that the trajectories are cylindrical helixes and the axial velocity, the helix radius, the frequency and the orientation of the trajectories relative to the applied magnetic field were determined from the experimental trajectories. The results show the paramagnetic model applies well to magnetotactic cocci but not to 'Ca. M. multicellularis' in the low magnetic field regime analyzed. Magnetotactic cocci orient their trajectories as predicted by classical magnetotaxis but in general 'Ca. M. multicellularis' does not swim following the magnetic field direction, meaning that for it the inversion in the magnetic field direction represents a stimulus but the selection of the swimming direction depends on other cues or even on other mechanisms for magnetic field detection.
Collapse
Affiliation(s)
- Roger Duarte de Melo
- Centro Brasileiro de Pesquisas Fisicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel Acosta-Avalos
- Centro Brasileiro de Pesquisas Fisicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil.
| |
Collapse
|
9
|
Vargas G, Cypriano J, Correa T, Leão P, Bazylinski DA, Abreu F. Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules 2018; 23:E2438. [PMID: 30249983 PMCID: PMC6222368 DOI: 10.3390/molecules23102438] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Magnetotactic bacteria (MTB) biomineralize magnetosomes, which are defined as intracellular nanocrystals of the magnetic minerals magnetite (Fe₃O₄) or greigite (Fe₃S₄) enveloped by a phospholipid bilayer membrane. The synthesis of magnetosomes is controlled by a specific set of genes that encode proteins, some of which are exclusively found in the magnetosome membrane in the cell. Over the past several decades, interest in nanoscale technology (nanotechnology) and biotechnology has increased significantly due to the development and establishment of new commercial, medical and scientific processes and applications that utilize nanomaterials, some of which are biologically derived. One excellent example of a biological nanomaterial that is showing great promise for use in a large number of commercial and medical applications are bacterial magnetite magnetosomes. Unlike chemically-synthesized magnetite nanoparticles, magnetosome magnetite crystals are stable single-magnetic domains and are thus permanently magnetic at ambient temperature, are of high chemical purity, and display a narrow size range and consistent crystal morphology. These physical/chemical features are important in their use in biotechnological and other applications. Applications utilizing magnetite-producing MTB, magnetite magnetosomes and/or magnetosome magnetite crystals include and/or involve bioremediation, cell separation, DNA/antigen recovery or detection, drug delivery, enzyme immobilization, magnetic hyperthermia and contrast enhancement of magnetic resonance imaging. Metric analysis using Scopus and Web of Science databases from 2003 to 2018 showed that applied research involving magnetite from MTB in some form has been focused mainly in biomedical applications, particularly in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Tarcisio Correa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA.
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
10
|
Teng Z, Zhang Y, Zhang W, Pan H, Xu J, Huang H, Xiao T, Wu LF. Diversity and Characterization of Multicellular Magnetotactic Prokaryotes From Coral Reef Habitats of the Paracel Islands, South China Sea. Front Microbiol 2018; 9:2135. [PMID: 30271390 PMCID: PMC6142882 DOI: 10.3389/fmicb.2018.02135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 02/01/2023] Open
Abstract
While multicellular magnetotactic prokaryotes (MMPs) are ubiquitous in marine environments, the diversity of MMPs in sediments of coral reef ecosystems has rarely been reported. In this study, we made an investigation on the diversity and characteristics of MMPs in sediments at 11 stations in coral reef habitats of the Paracel Islands. The results showed that MMPs were present at nine stations, with spherical mulberry-like MMPs (s-MMPs) found at all stations and ellipsoidal pineapple-like MMPs (e-MMPs) found at seven stations. The maximum abundance of MMPs was 6 ind./cm3. Phylogenetic analysis revealed the presence of one e-MMP species and five s-MMP species including two species of a new genus. The results indicate that coral reef habitats of the Paracel Islands have a high diversity of MMPs that bio-mineralize multiple intracellular chains of iron crystals and play important role in iron cycling in such oligotrophic environment. These observations provide new perspective of the diversity of MMPs in general and expand knowledge of the occurrence of MMPs in coral reef habitats.
Collapse
Affiliation(s)
- Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyang Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Jianhong Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hui Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Long-Fei Wu
- Aix Marseille University, CNRS, LCB, Marseille, France.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| |
Collapse
|
11
|
Keim CN, Duarte de Melo R, Almeida FP, Lins de Barros HGP, Farina M, Acosta-Avalos D. Effect of applied magnetic fields on motility and magnetotaxis in the uncultured magnetotactic multicellular prokaryote 'Candidatus Magnetoglobus multicellularis'. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:465-474. [PMID: 29573371 DOI: 10.1111/1758-2229.12640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/27/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Magnetotactic bacteria are found in the chemocline of aquatic environments worldwide. They produce nanoparticles of magnetic minerals arranged in chains in the cytoplasm, which enable these microorganisms to align to magnetic fields while swimming propelled by flagella. Magnetotactic bacteria are diverse phylogenetically and morphologically, including cocci, rods, vibria, spirilla and also multicellular forms, known as magnetotactic multicellular prokaryotes (MMPs). We used video-microscopy to study the motility of the uncultured MMP 'Candidatus Magnetoglobus multicellularis' under applied magnetic fields ranging from 0.9 to 32 Oersted (Oe). The bidimensional projections of the tridimensional trajectories where interpreted as plane projections of cylindrical helices and fitted as sinusoidal curves. The results showed that 'Ca. M. multicellularis' do not orient efficiently to low magnetic fields, reaching an efficiency of about 0.65 at 0.9-1.5 Oe, which are four to six times the local magnetic field. Good efficiency (0.95) is accomplished for magnetic fields ≥10 Oe. For comparison, unicellular magnetotactic microorganisms reach such efficiency at the local magnetic field. Considering that the magnetic moment of 'Ca. M. multicellularis' is sufficient for efficient alignment at the Earth's magnetic field, we suggest that misalignments are due to flagella movements, which could be driven by photo-, chemo- and/or other types of taxis.
Collapse
Affiliation(s)
- Carolina N Keim
- Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Roger Duarte de Melo
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Fernando P Almeida
- Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Henrique G P Lins de Barros
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Daniel Acosta-Avalos
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| |
Collapse
|
12
|
Association of magnetotactic multicellular prokaryotes with Pseudoalteromonas species in a natural lagoon environment. Antonie Van Leeuwenhoek 2018; 111:2213-2223. [DOI: 10.1007/s10482-018-1113-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
|
13
|
Leão P, Chen YR, Abreu F, Wang M, Zhang WJ, Zhou K, Xiao T, Wu LF, Lins U. Ultrastructure of ellipsoidal magnetotactic multicellular prokaryotes depicts their complex assemblage and cellular polarity in the context of magnetotaxis. Environ Microbiol 2017; 19:2151-2163. [PMID: 28120460 DOI: 10.1111/1462-2920.13677] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 11/28/2022]
Abstract
Magnetotactic multicellular prokaryotes (MMPs) consist of unique microorganisms formed by genetically identical Gram-negative bacterial that live as a single individual capable of producing magnetic nano-particles called magnetosomes. Two distinct morphotypes of MMPs are known: spherical MMPs (sMMPs) and ellipsoidal MMPs (eMMPs). sMMPs have been extensively characterized, but less information exists for eMMPs. Here, we report the ultrastructure and organization as well as gene clusters responsible for magnetosome and flagella biosynthesis in the magnetite magnetosome producer eMMP Candidatus Magnetananas rongchenensis. Transmission electron microscopy and focused ion beam scanning electron microscopy (FIB-SEM) 3D reconstruction reveal that cells with a conspicuous core-periphery polarity were organized around a central space. Magnetosomes were organized in multiple chains aligned along the periphery of each cell. In the partially sequenced genome, magnetite-related mamAB gene and mad gene clusters were identified. Two cell morphologies were detected: irregular elliptical conical 'frustum-like' (IECF) cells and H-shaped cells. IECF cells merge to form H-shaped cells indicating a more complex structure and possibly a distinct evolutionary position of eMMPs when compared with sMMPs considering multicellularity.
Collapse
Affiliation(s)
- Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Yi-Ran Chen
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille, France
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mingling Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei-Jia Zhang
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille, France.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Ke Zhou
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tian Xiao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille, France
| | - Long-Fei Wu
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille, France.,Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
14
|
Herrero A, Stavans J, Flores E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol Rev 2016; 40:831-854. [DOI: 10.1093/femsre/fuw029] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2016] [Accepted: 07/09/2016] [Indexed: 11/13/2022] Open
|
15
|
Abstract
Magnetotactic bacteria (MTB) are widespread, motile, diverse prokaryotes that biomineralize a unique organelle called the magnetosome. Magnetosomes consist of a nano-sized crystal of a magnetic iron mineral that is enveloped by a lipid bilayer membrane. In cells of almost all MTB, magnetosomes are organized as a well-ordered chain. The magnetosome chain causes the cell to behave like a motile, miniature compass needle where the cell aligns and swims parallel to magnetic field lines. MTB are found in almost all types of aquatic environments, where they can account for an important part of the bacterial biomass. The genes responsible for magnetosome biomineralization are organized as clusters in the genomes of MTB, in some as a magnetosome genomic island. The functions of a number of magnetosome genes and their associated proteins in magnetosome synthesis and construction of the magnetosome chain have now been elucidated. The origin of magnetotaxis appears to be monophyletic; that is, it developed in a common ancestor to all MTB, although horizontal gene transfer of magnetosome genes also appears to play a role in their distribution. The purpose of this review, based on recent progress in this field, is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.
Collapse
|
16
|
Abreu F, Morillo V, Nascimento FF, Werneck C, Cantão ME, Ciapina LP, de Almeida LGP, Lefèvre CT, Bazylinski DA, de Vasconcelos ATR, Lins U. Deciphering unusual uncultured magnetotactic multicellular prokaryotes through genomics. ISME JOURNAL 2013; 8:1055-68. [PMID: 24196322 DOI: 10.1038/ismej.2013.203] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 09/20/2013] [Accepted: 10/09/2013] [Indexed: 11/09/2022]
Abstract
Candidatus Magnetoglobus multicellularis (Ca. M. multicellularis) is a member of a group of uncultured magnetotactic prokaryotes that possesses a unique multicellular morphology. To better understand this organism's physiology, we used a genomic approach through pyrosequencing. Genomic data analysis corroborates previous structural studies and reveals the proteins that are likely involved in multicellular morphogenesis of this microorganism. Interestingly, some detected protein sequences that might be involved in cell adhesion are homologues to phylogenetically unrelated filamentous multicellular bacteria proteins, suggesting their contribution in the early development of multicellular organization in Bacteria. Genes related to the behavior of Ca. M. multicellularis (chemo-, photo- and magnetotaxis) and its metabolic capabilities were analyzed. On the basis of the genomic-physiologic information, enrichment media were tested. One medium supported chemoorganoheterotrophic growth of Ca. M. multicellularis and allowed the microorganisms to maintain their multicellular morphology and cell cycle, confirming for the first time that the entire life cycle of the MMP occurs in a multicellular form. Because Ca. M. multicellularis has a unique multicellular life style, its cultivation is an important achievement for further studies regarding the multicellular evolution in prokaryotes.
Collapse
Affiliation(s)
- Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviana Morillo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabrícia F Nascimento
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa Werneck
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Egidio Cantão
- 1] Departamento de Matemática Aplicada e Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil [2] Embrapa Suínos e Aves, Santa Catarina, Brazil
| | - Luciane Prioli Ciapina
- Departamento de Matemática Aplicada e Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Luiz Gonzaga Paula de Almeida
- Departamento de Matemática Aplicada e Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Christopher T Lefèvre
- Laboratoire de Bioénergétique Cellulaire, CEA Cadarache/CNRS/Aix-Marseille Université, UMR7265 Biologie Végétale et Microbiologie Environnementales, Saint Paul lez Durance, France
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, USA
| | | | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|