1
|
Manzorro R, Xu Y, Vincent JL, Rivera R, Matteson DS, Crozier PA. Exploring Blob Detection to Determine Atomic Column Positions and Intensities in Time-Resolved TEM Images with Ultra-Low Signal-to-Noise. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-14. [PMID: 35343415 DOI: 10.1017/s1431927622000356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spatially resolved in situ transmission electron microscopy (TEM), equipped with direct electron detection systems, is a suitable technique to record information about the atom-scale dynamics with millisecond temporal resolution from materials. However, characterizing dynamics or fluxional behavior requires processing short time exposure images which usually have severely degraded signal-to-noise ratios. The poor signal-to-noise associated with high temporal resolution makes it challenging to determine the position and intensity of atomic columns in materials undergoing structural dynamics. To address this challenge, we propose a noise-robust, processing approach based on blob detection, which has been previously established for identifying objects in images in the community of computer vision. In particular, a blob detection algorithm has been tailored to deal with noisy TEM image series from nanoparticle systems. In the presence of high noise content, our blob detection approach is demonstrated to outperform the results of other algorithms, enabling the determination of atomic column position and its intensity with a higher degree of precision.
Collapse
Affiliation(s)
- Ramon Manzorro
- School for the Engineering of Matter, Transport, and Energy, Arizona State University, Engineering G Wing #301, 501 E Tyler Mall, Tempe, AZ85287, USA
| | - Yuchen Xu
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Joshua L Vincent
- School for the Engineering of Matter, Transport, and Energy, Arizona State University, Engineering G Wing #301, 501 E Tyler Mall, Tempe, AZ85287, USA
| | - Roberto Rivera
- Department of Mathematical Sciences, University of Puerto Rico-Mayaguez, Mayaguez, Puerto Rico
| | - David S Matteson
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Peter A Crozier
- School for the Engineering of Matter, Transport, and Energy, Arizona State University, Engineering G Wing #301, 501 E Tyler Mall, Tempe, AZ85287, USA
| |
Collapse
|
2
|
Rodrigues Fiuza TE, Muniz da Silva M, Bettini J, Leite ER. Visualization of the Final Stage of Sintering in Nanoceramics with Atomic Resolution. NANO LETTERS 2022; 22:1978-1985. [PMID: 35225619 DOI: 10.1021/acs.nanolett.1c04708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The deep understanding of the sintering mechanism is pivotal to optimizing denser ceramics production. Although several models explain the sintering satisfactorily on the micrometric scale, the extrapolation for nanostructured systems is not trivial. Aiming to provide additional information about the particularities of the sintering at the nanoscale, we performed in situ experiments using high-resolution transmission electron microscopy (HRTEM). We studied the pore elimination process in a ZrO2 thin film and identified a high anisotropic pore elimination. Interestingly, there is a redistribution of the atoms from the rough surface in the solid-gas surface, followed by the atom attachment in a faceted surface. Finally, we found evidence of the pore acting as a pin, reducing the GB mobility. These findings certainly can contribute to enhance the kinetic models to describe the densification process of systems at the nanoscale.
Collapse
Affiliation(s)
| | - Marlon Muniz da Silva
- Laboratório Nacional de Nanotecnologia (LNNano), CNPEM, 13083-970, Campinas, São Paulo, Brazil
- Faculdade de Química, Centro de Ciências Exatas, Ambientais e de Tecnologias (CEATEC), Pontifícia Universidade Católica de Campinas (PUCCamp), 13086-900, Campinas, São Paulo, Brazil
| | - Jefferson Bettini
- Laboratório Nacional de Nanotecnologia (LNNano), CNPEM, 13083-970, Campinas, São Paulo, Brazil
| | - Edson Roberto Leite
- Laboratório Nacional de Nanotecnologia (LNNano), CNPEM, 13083-970, Campinas, São Paulo, Brazil
- Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brazil
| |
Collapse
|
3
|
Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO 2 hydrogenation. Nat Commun 2021; 12:3884. [PMID: 34162865 PMCID: PMC8222268 DOI: 10.1038/s41467-021-24228-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
High-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements. Facile fabrication of high-entropy alloys (HEAs) nanoparticles (NPs) on conventional catalyst supports remains challenging. Here the authors show TiO2 is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA NPs with excellent activity and durability in CO2 hydrogenation.
Collapse
|