1
|
Andersen CRY, Tornberg M, Lehmann S, Jacobsson D, Dick KA, Mølhave KS. Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopy. SMALL METHODS 2025; 9:e2400728. [PMID: 39308195 PMCID: PMC11740929 DOI: 10.1002/smtd.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Indexed: 01/19/2025]
Abstract
Crystal Phase Quantum Dots (CPQDs) offer promising properties for quantum communication. How CPQDs can be formed in Au-catalyzed GaAs nanowires using different precursor flows and temperatures by in situ environmental transmission electron microscopy (ETEM) experiments is studied. A III-V gas supply system controls the precursor flow and custom-built micro electro-mechanical system (MEMS) chips with monocrystalline Si-cantilevers are used for temperature control, forming a micrometer-scale metal-organic vapor phase epitaxy (µMOVPE) system. The preferentially formed crystal phases are mapped at different precursor flows and temperatures to determine optimal growth parameters for either crystal phase. To control the position and length of CPQDs, the time scale for crystal phase change is investigated. The micrometer size of the cantilevers allows temperature shifts of more than 100 °C within 0.1 s at the nanowire growth temperature, which can be much faster than the growth time for a single lattice layer. For controlling the crystal phase, the temperature change is found to be superior to precursor flow, which takes tens of seconds for the crystal phase formation to react. This µMOVPE approach may ultimately provide faster temperature control than bulk MOVPE systems and hence enable engineering sequences of CPQDs with quantum dot lengths and positions defined with atomic precision.
Collapse
Affiliation(s)
- Christopher R. Y. Andersen
- DTU NanolabTechnical University of DenmarkKgs. Lyngby2800Denmark
- Centre for Analysis and SynthesisNanoLundLund UniversityBox 124LundS‐221 00Sweden
- DTU ElectroTechnical University of DenmarkKgs. Lyngby2800Denmark
- Quantum DTUTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Marcus Tornberg
- Centre for Analysis and SynthesisNanoLundLund UniversityBox 124LundS‐221 00Sweden
| | | | - Daniel Jacobsson
- Centre for Analysis and SynthesisNanoLundLund UniversityBox 124LundS‐221 00Sweden
- nCHREMLund UniversityBox 124LundS‐221 00Sweden
| | - Kimberly A. Dick
- Centre for Analysis and SynthesisNanoLundLund UniversityBox 124LundS‐221 00Sweden
| | | |
Collapse
|
2
|
Marnauza M, Sjökvist R, Lehmann S, Dick KA. Diameter Control of GaSb Nanowires Revealed by In Situ Environmental Transmission Electron Microscopy. J Phys Chem Lett 2023; 14:7404-7410. [PMID: 37566795 PMCID: PMC10461298 DOI: 10.1021/acs.jpclett.3c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Several nanowire properties are strongly dependent on their diameter, which is notoriously difficult to control for III-Sb nanowires compared with other III-V nanowires. Herein environmental transmission electron microscopy is utilized to study the growth of Au nanoparticle seeded GaSb nanowires in situ. In this study, the real time changes to morphology and nanoparticle composition as a result of precursor V/III ratio are investigated. For a wide range of the growth parameters, it is observed that decreasing the V/III ratio increases the nanoparticle volume through Ga accumulation in the nanoparticle. The increase in nanoparticle volume in turn forces the nanowire diameter to expand. The effect of the V/III ratio on diameter allows the engineering of diameter modulated nanowires, where the modulation persisted after the growth. Lastly, this study demonstrates the observed trends can be reproduced in a conventional ex situ system, highlighting the transferability and importance of the results obtained in situ.
Collapse
Affiliation(s)
- Mikelis Marnauza
- Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
| | - Robin Sjökvist
- Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
| | - Sebastian Lehmann
- NanoLund, Lund University, 22100 Lund, Sweden
- Solid State Physics, Lund University, 22100 Lund, Sweden
| | - Kimberly A Dick
- Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
| |
Collapse
|
3
|
Seifner MS, Hu T, Snellman M, Jacobsson D, Deppert K, Messing ME, Dick KA. Insights into the Synthesis Mechanisms of Ag-Cu 3P-GaP Multicomponent Nanoparticles. ACS NANO 2023; 17:7674-7684. [PMID: 37017472 PMCID: PMC10134500 DOI: 10.1021/acsnano.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Metal-semiconductor nanoparticle heterostructures are exciting materials for photocatalytic applications. Phase and facet engineering are critical for designing highly efficient catalysts. Therefore, understanding processes occurring during the nanostructure synthesis is crucial to gain control over properties such as the surface and interface facets' orientations, morphology, and crystal structure. However, the characterization of nanostructures after the synthesis makes clarifying their formation mechanisms nontrivial and sometimes even impossible. In this study, we used an environmental transmission electron microscope with an integrated metal-organic chemical vapor deposition system to enlighten fundamental dynamic processes during the Ag-Cu3P-GaP nanoparticle synthesis using Ag-Cu3P seed particles. Our results reveal that the GaP phase nucleated at the Cu3P surface, and growth proceeded via a topotactic reaction involving counter-diffusion of Cu+ and Ga3+ cations. After the initial GaP growth steps, the Ag and Cu3P phases formed specific interfaces with the GaP growth front. GaP growth proceeded by a similar mechanism observed for the nucleation involving the diffusion of Cu atoms through/along the Ag phase toward other regions, followed by the redeposition of Cu3P at a specific Cu3P crystal facet, not in contact with the GaP phase. The Ag phase was essential for this process by acting as a medium enabling the efficient transport of Cu atoms away from and, simultaneously, Ga atoms toward the GaP-Cu3P interface. This study shows that enlightening fundamental processes is critical for progress in synthesizing phase- and facet-engineered multicomponent nanoparticles with tailored properties for specific applications, including catalysis.
Collapse
Affiliation(s)
- Michael S. Seifner
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Tianyi Hu
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Markus Snellman
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Daniel Jacobsson
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- National
Center for High Resolution Electron Microscopy, Lund University, Box 124, 22100 Lund, Sweden
| | - Knut Deppert
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Maria E. Messing
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kimberly A. Dick
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| |
Collapse
|
4
|
Sjökvist R, Tornberg M, Marnauza M, Jacobsson D, Dick KA. Observation of the Multilayer Growth Mode in Ternary InGaAs Nanowires. ACS NANOSCIENCE AU 2022; 2:539-548. [PMID: 37101854 PMCID: PMC10125347 DOI: 10.1021/acsnanoscienceau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 04/28/2023]
Abstract
Au-seeded semiconductor nanowires have classically been considered to only grow in a layer-by-layer growth mode, where individual layers nucleate and grow one at a time with an incubation step in between. Recent in situ investigations have shown that there are circumstances where binary semiconductor nanowires grow in a multilayer fashion, creating a stack of incomplete layers at the interface between a nanoparticle and a nanowire. In the current investigation, the growth behavior in ternary InGaAs nanowires has been analyzed in situ, using environmental transmission electron microscopy. The investigation has revealed that multilayer growth also occurs for ternary nanowires and appears to be more common than in the binary case. In addition, the size of the multilayer stacks observed is much larger than what has been reported previously. The investigation details the implications of multilayers for the overall growth of the nanowires, as well as the surrounding conditions under which it has manifested. We show that multilayer growth is highly dynamic, where the stack of layers regularly changes size by transporting material between the growing layers. Another observation is that multilayer growth can be initiated in conjunction with the formation of crystallographic defects and compositional changes. In addition, the role that multilayers can have in behaviors such as growth failure and kinking, sometimes observed when creating heterostructures between GaAs and InAs ex situ, is discussed. The prevalence of multilayer growth in this ternary material system implies that, in order to fully understand and accurately predict the growth of nanowires of complex composition and structure, multilayer growth has to be considered.
Collapse
Affiliation(s)
- Robin Sjökvist
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Marcus Tornberg
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Mikelis Marnauza
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Daniel Jacobsson
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- National
Centre for High Resolution Electron Microscopy, Lund University, Box 124, 22100 Lund, Sweden
| | - Kimberly A. Dick
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| |
Collapse
|
5
|
Joshi A, Agrawal A, Bhattacharya S. Formulation and clinical advancement of nanourchins: a novel multibranched nanoparticulate drug-delivery system. Nanomedicine (Lond) 2022; 17:1477-1499. [PMID: 36154464 DOI: 10.2217/nnm-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanourchins are multibranched nanoparticles with unique optical properties and surface spikes. Because of their unique properties, gold nanourchins have advantages over gold nanoparticles. The most used nanourchins are gold, tungsten, carbon, vanadium and sea urchins. The synthesis of various nanourchins and their clinical advancement are discussed in this review. ZFNs, TALENs and CRISPR/Cas9 are discussed to facilitate understanding of advancements in nanourchins. Nanourchins have been studied for Parkinson's disease, Alzheimer's disease and bioimaging. The synthesis of molybdenum diselenide nanourchins and their bioconjugations are also discussed. Nanourchins can be further explored to improve drug targeting and delivery. Researchers from several fields may contribute to the study of nanourchins as prospective nanocarriers with target specificity.
Collapse
Affiliation(s)
- Aalind Joshi
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Aishwarya Agrawal
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|