Feasibility study of automated framework for estimating lung tumor locations for target-based patient positioning in stereotactic body radiotherapy.
BIOMED RESEARCH INTERNATIONAL 2015;
2015:653974. [PMID:
25629051 PMCID:
PMC4299540 DOI:
10.1155/2015/653974]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 12/25/2022]
Abstract
Objective. To investigate the feasibility of an automated framework for estimating the lung tumor locations for tumor-based patient positioning with megavolt-cone-beam computed tomography (MV-CBCT) during stereotactic body radiotherapy (SBRT). Methods. A lung screening phantom and ten lung cancer cases with solid lung tumors, who were treated with SBRT, were employed to this study. The locations of tumors in MV-CBCT images were estimated using a tumor-template matching technique between a tumor template and the MV-CBCT. Tumor templates were produced by cropping the gross tumor volume (GTV) regions, which were enhanced by a Sobel filter or a blob structure enhancement (BSE) filter. Reference tumor locations (grand truth) were determined based on a consensus between a radiation oncologist and a medical physicist. Results. According to the results of the phantom study, the average Euclidean distances of the location errors in the original, Sobel-filtered, and BSE-filtered images were 2.0 ± 4.1 mm, 12.8 ± 9.4 mm, and 0.4 ± 0.5 mm, respectively. For clinical cases, these were 3.4 ± 7.1 mm, 7.2 ± 11.6 mm, and 1.6 ± 1.2 mm, respectively. Conclusion. The feasibility study suggests that our proposed framework based on the BSE filter may be a useful tool for tumor-based patient positioning in SBRT.
Collapse