1
|
Mahur M, Singh M, Semwal M, Gurjar O. Evaluation of surface dose calculations using monaco treatment planning system in an indigenously developed head and neck phantom. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_827_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Radaideh KM. Dosimetric impact of weight loss and anatomical changes at organs at risk during intensity-modulated radiotherapy for head-and-neck cancer. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1731125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Tanaka Y, Monzen H, Matsumoto K, Inomata S, Fuse T. Dose distribution comparison in volumetric-modulated arc therapy plans for head and neck cancers with and without an external body contour extended technique. Rep Pract Oncol Radiother 2019; 24:576-584. [PMID: 31719798 DOI: 10.1016/j.rpor.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/24/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022] Open
Abstract
Aim This study compared volumetric-modulated arc therapy (VMAT) plans for head and neck cancers with and without an external body contour extended technique (EBCT). Background Dose calculation algorisms for VMAT have limitations in the buildup region. Materials and methods Three VMAT plans were enrolled, with one case having a metal artifact from an artificial tooth. The proper dose was calculated using Eclipse version 11.0. The body contours were extended 2 cm outward from the skin surface in three-dimensional space, and the dose was recalculated with an anisotropic analytical algorithm (AAA) and Acuros XB (AXB). Monitor units (MUs) were set, and the dose distributions in the planning target volume (PTV), clinical target volume, and organ at risk (OAR) and conformity index (CI) with and without an EBCT were compared. The influence of a metal artifact outside of the thermoplastic head mask was also compared. Results The coverage of PTV by the 95% dose line near the patient's skin was increased drastically by using an EBCT. Plan renormalization had a negligible impact on MUs and doses delivered to OARs. CI of PTV with a 6-MV photon beam was closer to 1 than that with a 10-MV photon beam when both AAA and AXB were used in all cases. Metal artifacts outside the head mask had no effect on dose distribution. Conclusions An EBCT is needed to estimate the proper dose at object volumes near the patient's skin and can improve the accuracy of the calculated dose at target volumes.
Collapse
Affiliation(s)
- Yoshihiro Tanaka
- Department of Radiation Therapy, Japanese Red Cross Society Kyoto Daiichi Hospital, 15-749 Hommachi, Higashiyama-ku, Kyoto-shi, Kyoto 605-0981, Japan
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, 377-2 Ohnohigashi, Osakasayama-shi, Osaka 589-8511, Japan
| | - Kenji Matsumoto
- Department of Central Radiology, Kindai University Hospital, 377-2 Ohnohigashi, Osakasayama-shi, Osaka 589-8511, Japan
| | - Shinichiro Inomata
- Department of Radiation Therapy, Japanese Red Cross Society Kyoto Daiichi Hospital, 15-749 Hommachi, Higashiyama-ku, Kyoto-shi, Kyoto 605-0981, Japan
| | - Toshiaki Fuse
- Department of Radiation Therapy, Japanese Red Cross Society Kyoto Daiichi Hospital, 15-749 Hommachi, Higashiyama-ku, Kyoto-shi, Kyoto 605-0981, Japan
| |
Collapse
|
4
|
Mori M, Dell'Oca I, Branchini M, Foti S, Broggi S, Perna L, Cattaneo GM, Calandrino R, Di Muzio NG, Fiorino C. Monitoring skin dose changes during image-guided helical tomotherapy for head and neck cancer patients. Strahlenther Onkol 2019; 196:243-251. [PMID: 31586231 DOI: 10.1007/s00066-019-01520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/10/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE An increase of skin dose during head and neck cancer (HNC) radiotherapy is potentially dangerous. Aim of this study was to quantify skin dose variation and to assess the need of planning adaptation (ART) to counteract it. METHODS Planning CTs of 32 patients treated with helical tomotherapy (HT) according to a Simultaneous Integrated Boost (SIB) technique delivering 54/66 Gy in 30 fractions were deformably co-registered to MVCTs taken at fractions 15 and 30; in addition, the first fraction was also considered. The delivered dose-of-the-day was calculated on the corresponding deformed images. Superficial body layers (SL) were considered as a surrogate for skin, considering a layer thickness of 2 mm. Variations of SL DVH (∆SL) during therapy were quantified, focusing on ∆SL95% (i.e., 62.7 Gy). RESULTS Small changes (within ± 1 cc for ∆SL95%) were seen in 15/32 patients. Only 2 patients experienced ∆SL95% > 1 cc in at least one of the two monitored fractions. Negative ∆SL95% > 1 cc (up to 17 cc) were much more common (15/32 patients). The trend of skin dose changes was mostly detected at the first fraction. Negative changes were correlated with the presence of any overlap between PTV and SL at planning and were explained in terms of how the planning system optimizes the PTV dose coverage near the skin. Acute toxicity was associated with planning DVH and this association was not improved if considering DVHs referring to fractions 15/30. CONCLUSION About half of the patients treated with SIB with HT for HNC experienced a skin-sparing effect during therapy; only 6% experienced an increase. Our findings do not support skin-sparing ART, while suggesting the introduction of improved skin-sparing planning techniques.
Collapse
Affiliation(s)
- Martina Mori
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milano, Italy.
| | - Italo Dell'Oca
- Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | - Marco Branchini
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milano, Italy
| | - Silvia Foti
- Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Broggi
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milano, Italy
| | - Lucia Perna
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milano, Italy
| | | | - Riccardo Calandrino
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milano, Italy
| | | | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milano, Italy
| |
Collapse
|
5
|
A dosimetric study of skin toxicity induced by 3-D conventional and intensity-modulated radiotherapy techniques using immobilization mask for treatment of head-and-neck (nasopharyngeal cancer) carcinoma: a prospective study. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396918000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackgroundThe purpose of this study was to investigate variations in surface dose, with and without the use of a Klarity® Mask (Orfit Industries America, Wijnegem, Belgium), using intensity-modulated radiotherapy (IMRT) and 3-D conventional radiotherapy (3D-CRT).Materials and methodsThermoluminescent dosimeters (TLDs) together with a phantom were used to examine acute skin toxicity during nasopharyngeal cancer treatment. These plans were sequentially delivered to the perspex phantom. Dosimeters were placed in five fixed regions over the skin. A Klarity mask for immobilization was used for covering the head, neck, and shoulder. The phantom was irradiated with and without a Klarity Mask, using IMRT and 3D-CRT, respectively.ResultsThe Klarity mask increased the skin doses for IMRT and 3D-CRT approximately 18·6% and 8·6%, respectively, from the prescribed maximum skin dose using treatment planning system (TPS). Additionally, the average percentage dose between IMRT and 3D-CRT received on the surface region was 30·9%, 24·9% with and without Klarity mask respectively. The average percentage dose received on surfaces from the total therapeutic dose 70 Gy, without using the mask was 7·7% and 5·7%, for IMRT and 3D-CRT, respectively. The TPS overestimated the skin dose for IMRT planning by 20%, and for 3D-CRT by 16·6%, compared with TLD measurements.ConclusionsThe results of this study revealed that IMRT significantly increases acute skin toxicity, compared with CRT. Although it is recommended to use Klarity mask as a sparing tool of normal tissue, it increases the risk of skin toxicity. In conclusion, skin dose is an important issue of focus during radiotherapy.
Collapse
|
6
|
Skin DVHs predict cutaneous toxicity in Head and Neck Cancer patients treated with Tomotherapy. Phys Med 2019; 59:133-141. [PMID: 30824367 DOI: 10.1016/j.ejmp.2019.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To explore the association between planning skin dose-volume data and acute cutaneous toxicity after Radio-chemotherapy for Head and Neck (HN) cancer patients. METHODS Seventy HN patients were treated with Helical Tomotherapy (HT) with radical intent (SIB technique: 54/66 Gy to PTV1/PTV2 in 30fr) ± chemotherapy superficial body layer 2 mm thick (SL2) was delineated on planning CT. CTCAE v4.0 acute skin toxicity data were available. Absolute average Dose-Volume Histograms (DVH) of SL2 were calculated for patients with severe (G3) and severe/moderate (G3/G2) skin acute toxicities. Differences against patients with none/mild toxicity (G0/G1) were analyzed to define the most discriminative regions of SL2 DVH; univariable and multivariable logistic analyses were performed on DVH values, CTV volume, age, sex, chemotherapy. RESULTS Sixty-one % of patients experienced G2/G3 toxicity (rate of G3 = 19%). Differences in skin DVHs were significant in the range 53-68Gy (p-values: 0.005-0.01). V56/V64 were the most predictive parameters for G2/G3 (OR = 1.12, 95%CI = 1.03-1.21, p = 0.001) and G3 (OR = 1.13, 95%CI = 1.01-1.26, p = 0.027) with best cut-off of 7.7cc and 2.7cc respectively. The logistic model for V56 was well calibrated being both, slope and R2, close to 1. Average V64 were 2.2cc and 6cc for the two groups (G3 vs G0-G2 toxicity); the logistic model for V64 was quite well calibrated, with a slope close to 1 and R2 equal to 0.60. CONCLUSION SL2 DVH is associated with the risk of acute skin toxicity. Constraining V64 < 3cc (equivalent to a 4x4cm2 skin surface) should keep the risk of G3 toxicity below or around 10%.
Collapse
|
7
|
Branchini M, Broggi S, Dell'Oca I, Cattaneo GM, Calandrino R, Di Muzio NG, Fiorino C. Skin dose calculation during radiotherapy of head and neck cancer using deformable image registration of planning and mega-voltage computed tomography scans. Phys Imaging Radiat Oncol 2018; 8:44-50. [PMID: 33458416 PMCID: PMC7807680 DOI: 10.1016/j.phro.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose Head-Neck (HN) patients may experience severe acute skin complications that can cause treatment interruption and increase the risk of late fibrosis. This study assessed a method for accurately monitoring skin dose changes during helical tomotherapy for HN cancer based on deformable image registration of planning computed tomography (CT) and mega-voltage CT (MVCT). Materials and Methods Planning CTs of nine patients were deformably registered to mid-treatment MVCT (MV15) images resulting in CTdef images. The original plans were recalculated on both CTdef and mid-treatment kilo-voltage CT (CT15) taken as ground truth. Superficial layers (SL) of the body with thicknesses of 2, 3 and 5 mm (SL2, SL3, SL5) were considered as derma surrogates. SL V95%, V97%, V98%, V100%, V102%, V105% and V107% of the prescribed PTV dose were extracted for CT15/CTdef and compared (considering patients with skin dose > 95%). For comparison, doses were calculated directly on the calibrated MVCT and analyzed in the same way. Results Differences between SL2/SL3/SL5 V95%-V107% in CT15/CTdef were very small: for eight of nine patients the difference between the considered SL2 Vd% computed on CTdef and CT15 was less than 1.4 cm3 for all d%. A larger value was found when using MVCT for skin dose calculation (4.8 cm3 for SL2), although CTdef body contour matched CT15 body with accuracy similar to that of MV15. Conclusions Deforming the planning CT-to-MVCT was shown to be accurate considering external body contours and skin DVHs. The method was able to accurately identify superficial overdosing.
Collapse
Affiliation(s)
- Marco Branchini
- Department of Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Broggi
- Department of Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Italo Dell'Oca
- Department of Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | | | - Riccardo Calandrino
- Department of Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | | | - Claudio Fiorino
- Department of Medical Physics, San Raffaele Scientific Institute, Milano, Italy
- Corresponding author at: Medical Physics Department, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, MI, Italy.
| |
Collapse
|
8
|
Predictors of radiation-induced skin toxicity in nasopharyngeal cancer patients treated by intensity-modulated radiation therapy: a prospective study – CORRIGENDUM. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396918000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Evaluation of thermoplastic Klarity mask use during intensity-modulated radiation therapy for head and neck carcinoma. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396917000632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAimTo evaluate the Klarity® Mask with respect to skin doses and toxicity secondary to head and neck cancer radiation treatment.Materials and methodsThis prospective study included five nasopharyngeal cancer patients who underwent intensity-modulated radiation therapy and monitored for skin toxicity. An anatomical Perspex head and neck phantom was designed and used. All patients’ treatment plans were separately transferred to the phantom. Dosimetric measurements were performed using chip-shaped thermoluminescent dosimeters (LiF:Mg,Ti TLDs) which were distributed at certain target points on the phantom. Phantom was irradiated twicely with and without a Klarity® Mask. Three fractions for each patient plan were obtained and compared with treatment planning system (TPS) doses as guided by computed tomography.ResultsThe Klarity mask used for patient immobilisation increased the surface dose by 10·83% more than that without the mask. The average variations between skin dose measurements with and without the Klarity mask for all patients’ plans ranged from 10·26 to 11·83%. TPS overestimated the surface dose by 19·13% when compared with thermoluminescent dosimeters that measured the direct skin dose.ConclusionsKlarity immobilisation mask increases skin doses, as a consequence, surface dose measurements should be monitored and must be taken into account.
Collapse
|