1
|
Jaeger J, Osterburg L, Stein M, Germann M, Lustenberger SA, Wopfner A, Denier N, Bracht T, Moggi F, Soravia LM. Antidepressants and alcohol use disorder: A multicenter study on the mediating role of depression symptom changes. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1577-1585. [PMID: 39058391 DOI: 10.1111/acer.15386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) and depression are highly prevalent and tied to significant psychological, physiological, social and economic consequences. Their co-occurrence presents a complex clinical challenge, as the impact of antidepressant medication on AUD outcomes remains equivocal. In this multicenter, longitudinal study we investigated the relationship between antidepressant medication and changes in depression symptoms and alcohol use in AUD patients. METHODS We analyzed data from 153 detoxified AUD patients who attended a 12-week residential treatment program between 2015 and 2019. Within a mediation analysis, adopting a bootstrapping approach and a quasi-Bayesian framework, we estimated the total, direct, and mediated effects of antidepressants on the percentage of days abstinent to assess the role of changes in depression symptoms as a mediating factor. RESULTS The mediation analysis revealed a dual impact pathway model with a negative direct effect of antidepressants on abstinence (p = 0.004) and a positive indirect effect, mediated through the reduction of depression symptoms (p = 0.002). CONCLUSIONS The findings of the mediation analysis show that patients treated with antidepressants and whose depression symptoms do not improve over time show more relapses, while patients treated with antidepressants who achieve a reduction in depression symptoms show fewer relapses over time. Thus, to optimize treatment outcome, depression symptoms should be vigilantly monitored when antidepressants are prescribed during AUD treatment.
Collapse
Affiliation(s)
- Joshua Jaeger
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Bern, Bern, Switzerland
- Quantitative Data Analytics Group, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lara Osterburg
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Maria Stein
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Miranda Germann
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sara A Lustenberger
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | | | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Franz Moggi
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- Clinic Suedhang, Kirchlindach, Switzerland
| |
Collapse
|
2
|
Kipchumba B, Gitonga F, Jepchirchir C, Gitau GW, Okanya PW, Amwayi PW, Isaac AO, Nyabuga NJ. Alcohol spiked with zolpidem and midazolam potentiates inflammation, oxidative stress and organ damage in a mouse model. Forensic Toxicol 2024; 42:45-59. [PMID: 37814103 DOI: 10.1007/s11419-023-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Crime-related spiking of alcoholic drinks with prescription drugs is quite common and has been happening for centuries. This study, therefore, evaluated the effects of oral administration of alcohol spiked with the zolpidem and midazolam potent sedatives on inflammation, oxidative stress and various organ damage in male Swiss albino mice. METHODS Mice were randomly assigned into six treatment groups; the first group constituted the normal control, the second group received 50 mg/kg body weight of zolpidem only, the third group received 50 mg/kg body weight zolpidem dissolved in 5 g/kg alcohol, the fourth group received 50 mg/kg midazolam only, the fifth group received midazolam (50 mg/kg) dissolved in 5 g/kg alcohol and the sixth group received 5 g/kg alcohol. RESULTS Alcohol-induced significant reduction in neurological function and altered blood hematological indicators. Such neurological impairment and negative effects on blood were exacerbated in mice administered with spiked alcohol. Additionally, midazolam and zolpidem enhanced alcohol-driven elevation of liver function markers; the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) gamma glutamyltransferase (GGT), total bilirubin and alkaline phosphatase. Exposure to alcohol and/or spiked alcohol led to significant augmentation of nitric oxide and malonaldehyde, with concomitant depletion of liver glutathione (GSH) levels. Similarly, serum levels of pro-inflammatory cytokines tumor necrosis factor alpha and interferon-gamma were increased by co-exposure with midazolam or zolpidem. Alcohol-induced hepatotoxicity and nephrotoxicity were amplified by exposure to alcohol spiked with midazolam/zolpidem. CONCLUSION Exposure to alcohol spiked with midazolam or zolpidem appears to exacerbate neurological deficits, inflammation, oxidative stress, and organ damage.
Collapse
Affiliation(s)
- Biwott Kipchumba
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Francis Gitonga
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Careen Jepchirchir
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Grace Wairimu Gitau
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Patrick W Okanya
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Peris Wanza Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Nyariki James Nyabuga
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya.
| |
Collapse
|
3
|
Zaniewska M, Alenina N, Fröhler S, Chen W, Bader M. Ethanol deprivation and central 5-HT deficiency differentially affect the mRNA editing of the 5-HT 2C receptor in the mouse brain. Pharmacol Rep 2023; 75:1502-1521. [PMID: 37923824 PMCID: PMC10661786 DOI: 10.1007/s43440-023-00545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Serotonin (5-HT) 5-HT2C receptor mRNA editing (at five sites, A-E), implicated in neuropsychiatric disorders, including clinical depression, remains unexplored during alcohol abstinence-often accompanied by depressive symptoms. METHODS We used deep sequencing to investigate 5-HT2C receptor editing in mice during early ethanol deprivation following prolonged alcohol exposure and mice lacking tryptophan hydroxylase (TPH)2, a key enzyme in central 5-HT production. We also examined Tph2 expression in ethanol-deprived animals using quantitative real-time PCR (qPCR). RESULTS Cessation from chronic 10% ethanol exposure in a two-bottle choice paradigm enhanced immobility time and decreased latency in the forced swim test (FST), indicating a depression-like phenotype. In the hippocampus, ethanol-deprived "high ethanol-drinking" mice displayed reduced Tph2 expression, elevated 5-HT2C receptor editing efficiency, and decreased frequency of the D mRNA variant, encoding the less-edited INV protein isoform. Tph2-/- mice showed attenuated receptor editing in the hippocampus and elevated frequency of non-edited None and D variants. In the prefrontal cortex, Tph2 deficiency increased receptor mRNA editing at site D and reduced the frequency of AB transcript, predicting a reduction in the corresponding partially edited VNI isoform. CONCLUSIONS Our findings reveal differential effects of 5-HT depletion and ethanol cessation on 5-HT2C receptor editing. Central 5-HT depletion attenuated editing in the prefrontal cortex and the hippocampus, whereas ethanol deprivation, coinciding with reduced Tph2 expression in the hippocampus, enhanced receptor editing efficiency specifically in this brain region. This study highlights the interplay between 5-HT synthesis, ethanol cessation, and 5-HT2C receptor editing, providing potential mechanism underlying increased ethanol consumption and deprivation.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastian Fröhler
- Laboratory for New Sequencing Technology, Max-Delbrück-Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Wei Chen
- Laboratory for New Sequencing Technology, Max-Delbrück-Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Sudden cessation of fluoxetine before alcohol drinking reinstatement alters microglial morphology and TLR4/inflammatory neuroadaptation in the rat brain. Brain Struct Funct 2021; 226:2243-2264. [PMID: 34236532 PMCID: PMC8354990 DOI: 10.1007/s00429-021-02321-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/14/2021] [Indexed: 02/05/2023]
Abstract
Preclinical studies on the effects of abrupt cessation of selective serotonin reuptake inhibitors (SSRIs), a medication often prescribed in alcohol use disorder (AUD) patients with depression, results in alcohol consumption escalation after resuming drinking. However, a potential neuroinflammatory component on this escalation remains unexplored despite the immunomodulatory role of serotonin. Here, we utilized a rat model of 14-daily administration of the SSRI fluoxetine (10 mg/kg/day) along alcohol self-administration deprivation to study the effects of fluoxetine cessation on neuroinflammation after resuming alcohol drinking. Microglial morphology and inflammatory gene expression were analyzed in prelimbic cortex, striatum, basolateral amygdala and dorsal hippocampus. Results indicated that alcohol drinking reinstatement increased microglial IBA1 immunoreactivity and altered morphometric features of activated microglia (fractal dimension, lacunarity, density, roughness, and cell area, perimeter and circularity). Despite alcohol reinstatement, fluoxetine cessation modified microglial morphology in a brain region-specific manner, resulting in hyper-ramified (spatial complexity of branching), reactive (lower heterogeneity and circularity)-like microglia. We also found that microglial cell area correlated with changes in mRNA expression of chemokines (Cx3cl1/fractalkine, Cxcl12/SDF1α, Ccl2/MCP1), cytokines (IL1β, IL6, IL10) and the innate immune toll-like receptor 4 (TLR4) in dorsal hippocampus. Specifically, TLR4 correlated with microglial spatial complexity assessed by fractal dimension in striatum, suggesting a role in process branching. These findings suggest that alcohol drinking reinstatement after fluoxetine treatment cessation disturbs microglial morphology and reactive phenotype associated with a TLR4/inflammatory response to alcohol in a brain region-specific manner, facts that might contribute to alcohol-induced damage through the promotion of escalation of alcohol drinking behavior.
Collapse
|
5
|
Ballesta A, Alen F, Orio L, Arco R, Vadas E, Decara J, Vargas A, Gómez de Heras R, Ramírez‐López M, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F. Abrupt cessation of reboxetine along alcohol deprivation results in alcohol intake escalation after reinstatement of drinking. Addict Biol 2021; 26:e12957. [PMID: 32815666 DOI: 10.1111/adb.12957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/10/2020] [Accepted: 07/24/2020] [Indexed: 01/19/2023]
Abstract
Major depression (MD) is a frequent comorbidity in alcohol use disorder (AUD) patients. Antidepressant prescription is often limited by poor clinical outcomes or unwanted side effects in comorbid AUD-MD patients. Recent studies suggest that abrupt cessation of selective serotonin reuptake inhibitors antidepressant treatment increases alcohol consumption after an alcohol deprivation period in rats. However, the appearance of this effect after the treatment with selective noradrenaline reuptake inhibitors (SNRIs) is not known. Here, we report that interruption of subchronic (14 days) treatment with the SNRIs reboxetine (15 mg/kg/day intraperitoneally) resulted in escalation of ethanol intake when the animals resume alcohol self-administration. This effect of reboxetine treatment cessation was associated with a profound deactivation of the endocannabinoid/acylethanolamide signaling system in the prefrontal cortex but not in the dorsal hippocampus, as reflected by the decrease in the protein expression of the cannabinoid CB1 receptor, the PPARα receptor, the 2-arachidonoylglycerol synthesizing enzymes DAGLα and DGALβ, and the endocanabinoid degrading enzyme MAGL. This was associated with dysregulation of the expression of glutamic acid receptors GluN1, GluA1, and mGlu5 in the medial prefrontal cortex and the dorsal hippocampus of the animals exposed to reboxetine. The present results further support the idea that abrupt cessation of antidepressant therapy along alcohol deprivation time can boost alcohol intake after relapse through mechanisms associated with endocannabinoid/glutamate signaling dysregulation. This finding might be relevant for patients suffering AUD/MD comorbidity where antidepressant therapy must be monitored with caution for avoiding unwanted side effects if adherence to the treatment is not fully achieved.
Collapse
Affiliation(s)
- Antonio Ballesta
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
| | - Francisco Alen
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Laura Orio
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
| | - Rocío Arco
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Evelyn Vadas
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Decara
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Antonio Vargas
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
| | - Mayte Ramírez‐López
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Francisco Javier Pavón
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
6
|
Suárez J, Khom S, Alén F, Natividad LA, Varodayan FP, Patel RR, Kirson D, Arco R, Ballesta A, Bajo M, Rubio L, Martin-Fardon R, de Fonseca FR, Roberto M. Cessation of fluoxetine treatment increases alcohol seeking during relapse and dysregulates endocannabinoid and glutamatergic signaling in the central amygdala. Addict Biol 2020; 25:e12813. [PMID: 31339221 PMCID: PMC8050940 DOI: 10.1111/adb.12813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Administration of selective serotonin reuptake inhibitors (SSRIs), typically used as antidepressants, induces long-lasting behavioral changes associated with alcohol use disorder (AUD). However, the contribution of SSRI (fluoxetine)-induced alterations in neurobiological processes underlying alcohol relapse such as endocannabinoid and glutamate signaling in the central amygdala (CeA) remains largely unknown. We utilized an integrative approach to study the effects of repeated fluoxetine administration during abstinence on ethanol drinking. Gene expression and biochemical and electrophysiological studies explored the hypothesis that dysregulation in glutamatergic and endocannabinoid mechanisms in the CeA underlie the susceptibility to alcohol relapse. Cessation of daily treatment with fluoxetine (10 mg/kg) during abstinence resulted in a marked increase in ethanol seeking during re-exposure periods. The increase in ethanol self-administration was associated with (a) reductions in levels of the endocannabinoids N-arachidonoylethanolomine and 2-arachidonoylglycerol in the CeA, (b) increased amygdalar gene expression of cannabinoid type-1 receptor (CB1), N-acyl phosphatidylethanolamine phospholipase D (Nape-pld), fatty acid amid hydrolase (Faah), (c) decreased amygdalar gene expression of ionotropic AMPA (GluA2 and GluA4) and metabotropic (mGlu3) glutamate receptors, and (d) increased glutamatergic receptor function. Overall, our data suggest that the administration of the antidepressant fluoxetine during abstinence dysregulates endocannabinoid signaling and glutamatergic receptor function in the amygdala, facts that likely facilitate alcohol drinking behavior during relapse.
Collapse
Affiliation(s)
- Juan Suárez
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
- Fulbright Visiting Scholar Program, Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Sophia Khom
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Francisco Alén
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
- Department of Psychobiology. Universidad Complutense de Madrid, Madrid, Spain
| | - Luis A. Natividad
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Florence P. Varodayan
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Reesha R. Patel
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Dean Kirson
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Rocío Arco
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
| | - Antonio Ballesta
- Department of Psychobiology. Universidad Complutense de Madrid, Madrid, Spain
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Leticia Rubio
- Department of Anatomy and Forensic and Legal Medicine. Universidad de Málaga, Málaga, Spain
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
- Department of Psychobiology. Universidad Complutense de Madrid, Madrid, Spain
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| |
Collapse
|
7
|
Increased Ethanol Consumption and Locomotion Develop upon Ethanol Deprivation in Rats Overexpressing the Adenosine (A) 2A Receptor. Neuroscience 2019; 418:133-148. [PMID: 31449988 DOI: 10.1016/j.neuroscience.2019.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/04/2019] [Accepted: 08/17/2019] [Indexed: 02/03/2023]
Abstract
Preclinical data indicate that ethanol produces behavioral effects that can be regulated by many neurotransmitters and neuromodulators like adenosine (A). The most important receptors with respect to the rewarding effects of ethanol seem to be the A2A receptors. This study used a transgenic strategy, specifically rats overexpressing the A2A receptor, to characterize the neurobiological mechanisms of ethanol consumption as measured by intermittent access to 20% ethanol in a two-bottle choice paradigm. In this model, no change in ethanol consumption was observed in transgenic animals compared to wild type controls during the acquisition/maintenance phase. Following alcohol deprivation, only transgenic rats overexpressing the A2A receptor exhibited escalation of ethanol consumption and drank more (by ca. 90%), but not significantly, ethanol than did the wild type rats. During ethanol withdrawal, the immobility time of rats overexpressing the A2A receptor in the forced swim test was lower than that of wild type rats. Moreover, transgenic rats withdrawn from ethanol, compared to the drug-naive transgenic animals, exhibited an increase above 70% in locomotion. The results indicated that the overexpression of A2A receptors may be a risk factor for the escalation of ethanol consumption despite the reduction in depression-like signs of ethanol withdrawal.
Collapse
|
8
|
Ballesta A, Orio L, Arco R, Vargas A, Romero-Sanchiz P, Nogueira-Arjona R, de Heras RG, Antón M, Ramírez-López M, Serrano A, Pavón FJ, de Fonseca FR, Suárez J, Alen F. Bupropion, a possible antidepressant without negative effects on alcohol relapse. Eur Neuropsychopharmacol 2019; 29:756-765. [PMID: 31064683 DOI: 10.1016/j.euroneuro.2019.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
Abstract
RATIONALE the role that antidepressants play on alcohol consumption is not well understood. Previous studies have reported that treatment with a Selective Serotonin Reuptake Inhibitor (SSRIs) increases alcohol consumption in an animal model of relapse, however it is unknown whether this effect holds for other antidepressants such as the atypical dopamine/norepinephrine reuptake inhibitors (SNDRI). OBJECTIVES the main goal of the present study was to compare the effects of two classes of antidepressants drugs, bupropion (SNDRI) and fluoxetine (SSRI), on alcohol consumption during relapse. Since glutamatergic and endocannabinoid signaling systems plays an important role in alcohol abuse and relapse, we also evaluated the effects of both antidepressants onthe expression of the main important genes and proteins of both systems in the prefrontal cortex, a critical brain region in alcohol relapse. METHODS rats were trained to self-administered alcohol. During abstinence, rats received a 14d-treatment with vehicle, fluoxetine (10 mg/kg) or bupropion (20 mg/kg), and we evaluated alcohol consumption during relapse for 3 weeks. Samples of prefrontal cortex were taken to evaluate the mRNA and protein expression of the different components of glutamatergic and endocannabinoid signaling systems. RESULTS fluoxetine treatment induced a long-lasting increase in alcohol consumption during relapse, an effect that was not observed in the case of bupropion treatment. The observed increases in alcohol consumption were accompanied by distinct alterations in the glutamate and endocannabinoid systems. CONCLUSIONS our results suggest that SSRIs can negatively impact alcohol consumption in relapse while SNDRIs have no effects. The observed increase in alcohol consumption are accompanied by functional alterations in the glutamatergic and endocannabinoid systems. This finding could open new strategies for the treatment of depression in patients with alcohol use disorders.
Collapse
Affiliation(s)
- Antonio Ballesta
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - Laura Orio
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - Rocío Arco
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain
| | - Antonio Vargas
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain
| | - Pablo Romero-Sanchiz
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain; Unidad de Salud Mental, Hospital Universitario Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain; Departamento de Personalidad, Evaluación y Tratamientos Psicológicos. Universidad de Málaga, Málaga, Spain
| | - Raquel Nogueira-Arjona
- Unidad de Salud Mental, Hospital Universitario Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain; Department of Psychology and Neuroscience, Dalhousie University, Canada
| | - Raquel Gómez de Heras
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - María Antón
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - Mayte Ramírez-López
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain
| | - Francisco Javier Pavón
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain; Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain.
| | - Juan Suárez
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain.
| | - Francisco Alen
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain; Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain.
| |
Collapse
|
9
|
Prados-Pardo Á, Martín-González E, Mora S, Merchán A, Flores P, Moreno M. Increased Fear Memory and Glutamatergic Modulation in Compulsive Drinker Rats Selected by Schedule-Induced Polydipsia. Front Behav Neurosci 2019; 13:100. [PMID: 31133835 PMCID: PMC6514533 DOI: 10.3389/fnbeh.2019.00100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Compulsive behavior is observed in several neuropsychiatric disorders such as obsessive-compulsive disorder (OCD), anxiety, depression, phobia, and schizophrenia. Thus, compulsivity has been proposed as a transdiagnostic symptom with a highly variable pharmacological treatment. Recent evidence shows that glutamate pharmacotherapy may be of benefit in impaired inhibitory control. The purpose of the present study was: first, to test the comorbidity between compulsivity and other neuropsychiatric symptoms on different preclinical behavioral models; second, to assess the therapeutic potential of different glutamate modulators in a preclinical model of compulsivity. Long Evans rats were selected as either high (HD) or low (LD) drinkers corresponding with their water intake in schedule-induced polydipsia (SIP). We assessed compulsivity in LD and HD rats by marble burying test (MBT), depression by forced swimming test (FST), anxiety by elevated plus maze (EPM) and fear behavior by fear conditioning (FC) test. After that, we measured the effects of acute administration (i.p.) of glutamatergic drugs: N-Acetylcysteine (NAC; 25, 50, 100 and 200 mg/kg), memantine (3.1 and 6.2 mg/kg) and lamotrigine (15 and 30 mg/kg) on compulsive drinking on SIP. The results obtained showed a relation between high compulsive drinking on SIP and a higher number of marbles partially buried in MBT, as well as a higher percentage of freezing on the retrieval day of FC test. We did not detect any significant differences between LD and HD rats in FST, nor in EPM. The psychopharmacological study of glutamatergic drugs revealed that memantine and lamotrigine, at all doses tested, decreased compulsive water consumption in HD rats compared to LD rats on SIP. NAC did not produce any significant effect on SIP. These results indicate that the symptom clusters of different forms of compulsivity and phobia might be found in the compulsive phenotype of HD rats selected by SIP. The effects of memantine and lamotrigine in HD rats point towards a dysregulation in the glutamatergic signaling as a possible underlying mechanism in the vulnerability to compulsive behavior on SIP. Further studies on SIP, could help to elucidate the therapeutic role of glutamatergic drugs as a pharmacological strategy on compulsive spectrum disorders.
Collapse
Affiliation(s)
- Ángeles Prados-Pardo
- Department of Psychology, Health Research Center, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Elena Martín-González
- Department of Psychology, Health Research Center, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Santiago Mora
- Department of Psychology, Health Research Center, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Ana Merchán
- Department of Psychology, Health Research Center, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Pilar Flores
- Department of Psychology, Health Research Center, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, Health Research Center, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| |
Collapse
|
10
|
Kalinichenko LS, Hammad L, Reichel M, Kohl Z, Gulbins E, Kornhuber J, Müller CP. Acid sphingomyelinase controls dopamine activity and responses to appetitive stimuli in mice. Brain Res Bull 2019; 146:310-319. [DOI: 10.1016/j.brainresbull.2019.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
|
11
|
Sánchez-Marín L, Ladrón de Guevara-Miranda D, Mañas-Padilla MC, Alén F, Moreno-Fernández RD, Díaz-Navarro C, Pérez-Del Palacio J, García-Fernández M, Pedraza C, Pavón FJ, Rodríguez de Fonseca F, Santín LJ, Serrano A, Castilla-Ortega E. Systemic blockade of LPA 1/3 lysophosphatidic acid receptors by ki16425 modulates the effects of ethanol on the brain and behavior. Neuropharmacology 2018; 133:189-201. [PMID: 29378212 DOI: 10.1016/j.neuropharm.2018.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/24/2018] [Indexed: 01/08/2023]
Abstract
The systemic administration of lysophosphatidic acid (LPA) LPA1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - M Carmen Mañas-Padilla
- Centro de Experimentación Animal, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Francisco Alén
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Román D Moreno-Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Caridad Díaz-Navarro
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - José Pérez-Del Palacio
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - María García-Fernández
- Departamento de Fisiología Humana, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| |
Collapse
|
12
|
Abstract
Animal models provide rapid, inexpensive assessments of an investigational drug's therapeutic potential. Ideally, they support the plausibility of therapeutic efficacy and provide a rationale for further investigation. Here, I discuss how the absence of clear effective-ineffective categories for alcohol use disorder (AUD) medications and biases in the clinical and preclinical literature affect the development of predictive preclinical alcohol dependence (AD) models. Invoking the analogical argument concept from the philosophy of science field, I discuss how models of excessive alcohol drinking support the plausibility of clinical pharmacotherapy effects. Even though these models are not likely be completely discriminative, they are sensitive to clinically effective medications and have revealed dozens of novel medication targets. In that context, I discuss recent preclinical work on GLP-1 receptor agonists, phosphodiesterase inhibitors, glucocorticoid receptor antagonists, nociception agonists and antagonists, and CRF1 antagonists. Clinically approved medications are available for each of these drug classes. I conclude by advocating a translational approach in which drugs are evaluated highly congruent preclinical models and human laboratory studies. Once translation is established, I suggest the burden is to develop hypothesis-based therapeutic interventions maximizing the impact of the confirmed pharmacotherapeutic effects in the context of additional variables falling outside the model.
Collapse
Affiliation(s)
- Mark Egli
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Holleran KM, Wilson HH, Fetterly TL, Bluett RJ, Centanni SW, Gilfarb RA, Rocco LER, Patel S, Winder DG. Ketamine and MAG Lipase Inhibitor-Dependent Reversal of Evolving Depressive-Like Behavior During Forced Abstinence From Alcohol Drinking. Neuropsychopharmacology 2016; 41:2062-71. [PMID: 26751284 PMCID: PMC4908652 DOI: 10.1038/npp.2016.3] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
Although alcoholism and depression are highly comorbid, treatment options that take this into account are lacking, and mouse models of alcohol (ethanol (EtOH)) intake-induced depressive-like behavior have not been well established. Recent studies utilizing contingent EtOH administration through prolonged two-bottle choice access have demonstrated depression-like behavior following EtOH abstinence in singly housed female C57BL/6J mice. In the present study, we found that depression-like behavior in the forced swim test (FST) is revealed only after a protracted (2 weeks), but not acute (24 h), abstinence period. No effect on anxiety-like behavior in the EPM was observed. Further, we found that, once established, the affective disturbance is long-lasting, as we observed significantly enhanced latencies to approach food even 35 days after ethanol withdrawal in the novelty-suppressed feeding test (NSFT). We were able to reverse affective disturbances measured in the NSFT following EtOH abstinence utilizing the N-methyl D-aspartate receptor (NMDAR) antagonist and antidepressant ketamine but not memantine, another NMDAR antagonist. Pretreatment with the monoacylglycerol (MAG) lipase inhibitor JZL-184 also reduced affective disturbances in the NSFT in ethanol withdrawn mice, and this effect was prevented by co-administration of the CB1 inverse agonist rimonabant. Endocannabinoid levels were decreased within the BLA during abstinence compared with during drinking. Finally, we demonstrate that the depressive behaviors observed do not require a sucrose fade and that this drinking paradigm may favor the development of habit-like EtOH consumption. These data could set the stage for developing novel treatment approaches for alcohol-withdrawal-induced mood and anxiety disorders.
Collapse
Affiliation(s)
- Katherine M Holleran
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA,Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | - Hadley H Wilson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Tracy L Fetterly
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA,Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | - Rebecca J Bluett
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Samuel W Centanni
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA
| | - Rachel A Gilfarb
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lauren E R Rocco
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Sachin Patel
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA,Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA,Kennedy Center, Vanderbilt University, Nashville, TN, USA,Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Neuroscience Program in Substance Abuse, Kennedy Center, Vanderbilt University, Nashville, TN 37221, USA, Tel: +1 615 322 1462, Fax: +1 615 322 1144, E-mail:
| |
Collapse
|
14
|
Marcinkiewcz CA. Serotonergic Systems in the Pathophysiology of Ethanol Dependence: Relevance to Clinical Alcoholism. ACS Chem Neurosci 2015; 6:1026-39. [PMID: 25654315 DOI: 10.1021/cn5003573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alcoholism is a progressive brain disorder that is marked by increased sensitivity to the positive and negative reinforcing properties of ethanol, compulsive and habitual use despite negative consequences, and chronic relapse to alcohol drinking despite repeated attempts to reduce intake or abstain from alcohol. Emerging evidence from preclinical and clinical studies implicates serotonin (5-hydroxytryptamine; 5-HT) systems in the pathophysiology of alcohol dependence, suggesting that drugs targeting 5-HT systems may have utility in the treatment of alcohol use disorders. In this Review, we discuss the role of 5-HT systems in alcohol dependence with a focus on 5-HT interactions with neural circuits that govern all three stages of the addiction cycle. We attempt to clarify how 5-HT influences circuit function at these different stages with the goal of identifying neural targets for pharmacological treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Catherine A. Marcinkiewcz
- Bowles Center for
Alcohol
Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Harvey BH, Slabbert FN. New insights on the antidepressant discontinuation syndrome. Hum Psychopharmacol 2014; 29:503-16. [PMID: 25111000 DOI: 10.1002/hup.2429] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Antidepressants are at best 50–55% effective. Non-compliance and the antidepressant discontinuation syndrome (ADS) are causally related yet poorly appreciated. While ADS is associated with most antidepressants, agomelatine seems to be devoid of such risk. We review the neurobiology and clinical consequences of antidepressant non-compliance and the ADS. Agomelatine is presented as a counterpoint to learn more on how ADS risk is determined by pharmacokinetics and pharmacology. DESIGN The relevant literature is reviewed through a MEDLINE search via PubMed, focusing on agomelatine and clinical and preclinical research on ADS. RESULTS Altered serotonergic dysfunction appears central to ADS so that how an antidepressant targets serotonin will determine its relative risk for inducing ADS and thereby affect later treatment outcome. Low ADS risk with agomelatine versus other antidepressants can be ascribed to its unique pharmacokinetic characteristics as well as its distinctive actions on serotonin, including melatonergic, monoaminergic and glutamatergic-nitrergic systems. CONCLUSIONS This review raises awareness of the long-term negative aspects of non-compliance and inappropriate antidepressant discontinuation, and suggests possible approaches to “design-out” a risk for ADS. It reveals intuitive and rational ideas for antidepressant drug design, and provides new thoughts on antidepressant pharmacology, ADS risk and how these affect long-term outcome.
Collapse
Affiliation(s)
- Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences; School of Pharmacy, North-West University; Potchefstroom South Africa
| | - Francois N. Slabbert
- Medicines Usage Group (MUSA), School of Pharmacy; North-West University; Potchefstroom South Africa
| |
Collapse
|
16
|
The administration of atomoxetine during alcohol deprivation induces a time-limited increase in alcohol consumption after relapse. Int J Neuropsychopharmacol 2014; 17:1905-10. [PMID: 25025529 DOI: 10.1017/s146114571400087x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The administration of selective serotonin reuptake inhibitors (SSRIs) typically used as antidepressants increases alcohol consumption after an alcohol deprivation period in rats. However, the appearance of this effect after the treatment with selective noradrenaline reuptake inhibitors (SNRIs) has not been studied. In the present work we examined the effects of a 15-d treatment with the SNRI atomoxetine (1, 3 and 10 mg/kg, i.p.) in male rats trained to drink alcohol solutions in a 4-bottle choice test. The treatment with atomoxetine (10 mg/kg, i.p.) during an alcohol deprivation period increased alcohol consumption after relapse. This effect only lasted one week, disappearing thereafter. Treatment with atomoxetine did not cause a behavioral sensitized response to a challenge dose of amphetamine (1.5 mg/kg, i.p.), indicating the absence of a supersensitive dopaminergic transmission. This effect is markedly different from that of SSRI antidepressants that produced both long-lasting increases in alcohol consumption and behavioral sensitization. Clinical implications are discussed.
Collapse
|
17
|
Skuza G. Ethanol withdrawal-induced depressive symptoms in animals and therapeutic potential of sigma1 receptor ligands. Pharmacol Rep 2013; 65:1681-7. [PMID: 24553017 DOI: 10.1016/s1734-1140(13)71530-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 12/04/2013] [Indexed: 02/01/2023]
|