1
|
Koda M, Kawai H, Shirakawa H, Kaneko S, Nagayasu K. Effect of antidepressants and social defeat stress on the activity of dorsal raphe serotonin neurons in free-moving animals. J Pharmacol Sci 2025; 157:113-123. [PMID: 39828391 DOI: 10.1016/j.jphs.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025] Open
Abstract
Major depressive disorder (MDD) is among the most common mental disorders worldwide and is characterized by dysregulated reward processing associated with anhedonia. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for MDD; however, their onset of action is delayed. Recent reports have shown that serotonin neurons in the dorsal raphe nucleus (DRN) are activated by rewards and play a vital role in reward processing. However, whether antidepressant treatment affects the DRN serotonin neuronal response to rewards in awake animals remains unknown. In this study, we measured the activity of DRN serotonin neurons in awake mice and determined the effects of antidepressants and chronic stress on DRN serotonin neuronal activity. We found that acute treatment with citalopram, an SSRI, significantly decreased sucrose-induced activation of DRN serotonin neurons. The decrease in response to acute citalopram treatment was attenuated by chronic citalopram treatment. Acute treatment with (S)-WAY100135, a 5-HT1A receptor antagonist, dose-dependently inhibited the response to acute citalopram treatment. These results indicate that autoinhibition by activating 5-HT1A receptors via acute SSRI treatment may blunt the reward response, which can be recovered after chronic SSRI treatment.
Collapse
Affiliation(s)
- Masashi Koda
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Kawai
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-cho, Abeno-ku, Osaka, 545-8585, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan; Project for Neural Networks, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
2
|
Yamamoto K, Tsuji M, Oguchi T, Momma Y, Ohashi H, Ito N, Nohara T, Nakanishi T, Ishida A, Hosonuma M, Nishikawa T, Murakami H, Kiuchi Y. Comparison of Protective Effects of Antidepressants Mediated by Serotonin Receptor in Aβ-Oligomer-Induced Neurotoxicity. Biomedicines 2024; 12:1158. [PMID: 38927365 PMCID: PMC11200737 DOI: 10.3390/biomedicines12061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Amyloid β-peptide (Aβ) synthesis and deposition are the primary factors underlying the pathophysiology of Alzheimer's disease (AD). Aβ oligomer (Aβo) exerts its neurotoxic effects by inducing oxidative stress and lesions by adhering to cellular membranes. Though several antidepressants have been investigated as neuroprotective agents in AD, a detailed comparison of their neuroprotection against Aβo-induced neurotoxicity is lacking. Here, we aimed to elucidate the neuroprotective effects of clinically prescribed selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and noradrenergic and specific serotonergic antidepressants at the cellular level and establish the underlying mechanisms for their potential clinical applications. Therefore, we compared the neuroprotective effects of three antidepressants, fluoxetine (Flx), duloxetine (Dlx), and mirtazapine (Mir), by their ability to prevent oxidative stress-induced cell damage, using SH-SY5Y cells, by evaluating cell viability, generation of reactive oxygen species (ROS) and mitochondrial ROS, and peroxidation of cell membrane phospholipids. These antidepressants exhibited potent antioxidant activity (Dlx > Mir > Flx) and improved cell viability. Furthermore, pretreatment with a 5-hydroxytryptamine 1A (5-HT1A) antagonist suppressed their effects, suggesting that the 5-HT1A receptor is involved in the antioxidant mechanism of the antidepressants' neuroprotection. These findings suggest the beneficial effects of antidepressant treatment in AD through the prevention of Aβ-induced oxidative stress.
Collapse
Affiliation(s)
- Ken Yamamoto
- Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo 142-8555, Japan; (K.Y.); (T.O.); (T.N.); (A.I.); (M.H.); (T.N.); (Y.K.)
- Department of Neurology, Showa University School of Medicine, Tokyo 142-8666, Japan; (Y.M.); (H.O.); (N.I.); (T.N.); (H.M.)
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Tatsunori Oguchi
- Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo 142-8555, Japan; (K.Y.); (T.O.); (T.N.); (A.I.); (M.H.); (T.N.); (Y.K.)
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Yutaro Momma
- Department of Neurology, Showa University School of Medicine, Tokyo 142-8666, Japan; (Y.M.); (H.O.); (N.I.); (T.N.); (H.M.)
| | - Hideaki Ohashi
- Department of Neurology, Showa University School of Medicine, Tokyo 142-8666, Japan; (Y.M.); (H.O.); (N.I.); (T.N.); (H.M.)
| | - Naohito Ito
- Department of Neurology, Showa University School of Medicine, Tokyo 142-8666, Japan; (Y.M.); (H.O.); (N.I.); (T.N.); (H.M.)
| | - Tetsuhito Nohara
- Department of Neurology, Showa University School of Medicine, Tokyo 142-8666, Japan; (Y.M.); (H.O.); (N.I.); (T.N.); (H.M.)
| | - Tatsuya Nakanishi
- Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo 142-8555, Japan; (K.Y.); (T.O.); (T.N.); (A.I.); (M.H.); (T.N.); (Y.K.)
- Department of Neurology, Showa University School of Medicine, Tokyo 142-8666, Japan; (Y.M.); (H.O.); (N.I.); (T.N.); (H.M.)
| | - Atsushi Ishida
- Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo 142-8555, Japan; (K.Y.); (T.O.); (T.N.); (A.I.); (M.H.); (T.N.); (Y.K.)
- Department of Neurology, Showa University School of Medicine, Tokyo 142-8666, Japan; (Y.M.); (H.O.); (N.I.); (T.N.); (H.M.)
| | - Masahiro Hosonuma
- Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo 142-8555, Japan; (K.Y.); (T.O.); (T.N.); (A.I.); (M.H.); (T.N.); (Y.K.)
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Toru Nishikawa
- Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo 142-8555, Japan; (K.Y.); (T.O.); (T.N.); (A.I.); (M.H.); (T.N.); (Y.K.)
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Hidetomo Murakami
- Department of Neurology, Showa University School of Medicine, Tokyo 142-8666, Japan; (Y.M.); (H.O.); (N.I.); (T.N.); (H.M.)
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo 142-8555, Japan; (K.Y.); (T.O.); (T.N.); (A.I.); (M.H.); (T.N.); (Y.K.)
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
3
|
Nagayasu K. Integrative Research of Neuropharmacology and Informatics Pharmacology for Mental Disorder. Biol Pharm Bull 2024; 47:556-561. [PMID: 38432911 DOI: 10.1248/bpb.b23-00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Mental illness poses a huge social burden, accounting for approximately 14% of all deaths. Depression, a major component of mental illness, affects approximately 300 million people worldwide, mainly in developed countries, and is not only a major social burden but also a cause of suicide. The social burden of depression is estimated to increase further in developing countries, and overcoming it is a pressing issue for all countries, including Japan. Although clinical evidence has demonstrated the efficacy of serotonergic neurotransmission enhancers in the treatment of depression, the full picture of their therapeutic effects has not yet been fully elucidated. In this review, we show that the hyperactivity of serotonin neurons, especially those in the dorsal raphe nucleus, is commonly induced by various antidepressants within a period corresponding to the onset of their clinical efficacy. We established quantitative prediction methods for pharmacological activity using only chemical structures to translate the biological understanding of mental disorders, including major depressive disorders, into clinically effective therapeutics. Our method exhibited better performance than the previously reported methods of quantitative prediction, while targeting a larger number of proteins. Our article suggests the importance of integrative neuropharmacology and informatics-based pharmacology studies to understand the biological basis of mental disorders and facilitate drug development for these disorders.
Collapse
Affiliation(s)
- Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
4
|
Deng F, Hu JJ, Lin ZB, Sun QS, Min Y, Zhao BC, Huang ZB, Zhang WJ, Huang WK, Liu WF, Li C, Liu KX. Gut microbe-derived milnacipran enhances tolerance to gut ischemia/reperfusion injury. Cell Rep Med 2023; 4:100979. [PMID: 36948152 PMCID: PMC10040455 DOI: 10.1016/j.xcrm.2023.100979] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
There are significant differences in the susceptibility of populations to intestinal ischemia/reperfusion (I/R), but the underlying mechanisms remain elusive. Here, we show that mice exhibit significant differences in susceptibility to I/R-induced enterogenic sepsis. Notably, the milnacipran (MC) content in the enterogenic-sepsis-tolerant mice is significantly higher. We also reveal that the pre-operative fecal MC content in cardiopulmonary bypass patients, including those with intestinal I/R injury, is associated with susceptibility to post-operative gastrointestinal injury. We reveal that MC attenuates mouse I/R injury in wild-type mice but not in intestinal epithelial aryl hydrocarbon receptor (AHR) gene conditional knockout mice (AHRflox/flox) or IL-22 gene deletion mice (IL-22-/-). Collectively, our results suggest that gut microbiota affects susceptibility to I/R-induced enterogenic sepsis and that gut microbiota-derived MC plays a pivotal role in tolerance to intestinal I/R in an AHR/ILC3/IL-22 signaling-dependent manner, revealing the pathological mechanism, potential prevention and treatment drugs, and treatment strategies for intestinal I/R.
Collapse
Affiliation(s)
- Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ze-Bin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qi-Shun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yue Min
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhi-Bin Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wen-Juan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wen-Kao Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
5
|
Danilov DS. [Antidepressants - stimulators for the release of norepinephrine and serotonin (history of creation, study of neurochemical effects and classification)]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:134-144. [PMID: 34037367 DOI: 10.17116/jnevro2021121041134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The history of the creation and putting into practice of antidepressants and experimental agents - blockers of α2-adrenergic receptors and serotonin 5-HT2-receptors is described. The author analyzes the history of development of mianserin, mirtazapine and other drugs and their position in the classification of antidepressants. On the basis of a generalization of historical facts, the rationality of assigning mianserin, mirtazapine, and possibly other compounds similar in chemical structure and mechanism of action to one neurochemical group and its designation by the term 'stimulators of the release of norepinephrine and (presumably) serotonin' is determined.
Collapse
Affiliation(s)
- D S Danilov
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Arias HR, Targowska-Duda KM, García-Colunga J, Ortells MO. Is the Antidepressant Activity of Selective Serotonin Reuptake Inhibitors Mediated by Nicotinic Acetylcholine Receptors? Molecules 2021; 26:molecules26082149. [PMID: 33917953 PMCID: PMC8068400 DOI: 10.3390/molecules26082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/05/2022] Open
Abstract
It is generally assumed that selective serotonin reuptake inhibitors (SSRIs) induce antidepressant activity by inhibiting serotonin (5-HT) reuptake transporters, thus elevating synaptic 5-HT levels and, finally, ameliorates depression symptoms. New evidence indicates that SSRIs may also modulate other neurotransmitter systems by inhibiting neuronal nicotinic acetylcholine receptors (nAChRs), which are recognized as important in mood regulation. There is a clear and strong association between major depression and smoking, where depressed patients smoke twice as much as the normal population. However, SSRIs are not efficient for smoking cessation therapy. In patients with major depressive disorder, there is a lower availability of functional nAChRs, although their amount is not altered, which is possibly caused by higher endogenous ACh levels, which consequently induce nAChR desensitization. Other neurotransmitter systems have also emerged as possible targets for SSRIs. Studies on dorsal raphe nucleus serotoninergic neurons support the concept that SSRI-induced nAChR inhibition decreases the glutamatergic hyperstimulation observed in stress conditions, which compensates the excessive 5-HT overflow in these neurons and, consequently, ameliorates depression symptoms. At the molecular level, SSRIs inhibit different nAChR subtypes by noncompetitive mechanisms, including ion channel blockade and induction of receptor desensitization, whereas α9α10 nAChRs, which are peripherally expressed and not directly involved in depression, are inhibited by competitive mechanisms. According to the functional and structural results, SSRIs bind within the nAChR ion channel at high-affinity sites that are spread out between serine and valine rings. In conclusion, SSRI-induced inhibition of a variety of nAChRs expressed in different neurotransmitter systems widens the complexity by which these antidepressants may act clinically.
Collapse
Affiliation(s)
- Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK 74464, USA
- Correspondence: ; Tel.: +1-918-525-6324; Fax: +1-918-280-2515
| | | | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcelo O. Ortells
- Facultad de Medicina, Universidad de Morón, CONICET, Morón 1708, Argentina;
| |
Collapse
|
7
|
Ayyash A, Holloway AC. Fluoxetine-induced hepatic lipid accumulation is linked to elevated serotonin production. Can J Physiol Pharmacol 2021; 99:983-988. [PMID: 33517848 DOI: 10.1139/cjpp-2020-0721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluoxetine, a commonly prescribed selective serotonin reuptake inhibitor antidepressant, has been shown to increase hepatic lipid accumulation, a key factor in the development of nonalcoholic fatty liver disease. Interestingly, fluoxetine has also been reported to increase peripheral serotonin synthesis. As emerging evidence suggests that serotonin may be involved in the development of nonalcoholic fatty liver disease, we sought to determine if fluoxetine-induced hepatic lipid accumulation is mediated via altered serotonin production. Fluoxetine treatment increased lipid accumulation in association with increased mRNA expression of tryptophan hydroxylase 1 (Tph1, serotonin biosynthetic enzyme) and intracellular serotonin content. Serotonin alone had a similar effect to increase lipid accumulation. Moreover, blocking serotonin synthesis reversed the fluoxetine-induced increases in lipid accumulation. Collectively, these data suggest that fluoxetine-induced lipid accumulation can be mediated, in part, by elevated serotonin production. These results suggest a potential therapeutic target to ameliorate the adverse metabolic effects of fluoxetine exposure.
Collapse
Affiliation(s)
- Ahmed Ayyash
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
8
|
Saiz-Bianco E, Urbanavicius J, Prunell G, Lagos P. Melanin-concentrating hormone does not modulate serotonin release in primary cultures of fetal raphe nucleus neurons. Neuropeptides 2019; 74:70-81. [PMID: 30642579 DOI: 10.1016/j.npep.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/03/2018] [Accepted: 12/30/2018] [Indexed: 11/18/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide present in neurons located in the hypothalamus that densely innervate serotonergic cells in the dorsal raphe nucleus (DRN). MCH administration into the DRN induces a depressive-like effect through a serotonergic mechanism. To further understand the interaction between MCH and serotonin, we used primary cultured serotonergic neurons to evaluate the effect of MCH on serotonergic release and metabolism by HPLC-ED measurement of serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels. We confirmed the presence of serotonergic neurons in the E14 rat rhombencephalon by immunohistochemistry and showed for the first time evidence of MCHergic fibers reaching the area. Cultures obtained from rhombencephalic tissue presented 2.2 ± 0.7% of serotonergic and 48.9 ± 5.4% of GABAergic neurons. Despite the low concentration of serotonergic neurons, we were able to measure basal cellular and extracellular levels of 5-HT and 5-HIAA without the addition of any serotonergic-enhancer drug. As expected, 5-HT release was calcium-dependent and induced by depolarization. 5-HT extracellular levels were significantly increased by incubation with serotonin reuptake inhibitors (citalopram and nortriptyline) and a monoamine-oxidase inhibitor (clorgyline), and were not significantly modified by a 5-HT1A autoreceptor agonist (8-OHDPAT). Even though serotonergic cells responded as expected to these pharmacological treatments, MCH did not induce significant modifications of 5-HT and 5-HIAA extracellular levels in the cultures. Despite this unexpected result, we consider that assessment of 5-HT and 5-HIAA levels in primary serotonergic cultures may be an adequate approach to study the effect of other drugs and modulators on serotonin release, uptake and turnover.
Collapse
Affiliation(s)
- Eugenia Saiz-Bianco
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jessika Urbanavicius
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
9
|
Ma H, Wang W, Xu S, Wang L, Wang X. Potassium 2-(1-hydroxypentyl)-benzoate improves depressive-like behaviors in rat model. Acta Pharm Sin B 2018; 8:881-888. [PMID: 30505657 PMCID: PMC6251814 DOI: 10.1016/j.apsb.2018.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/25/2023] Open
Abstract
Potassium 2-(1-hydroxypentyl)-benzoate (PHPB) is a novel drug candidate for acute ischemic stroke. PHPB has been also shown to be beneficial for some neurodegenerative diseases. In this study, we demonstrated that PHPB improved depressive-like behaviors induced by chronic unpredictable mild stress (CUMS) in rats. Male SD rats were subjected to the stress for five weeks. PHPB (30 and 100 mg/kg) or fluoxetine (FLX 10 mg/kg, as positive control) was administered orally from the third week in CUMS procedure. The behavioral tests were applied and then the biochemical studies were carried out. PHPB or FLX treatment rescued the behavioral deficiency in CUMS-exposed rats. Meanwhile, PHPB normalized the enhanced level of serum corticosterone, improved hippocampal and serum BDNF levels, as well as p-CREB level in hippocampus. In addition, PHPB could reverse the reduced level of extracellular 5-HT and its metabolite 5-HIAA in prefrontal cortex (PFC) of depressed rats. In summary, our results showed that PHPB improved depression-like behaviors in CUMS-exposed rats. The mechanisms might relate to the reverse of neurotrophic disturbance in the brain, reducing excessive HPA axis response and facilitating the release of 5-HT.
Collapse
|
10
|
Asaoka N, Nishitani N, Kinoshita H, Kawai H, Shibui N, Nagayasu K, Shirakawa H, Nakagawa T, Kaneko S. Chronic antidepressant potentiates spontaneous activity of dorsal raphe serotonergic neurons by decreasing GABA B receptor-mediated inhibition of L-type calcium channels. Sci Rep 2017; 7:13609. [PMID: 29051549 PMCID: PMC5648823 DOI: 10.1038/s41598-017-13599-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Spontaneous activity of serotonergic neurons of the dorsal raphe nucleus (DRN) regulates mood and motivational state. Potentiation of serotonergic function is one of the therapeutic strategies for treatment of various psychiatric disorders, such as major depression, panic disorder and obsessive-compulsive disorder. However, the control mechanisms of the serotonergic firing activity are still unknown. In this study, we examined the control mechanisms for serotonergic spontaneous activity and effects of chronic antidepressant administration on these mechanisms by using modified ex vivo electrophysiological recording methods. Serotonergic neurons remained firing even in the absence of glutamatergic and GABAergic ionotropic inputs, while blockade of L-type voltage dependent Ca2+ channels (VDCCs) in serotonergic neurons decreased spontaneous firing activity. L-type VDCCs in serotonergic neurons received gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition, which maintained serotonergic slow spontaneous firing activity. Chronic administration of an antidepressant, citalopram, disinhibited the serotonergic spontaneous firing activity by weakening the GABAB receptor-mediated inhibition of L-type VDCCs in serotonergic neurons. Our results provide a new mechanism underlying the spontaneous serotonergic activity and new insights into the mechanism of action of antidepressants.
Collapse
Affiliation(s)
- Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoya Nishitani
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Haruko Kinoshita
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Kawai
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Norihiro Shibui
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
11
|
Generation of functional human serotonergic neurons from fibroblasts. Mol Psychiatry 2016; 21:49-61. [PMID: 26503761 DOI: 10.1038/mp.2015.161] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
Abstract
The brain's serotonergic system centrally regulates several physiological processes and its dysfunction has been implicated in the pathophysiology of several neuropsychiatric disorders. While in the past our understanding of serotonergic neurotransmission has come mainly from mouse models, the development of pluripotent stem cell and induced fibroblast-to-neuron (iN) transdifferentiation technologies has revolutionized our ability to generate human neurons in vitro. Utilizing these techniques and a novel lentiviral reporter for serotonergic neurons, we identified and overexpressed key transcription factors to successfully generate human serotonergic neurons. We found that overexpressing the transcription factors NKX2.2, FEV, GATA2 and LMX1B in combination with ASCL1 and NGN2 directly and efficiently generated serotonergic neurons from human fibroblasts. Induced serotonergic neurons (iSNs) showed increased expression of specific serotonergic genes that are known to be expressed in raphe nuclei. iSNs displayed spontaneous action potentials, released serotonin in vitro and functionally responded to selective serotonin reuptake inhibitors (SSRIs). Here, we demonstrate the efficient generation of functional human serotonergic neurons from human fibroblasts as a novel tool for studying human serotonergic neurotransmission in health and disease.
Collapse
|
12
|
Delgermurun D, Ito S, Ohta T, Yamaguchi S, Otsuguro KI. Endogenous 5-HT outflow from chicken aorta by 5-HT uptake inhibitors and amphetamine derivatives. J Vet Med Sci 2015; 78:71-6. [PMID: 26321443 PMCID: PMC4751119 DOI: 10.1292/jvms.15-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chemoreceptor cells aggregating in clusters in the chicken thoracic aorta
contain 5-hydroxytryptamine (5-HT) and have voltage-dependent ion channels and nicotinic
acetylcholine receptors, which are characteristics typically associated with neurons. The
aim of the present study was to investigate the effects of 5-HT uptake inhibitors,
fluvoxamine, fluoxetine and clomipramine (CLM), and amphetamine derivatives,
p-chloroamphetamine (PCA) and methamphetamine (MET), on endogenous 5-HT
outflow from the isolated chick thoracic aorta in vitro. 5-HT was
measured by using a HPLC system with electrochemical detection. The amphetamine
derivatives and 5-HT uptake inhibitors caused concentration-dependent increases in
endogenous 5-HT outflow. PCA was about ten times more effective in eliciting 5-HT outflow
than MET. The 5-HT uptake inhibitors examined had similar potency for 5-HT outflow. PCA
and CLM increased 5-HT outflow in a temperature-dependent manner. The outflow of 5-HT
induced by PCA or 5-HT uptake inhibitors was independent of extracellular Ca2+
concentration. The 5-HT outflow induced by CLM, but not that by PCA, was dependent on the
extracellular NaCl concentration. These results suggest that the 5-HT uptake system of
5-HT-containing chemoreceptor cells in the chicken thoracic aorta has characteristics
similar to those of 5-HT-containing neurons in the mammalian central nervous system
(CNS).
Collapse
Affiliation(s)
- Dugar Delgermurun
- Laboratory of Pharmacology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
13
|
Asaoka N, Nagayasu K, Nishitani N, Yamashiro M, Shirakawa H, Nakagawa T, Kaneko S. Olanzapine augments the effect of selective serotonin reuptake inhibitors by suppressing GABAergic inhibition via antagonism of 5-HT₆ receptors in the dorsal raphe nucleus. Neuropharmacology 2015; 95:261-8. [PMID: 25863120 DOI: 10.1016/j.neuropharm.2015.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022]
Abstract
The combination of the selective serotonin reuptake inhibitors (SSRIs) and atypical antipsychotic drugs shows better therapeutic efficacy than SSRI monotherapy in the treatment of depression. However, the underlying mechanisms responsible for the augmenting effects of olanzapine are not fully understood. Here, we report that olanzapine enhances the SSRI-induced increase in extracellular serotonin (5-HT) levels and antidepressant-like effects by inhibiting GABAergic neurons through 5-HT6 receptor antagonism in the dorsal raphe nucleus (DRN). In organotypic raphe slice cultures, treatment with olanzapine (1-100 μM) enhanced the increase in extracellular 5-HT levels in the presence of fluoxetine (10 μM) or citalopram (1 μM). The enhancing effect of olanzapine was not further augmented by the GABAA receptor antagonist bicuculline. Electrophysiological analysis revealed that olanzapine (50 μM) decreased the firing frequency of GABAergic neurons in acute DRN slices. Among many serotonergic agents, the 5-HT6 receptor antagonist SB399885 (1-100 μM) mimicked the effects of olanzapine by enhancing the SSRI-induced increase in extracellular 5-HT levels, which was not further augmented by bicuculline or olanzapine. SB399885 (50 μM) also decreased the firing frequency of GABAergic neurons in the DRN. In addition, an intraperitoneal administration of SB399885 (10 mg/kg) to mice significantly enhanced the antidepressant-like effect of a subeffective dose of citalopram (3 mg/kg) in the tail-suspension test. These results suggest that olanzapine decreases local inhibitory GABAergic tone in the DRN through antagonism of 5-HT6 receptors, thereby increasing the activity of at least part of serotonergic neurons, which may contribute to the augmentation of the efficacy of SSRIs.
Collapse
Affiliation(s)
- Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Naoya Nishitani
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Mayumi Yamashiro
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan.
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|