1
|
Nouioui I, Dye T. Heat-killed Mycolicibacterium aurum Aogashima: An environmental nonpathogenic actinobacteria under development as a safe novel food ingredient. Food Sci Nutr 2021; 9:4839-4854. [PMID: 34531996 PMCID: PMC8441333 DOI: 10.1002/fsn3.2413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Over the last few decades, a wealth of evidence has formed the basis for "the Old Friends hypothesis" suggesting that, in contrast to the past, increasingly people are living in environments with limited and less diverse microbial exposure, with potential consequences for their health. Hence, including safe live or heat-killed microbes in the diet may be beneficial in promoting and maintaining human health. In order to assess the safety of microbes beyond the current use of standardized cultures and probiotic supplements, new approaches are being developed. Here, we present evidence for the safety of heat-killed Mycolicibacterium aurum Aogashima as a novel food, utilizing the decision tree approach developed by Pariza and colleagues (2015). We provide evidence that the genome of M. aurum Aogashima is free of (1) genetic elements associated with pathogenicity or toxigenicity, (2) transferable antibiotic resistance gene DNA, and (3) genes coding for antibiotics used in human or veterinary medicine. Moreover, a 90-day oral toxicity study in rats showed that (4) the no observed adverse effect level (NOAEL) was the highest concentration tested, namely 2000 μg/kg BW/day. We conclude that oral consumption of heat-killed M. aurum Aogashima is safe and warrants further evaluation as a novel food ingredient.
Collapse
Affiliation(s)
- Imen Nouioui
- Devonshire BuildingNewcastle University School of Natural and Environmental SciencesNewcastle Upon TyneUnited Kingdom of Great Britain and Northern Ireland
| | | |
Collapse
|
2
|
Budell WC, Germain GA, Janisch N, McKie-Krisberg Z, Jayaprakash AD, Resnick AE, Quadri LEN. Transposon mutagenesis in Mycobacterium kansasii links a small RNA gene to colony morphology and biofilm formation and identifies 9,885 intragenic insertions that do not compromise colony outgrowth. Microbiologyopen 2020; 9:e988. [PMID: 32083796 PMCID: PMC7142372 DOI: 10.1002/mbo3.988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium kansasii (Mk) is a resilient opportunistic human pathogen that causes tuberculosis‐like chronic pulmonary disease and mortality stemming from comorbidities and treatment failure. The standard treatment of Mk infections requires costly, long‐term, multidrug courses with adverse side effects. The emergence of drug‐resistant isolates further complicates the already challenging drug therapy regimens and threatens to compromise the future control of Mk infections. Despite the increasingly recognized global burden of Mk infections, the biology of this opportunistic pathogen remains essentially unexplored. In particular, studies reporting gene function or generation of defined mutants are scarce. Moreover, no transposon (Tn) mutagenesis tool has been validated for use in Mk, a situation limiting the repertoire of genetic approaches available to accelerate the dissection of gene function and the generation of gene knockout mutants in this poorly characterized pathogen. In this study, we validated the functionality of a powerful Tn mutagenesis tool in Mk and used this tool in conjunction with a forward genetic screen to establish a previously unrecognized role of a conserved mycobacterial small RNA gene of unknown function in colony morphology features and biofilm formation. We also combined Tn mutagenesis with next‐generation sequencing to identify 12,071 Tn insertions that do not compromise viability in vitro. Finally, we demonstrated the susceptibility of the Galleria mellonella larva to Mk, setting the stage for further exploration of this simple and economical infection model system to the study of this pathogen.
Collapse
Affiliation(s)
- William C Budell
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Gabrielle A Germain
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Zaid McKie-Krisberg
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | | | - Andrew E Resnick
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Luis E N Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA.,Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| |
Collapse
|
3
|
Liu T, Kong W, Chen N, Zhu J, Wang J, He X, Jin Y. Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene. Ecol Evol 2016; 6:923-34. [PMID: 26941936 PMCID: PMC4761785 DOI: 10.1002/ece3.1955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 01/30/2023] Open
Abstract
Flow cytometry (FCM) and 16S rRNA gene sequencing data are commonly used to monitor and characterize microbial differences in drinking water distribution systems. In this study, to assess microbial differences in drinking water distribution systems, 12 water samples from different sources water (groundwater, GW; surface water, SW) were analyzed by FCM, heterotrophic plate count (HPC), and 16S rRNA gene sequencing. FCM intact cell concentrations varied from 2.2 × 10(3) cells/mL to 1.6 × 10(4) cells/mL in the network. Characteristics of each water sample were also observed by FCM fluorescence fingerprint analysis. 16S rRNA gene sequencing showed that Proteobacteria (76.9-42.3%) or Cyanobacteria (42.0-3.1%) was most abundant among samples. Proteobacteria were abundant in samples containing chlorine, indicating resistance to disinfection. Interestingly, Mycobacterium, Corynebacterium, and Pseudomonas, were detected in drinking water distribution systems. There was no evidence that these microorganisms represented a health concern through water consumption by the general population. However, they provided a health risk for special crowd, such as the elderly or infants, patients with burns and immune-compromised people exposed by drinking. The combined use of FCM to detect total bacteria concentrations and sequencing to determine the relative abundance of pathogenic bacteria resulted in the quantitative evaluation of drinking water distribution systems. Knowledge regarding the concentration of opportunistic pathogenic bacteria will be particularly useful for epidemiological studies.
Collapse
Affiliation(s)
- Tingting Liu
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Weiwen Kong
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Nan Chen
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Jing Zhu
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Jingqi Wang
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Xiaoqing He
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Yi Jin
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| |
Collapse
|
4
|
Miller CD, Child R, Hughes JE, Benscai M, Der JP, Sims RC, Anderson AJ. Diversity of soil mycobacterium isolates from three sites that degrade polycyclic aromatic hydrocarbons. J Appl Microbiol 2007; 102:1612-24. [PMID: 17578427 DOI: 10.1111/j.1365-2672.2006.03202.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS This paper investigates the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading mycobacterium isolates from three different sites within United States: Montana, Texas and Indiana. METHODS AND RESULTS All five mycobacterium isolates differed in chromosomal restriction enzyme-fragmentation patterns; three isolates possessed linear plasmids. The DNA sequence between the murA and rRNA genes were divergent but the sequence upstream of nidBA genes, encoding a dioxygenase involved in pyrene oxidation, was more highly conserved. Long-chain fatty acid analysis showed most similarity between three isolates from the same Montana site. All isolates were sensitive to rifampicin and isoniazid, used in tuberculosis treatment, and to syringopeptins, produced by plant-associated pseudomonads. Biofilm growth was least for isolate MCS that grew on plate medium as rough-edged colonies. The patterns of substrate utilization in Biolog plates showed clustering of the Montana isolates compared with Mycobacterium vanbaalenii and Mycobacterium gilvum. CONCLUSION The five PAH-degrading mycobacterium isolates studied differ in genetic and biochemical properties. SIGNIFICANCE AND IMPACT OF THE STUDY Different properties with respect to antibiotic susceptibility, substrate utilization and biofilm formation could influence the survival in soil of the microbe and their suitability for use in bioaugmentation.
Collapse
Affiliation(s)
- C D Miller
- Department of Biology, Utah State University, Logan, Utah, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Thomas V, McDonnell G. Relationship between mycobacteria and amoebae: ecological and epidemiological concerns. Lett Appl Microbiol 2007; 45:349-57. [PMID: 17897376 DOI: 10.1111/j.1472-765x.2007.02206.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since the discovery that Legionella pneumophila can survive and grow within free-living amoebae, there has been an increasing number of microbial species shown to have similar relationships. These include many bacterial species, fungi, other protozoa (e.g. Cryptosporidium) and viruses. Among bacteria, mycobacteria are of particular importance because of their role in human and animal infections. This review will consider the progress made in understanding the relationships between mycobacteria and amoebae, and their consequences in terms of ecology and epidemiology.
Collapse
Affiliation(s)
- V Thomas
- STERIS Laboratory, CEA/DSV/IMETI/SEPIA, 18 route du Panorama, 92260 Fontenay-aux-Roses, France.
| | | |
Collapse
|
7
|
Vaerewijck MJM, Huys G, Palomino JC, Swings J, Portaels F. Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev 2005; 29:911-34. [PMID: 16219512 DOI: 10.1016/j.femsre.2005.02.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2004] [Revised: 11/29/2004] [Accepted: 02/05/2005] [Indexed: 01/04/2023] Open
Abstract
In contrast to the notorious pathogens Mycobacterium tuberculosis and M. leprae, the majority of the mycobacterial species described to date are generally not considered as obligate human pathogens. The natural reservoirs of these non-primary pathogenic mycobacteria include aquatic and terrestrial environments. Under certain circumstances, e.g., skin lesions, pulmonary or immune dysfunctions and chronic diseases, these environmental mycobacteria (EM) may cause disease. EM such as M. avium, M. kansasii, and M. xenopi have frequently been isolated from drinking water and hospital water distribution systems. Biofilm formation, amoeba-associated lifestyle, and resistance to chlorine have been recognized as important factors that contribute to the survival, colonization and persistence of EM in water distribution systems. Although the presence of EM in tap water has been linked to nosocomial infections and pseudo-infections, it remains unclear if these EM provide a health risk for immunocompromised people, in particular AIDS patients. In this regard, control strategies based on maintenance of an effective disinfectant residual and low concentration of nutrients have been proposed to keep EM numbers to a minimum in water distribution systems.
Collapse
Affiliation(s)
- Mario J M Vaerewijck
- Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | |
Collapse
|