1
|
Wang Y, Fu X, Wang Y, Wang J, Kong L, Guo H. Antibacterial Activity and Cytotoxicity of the Novel Bacteriocin Pkmh. Int J Mol Sci 2024; 25:9153. [PMID: 39273101 PMCID: PMC11395391 DOI: 10.3390/ijms25179153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Bacteriocins are a class of proteins produced by bacteria that are toxic to other bacteria. These bacteriocins play a role in bacterial competition by helping to inhibit potential competitors. In this study, we isolated and purified a novel bacteriocin Pkmh, different from the previously reported bacteriocin PA166, from Pseudomonas sp. strain 166 by ammonium sulfate precipitation, dialysis membrane method, ion exchange chromatography, and gel filtration chromatography. SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) revealed that the molecular weight of Pkmh is approximately 35 kDa. Pkmh exhibited potent antimicrobial activity against bovine Mannheimia haemolytica (M. haemolytica) with low cytotoxicity, and lower hemolytic activity was observed. In addition, Pkmh retained antimicrobial activity at different pH ranges (2-10) and temperature conditions (40, 60, 80, 100 °C). Our analysis of its antimicrobial mechanism showed that Pkmh acts on bacterial cell membranes, increasing their permeability and leading to cell membrane rupture and death. In conclusion, Pkmh exhibited low hemolytic activity, low toxicity, and potent antibacterial effects, suggesting its potential as a promising candidate for clinical therapeutic drugs.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Science, Jilin Normal University, Siping 136000, China
| | - Xiaojia Fu
- College of Life Science, Jilin Normal University, Siping 136000, China
| | - Yue Wang
- College of Life Science, Jilin Normal University, Siping 136000, China
| | - Jun Wang
- College of Life Science, Jilin Normal University, Siping 136000, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Haiyong Guo
- College of Life Science, Jilin Normal University, Siping 136000, China
| |
Collapse
|
2
|
Adewusi OO, Waldner CL, Hanington PC, Hill JE, Freeman CN, Otto SJG. Laboratory tools for the direct detection of bacterial respiratory infections and antimicrobial resistance: a scoping review. J Vet Diagn Invest 2024; 36:400-417. [PMID: 38456288 PMCID: PMC11110769 DOI: 10.1177/10406387241235968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.
Collapse
Affiliation(s)
- Olufunto O. Adewusi
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Janet E. Hill
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Kostova V, Hanke D, Kaspar H, Fiedler S, Schwarz S, Krüger-Haker H. Macrolide resistance in Mannheimia haemolytica isolates associated with bovine respiratory disease from the German national resistance monitoring program GE RM-Vet 2009 to 2020. Front Microbiol 2024; 15:1356208. [PMID: 38495516 PMCID: PMC10940430 DOI: 10.3389/fmicb.2024.1356208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Data collected from the German national resistance monitoring program GERM-Vet showed slowly increasing prevalence of macrolide resistance among bovine respiratory disease (BRD)-associated Pasteurellacae from cattle over the last decade. The focus of this study was to analyze the genetic basis of antimicrobial resistance (AMR) and the prevalence of multidrug-resistance (MDR)-mediating integrative and conjugative elements (ICEs) in 13 German BRD-associated Mannheimia haemolytica isolates collected between 2009 and 2020 via whole-genome sequencing. Antimicrobial susceptibility testing (AST) was performed via broth microdilution according to the recommendations of the Clinical and Laboratory Standards Institute for the macrolides erythromycin, tilmicosin, tulathromycin, gamithromycin, tildipirosin, and tylosin as well as 25 other antimicrobial agents. All isolates either had elevated MICs or were resistant to at least one of the macrolides tested. Analysis of whole-genome sequences obtained by hybrid assembly of Illumina MiSeq and Oxford Nanopore MinION reads revealed the presence of seven novel Tn7406-like ICEs, designated Tn7694, and Tn7724- Tn7729. These ICEs harbored the antimicrobial resistance genes erm(T), mef (C), mph(G), floR, catA3, aad(3")(9), aph(3')-Ia, aac(3)-IIa, strA, strB, tet(Y), and sul2 in different combinations. In addition, mutational changes conferring resistance to macrolides, nalidixic acid or streptomycin, respectively, were detected among the M. haemolytica isolates. In addition, four isolates carried a 4,613-bp plasmid with the β-lactamase gene blaROB - 1. The detection of the macrolide resistance genes erm(T), mef (C), and mph(G) together with other resistance genes on MDR-mediating ICEs in bovine M. haemolytica may explain the occurrence of therapeutic failure when treating BRD with regularly used antimicrobial agents, such as phenicols, penicillins, tetracyclines, or macrolides. Finally, pathogen identification and subsequent AST is essential to ensure the efficacy of the antimicrobial agents applied to control BRD in cattle.
Collapse
Affiliation(s)
- Valeria Kostova
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Ma H, Alt DP, Falkenberg SM, Briggs RE, Tatum FM, Clawson ML, Casas E, Dassanayake RP. Transcriptomic profiles of Mannheimia haemolytica planktonic and biofilm associated cells. PLoS One 2024; 19:e0297692. [PMID: 38329985 PMCID: PMC10852253 DOI: 10.1371/journal.pone.0297692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Mannheimia haemolytica is the principal agent contributing to bovine respiratory disease and can form biofilms with increased resistance to antibiotic treatment and host immune defenses. To investigate the molecular mechanisms underlying M. haemolytica biofilm formation, transcriptomic analyses were performed with mRNAs sequenced from planktonic and biofilm cultures of pathogenic serotypes 1 (St 1; strain D153) and St 6 (strain D174), and St 2 (strain D35). The three M. haemolytica serotypes were cultured in two different media, Roswell Park Memorial Institute (RPMI) 1640 and brain heart infusion (BHI) to form the biofilms. Transcriptomic analyses revealed that the functions of the differentially expressed genes (DEGs) in biofilm associated cells were not significantly affected by the two media. A total of 476 to 662 DEGs were identified between biofilm associated cells and planktonic cells cultured under BHI medium. Functional analysis of the DEGs indicated that those genes were significantly enriched in translation and many biosynthetic processes. There were 234 DEGs identified in St 1 and 6, but not in St 2. The functions of the DEGs included structural constituents of ribosomes, transmembrane proton transportation, proton channels, and proton-transporting ATP synthase. Potentially, some of the DEGs identified in this study provide insight into the design of new M. haemolytica vaccine candidates.
Collapse
Affiliation(s)
- Hao Ma
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - David P. Alt
- Infectious Bacterial Diseases of Livestock Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Shollie M. Falkenberg
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Robert E. Briggs
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Fred M. Tatum
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Michael L. Clawson
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Animal Health Genomic Research Unit, Clay Center, Nebraska, United States of America
| | - Eduardo Casas
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| |
Collapse
|
5
|
Ahmed S, El-Fatah Mahmoud MA, Nemr WA, Abdel-Rahman EH, El-Shershaby A, Fouad EA, Liaqat F, Wijewardana V. Detection of immune effects of the Mannheimia haemolytica gamma irradiated vaccine in sheep. Vet Res Commun 2024; 48:245-257. [PMID: 37642819 DOI: 10.1007/s11259-023-10207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Exposure to gamma rays from cobalt 60 (Co60) can induce a complete inactivation of Mannheimia haemolytica. The inactivated bacterial pathogen is a potential vaccine candidate for immunization of ruminants such as sheep. The subcutaneous administration of irradiated vaccine in a two-dose regimen (4.0 × 109 colony forming unit (CFU) per dose) results in no mortality in any of the vaccinated sheep during immunization and after subsequent challenge of the live bacteria of the same strain of M. haemolytica. A significant rise in serum IgG titer, detected through ELISA, is observed after the passage of two weeks from the inoculation of the first dose whereas, the peak of the mean serum antibody titer occurred after two weeks of booster dose. The vaccination does not bring significant change to the IFN-γ levels in serum. The bacterial challenge of the vaccinated sheep does not induce a further seroconversion relative to serum antibody titer. In conclusion, the vaccinated sheep are protected by the elevated IgG titer and increased levels of IL-4 (Th-2 response) compared to the non-vaccinated sheep. Radiation technology can provide the opportunity for mass production of immunologically safe vaccines against animal and zoonotic diseases. Ethics Approval by the National Research Center Ethics Committee (Trial Registration Number (TRN) no 13,602,023, 13/5/2023) was obtained.
Collapse
Affiliation(s)
- Sahar Ahmed
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, Giza, Egypt.
| | - Mohamed Abd El-Fatah Mahmoud
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Waleed Abdelgaber Nemr
- Department of Radiation Microbiology, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman Hussein Abdel-Rahman
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Asmaa El-Shershaby
- Department of Molecular Biology, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ehab Ali Fouad
- Department of Zoonosis, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Fatima Liaqat
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
6
|
Bkiri D, Elmejdoub S, Bamouh Z, Fihri OF, El-Harrak M. Comparative protection of small ruminants against Mannheimia haemolytica infection by inactivated bacterin and toxoid vaccines. Vet World 2023; 16:68-75. [PMID: 36855364 PMCID: PMC9967725 DOI: 10.14202/vetworld.2023.68-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background and Aim Mannheimia haemolytica causes respiratory infection and mortality in sheep and goats, similar to the effects in cattle, which causes major economic damage. Regular vaccinations alongside good management practices remain the most efficient tools for controlling this disease. Indeed, vaccines against pasteurellosis are available, but results on their efficacy have varied. Therefore, this study aimed to evaluate the efficacy of three vaccines against mannheimiosis in small ruminants. Materials and Methods We evaluated three vaccines developed from a local field isolate based on the inactivated bacterium, its toxoid, and a mixture of bacterin/toxoid, which we then tested on sheep and goats. Selected criteria that were evaluated were safety, antibody response, and protection through a challenge. Post-vaccination monitoring was carried out by enzyme-linked immunosorbent assay. The evaluation was based on antibody responses to vaccination in sheep and goats for both bacteria and leukotoxin. Protection was assessed by clinical and lesion scores after the challenge of vaccinated goats with a pathogenic strain. Results The three tested vaccines were completely safe, did not cause any adverse reactions, and induced significant antibody titers in immunized animals. Following M. haemolytica challenge, unvaccinated goats showed clinical signs with lesions typical of the disease. Meanwhile, the best protection was obtained with the inactivated combined bacterin/toxoid vaccine. Conclusion This study highlighted the effectiveness of adding a bacterial toxoid in the vaccine as a promising solution for preventing mannheimiosis in small ruminants. Because of the worldwide distribution of M. haemolytica infection, general prophylaxis based on a combined inactivated vaccine could greatly benefit.
Collapse
Affiliation(s)
- Dounia Bkiri
- Department of Research and Development, Multi-chemical Industry, Mohammedia, Morocco,Department of Microbiology, Immunology and Contagious Diseases, Institute of Agronomy and Veterinary Medicine Hassan II, Rabat, Morocco,Corresponding author: Dounia Bkiri, e-mail: Co-authors: SE: , ZB: , OFF: , ME:
| | - Soufiane Elmejdoub
- Department of Research and Development, Multi-chemical Industry, Mohammedia, Morocco
| | - Zahra Bamouh
- Department of Research and Development, Multi-chemical Industry, Mohammedia, Morocco
| | - Ouafaa Fassi Fihri
- Department of Microbiology, Immunology and Contagious Diseases, Institute of Agronomy and Veterinary Medicine Hassan II, Rabat, Morocco
| | - Mehdi El-Harrak
- Department of Research and Development, Multi-chemical Industry, Mohammedia, Morocco
| |
Collapse
|
7
|
Falkner TR. Wellness Management in Beef Feeder Cattle: Changing Mental Models to Support Beneficial Emergent System Behaviors. Vet Clin North Am Food Anim Pract 2022; 38:273-294. [PMID: 35691629 DOI: 10.1016/j.cvfa.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Despite evidence-based "improvements" in animal health products and management, losses to bovine respiratory disease have increased with associated animal wastage, welfare concerns, and antimicrobial use; questioning the fitness of current disease-centric paradigms for improving critical outcomes in complex adaptive systems. Systems thinking is used to model a paradigm shift from mental models based on management of failure outcomes in a flawed pass/fail dichotomy to one of managing success outcomes on a continuum. In the proposed wellness paradigm, the notion of health as absence of disease is rejected and replaced with perspective of disease as symptomatic of systems insufficiently supporting wellness.
Collapse
Affiliation(s)
- T Robin Falkner
- CattleFlow Consulting, Christiana, TN 37037, USA; Elanco Animal Health, Greenfield, IN, USA.
| |
Collapse
|
8
|
Credille B. High-Risk Cattle Management and Stocker Calf Health: Modulation of the Bovine Respiratory Microbiome from a Systems Perspective. Vet Clin North Am Food Anim Pract 2022; 38:229-243. [PMID: 35691626 DOI: 10.1016/j.cvfa.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Bovine respiratory disease (BRD) affects animals in all segments of the North American beef industry. The segmented nature of the beef industry results in the marketing of cattle that are considered to be at high risk of developing BRD. The microbiota is the complex microbial ecosystem that exists in and on the body of all animals. The respiratory tract has its unique microbiota that is shaped by many factors. Stress reduction, appropriate nutritional management, strategic use of vaccines, and antimicrobial administration targeted to the highest risk individuals have the potential to stabilize an inherently unstable microbial population and enhance calf health.
Collapse
Affiliation(s)
- Brent Credille
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Veterinary Medical Center, 2200 College Station Road, Athens, GA 30602, USA.
| |
Collapse
|