1
|
Tafrihi M, Nakhaei Sistani R. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds. Nutr Cancer 2017; 69:702-722. [PMID: 28524727 DOI: 10.1080/01635581.2017.1320415] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plants reputed to have cancer-inhibiting potential and putative active components derived from those plants have emerged as an exciting new field in cancer study. Some of these compounds have cancer-inhibiting potential in different clinical staging levels, especially metastasis. A few of them which stabilize cell-cell adhesions are controversial topics. This review article introduces some effective herbal compounds that target E-cadherin/β-catenin protein complex. In this article, at first, we briefly review the structure and function of E-cadherin and β-catenin proteins, Wnt signaling pathway, and its target genes. Then, effective compounds of the Teucrium persicum, Teucrium polium, Allium sativum (garlic), Glycine max (soy), and Brassica oleracea (broccoli) plants, which influence stability and cellular localization of E-cadherin/β-catenin complex, were studied. Based on literature review, there are some compounds in these plants, including genistein of soy, sulforaphane of broccoli, organosulfur compounds of garlic, and the total extract of Teucrium genus that change the expression of variety of Wnt target genes such as MMPs, E-cadherin, p21, p53, c-myc, and cyclin D1. So they may induce cell-cycle arrest, apoptosis and/or inhibition of Epithelial-Mesenchymal Transition (EMT) and metastasis.
Collapse
Affiliation(s)
- Majid Tafrihi
- a Molecular and Cell Biology Research Laboratory, Department of Molecular and Cell Biology, Faculty of Basic Sciences , University of Mazandaran , Babolsar , Mazandaran , Iran
| | | |
Collapse
|
2
|
Dong H, Xie L, Tang C, Chen S, Liu Q, Zhang Q, Zheng W, Zheng Z, Zhang H. Snail1 correlates with patient outcomes in E-cadherin-preserved gastroesophageal junction adenocarcinoma. Clin Transl Oncol 2014; 16:783-91. [PMID: 24356933 DOI: 10.1007/s12094-013-1149-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/02/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE The poor prognosis of gastroesophageal junction (GEJ) adenocarcinoma is largely associated with metastasis. We here report the first study to investigate the expression of epithelial-mesenchymal transition (EMT) markers Snail1 and E-cadherin in GEJ adenocarcinoma. METHODS Snail1 and E-cadherin were detected by immunohistochemistry in a cohort of 128 patients with surgically resected GEJ adenocarcinoma. We assessed the pathologic and prognostic relevance in all patients and within clinically different preserved E-cadherin and reduced E-cadherin-expressing sub-groups. RESULTS Immunoreactivity for Snail1 and E-cadherin was positive in 68 and 43 % of tumors, respectively. Snail1-positive tumors had more frequent lymph node metastasis and advanced tumor stage. E-cadherin expression was highly associated with histological differentiation, tumor size, advanced stage, presence of lymph node metastasis and distant metastasis. Patients with positive E-cadherin expression or negative Snail1 expression had significantly favorable overall survival rate. In E-cadherin-preserved tumors, the expression of Snail1 was related to lymph node metastasis, advanced stage and poor patient outcome. However, Snail1 expression had no statistically significant relationship with clinicopathologic parameters or prognosis in the reduced E-cadherin-expressing sub-group. Multivariate survival analysis identified that tumor stage [hazard ratio (HR) 2.440; 95 % confidence interval (CI) 1.216-4.896; P = 0.012], lymph node metastasis (HR 2.404; 95 % CI 1.188-4.867; P = 0.015) and gender (HR 3.244; 95 % CI 1.568-6.714; P = 0.002) were independent prognostic markers for overall survival. CONCLUSIONS Snail1 may act more critically in E-cadherin-positive tumors. Evaluation of Snail1 and E-cadherin in GEJ adenocarcinoma may help in assessing malignant properties and stratifying patients.
Collapse
Affiliation(s)
- H Dong
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Screening of drugs to counteract human papillomavirus 16 E6 repression of E-cadherin expression. Invest New Drugs 2012; 30:2236-51. [PMID: 22359217 DOI: 10.1007/s10637-012-9803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/10/2012] [Indexed: 12/11/2022]
Abstract
Persistent infections with certain high-risk human papillomavirus (HPV) types such as 16 and 18 can result in the development of cervical cancer. Neither of the two prophylactic vaccines against HPV16 and 18 that are in current use have any therapeutic efficacy for prevalent HPV infections. Ablative therapy is widely used for the treatment of HPV cervical dysplasia however disease recurrence is a widely recognized problem. Thus there is a continuing need for therapeutic approaches for the treatment of HPV infections. The HPV16 E6 viral oncoprotein represses surface expression of the cellular adhesion molecule, E-cadherin. Reduced E-cadherin expression on HPV-infected keratinocytes is associated with lowered numbers of antigen-presenting Langerhans cells in the infected epidermis, potentially reducing immune surveillance for HPV. Four chemicals reported to up-regulate E-cadherin were screened for their ability to counteract E6 repression of surface E-cadherin. 5-Aza-2'-deoxycytidine (AzaDC), a DNA methyltransferase inhibitor, and Indole-3-carbinol (I3C), reported to increase E-cadherin through a p21(Waf1/Cip1)-dependent mechanism, had low cytotoxicity and increased or restored E-cadherin expression and adhesive function in HPV16 E6 expressing HCT116 cells. Doxorubicin, also known to induce p21(Waf1/Cip1), increased E-cadherin in E6 expressing cells but had some associated cytotoxicity. Tamoxifen, which can restore adhesive function of surface E-cadherin, was ineffective in counteracting E6 repression of E-cadherin. AzaDC and I3C both show potential to restore antigen-presenting cells to HPV infected skin by antagonizing E6 repression of E-cadherin, thereby counteracting an important immune evasion mechanism of HPV16 and reinstating immune function at the infected site.
Collapse
|
4
|
Greenspon J, Li R, Xiao L, Rao JN, Sun R, Strauch ED, Shea-Donohue T, Wang JY, Turner DJ. Sphingosine-1-phosphate regulates the expression of adherens junction protein E-cadherin and enhances intestinal epithelial cell barrier function. Dig Dis Sci 2011; 56:1342-53. [PMID: 20936358 PMCID: PMC4140085 DOI: 10.1007/s10620-010-1421-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 09/02/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND The regulation of intestinal barrier permeability is important in the maintenance of normal intestinal physiology. Sphingosine-1-phosphate (S1P) has been shown to play a pivotal role in enhancing barrier function in several non-intestinal tissues. The current study determined whether S1P regulated function of the intestinal epithelial barrier by altering expression of E-cadherin, an important protein in adherens junctions. METHODS Studies were performed upon cultured differentiated IECs (IEC-Cdx2L1 line) using standard techniques. RESULTS S1P treatment significantly increased levels of E-cadherin protein and mRNA in intestinal epithelial cells (IECs) and also led to E-cadherin localizing strongly to the cell-cell border. S1P also improved the barrier function as indicated by a decrease in 14C-mannitol paracellular permeability and an increase in transepithelial electrical resistance (TEER) in vitro. CONCLUSIONS These results indicate that S1P increases levels of E-cadherin, both in cellular amounts and at the cell-cell junctions, and leads to improved barrier integrity in cultured intestinal epithelial cells.
Collapse
Affiliation(s)
- Jose Greenspon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ruiyun Li
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lan Xiao
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaladanki N. Rao
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rex Sun
- Department of Gastroenterology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric D. Strauch
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terez Shea-Donohue
- Department of Gastroenterology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jian-Ying Wang
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA. Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Douglas J. Turner
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|