1
|
Oren A. Novel insights into the diversity of halophilic microorganisms and their functioning in hypersaline ecosystems. NPJ BIODIVERSITY 2024; 3:18. [PMID: 39242694 PMCID: PMC11332174 DOI: 10.1038/s44185-024-00050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 09/09/2024]
Abstract
Our understanding of the microbial diversity inhabiting hypersaline environments, here defined as containing >100-150 g/L salts, has greatly increased in the past five years. Halophiles are found in each of the three domains of life. Many novel types have been cultivated, and metagenomics and other cultivation-independent approaches have revealed the existence of many previously unrecognized lineages. Syntrophic interactions between different phylogenetic lineages have been discovered, such as the symbiosis between members of the archaeal class Halobacteria and the 'Candidatus Nanohalarchaeota'. Metagenomics techniques also have shed light on the biogeography of halophiles, especially of the genera Salinibacter (Bacteria) and Haloquadratum and Halorubrum (Archaea). Exploration of the microbiome of hypersaline lakes led to the discovery of novel types of metabolism previously unknown to occur at high salt concentrations. Studies of environments with high concentrations of chaotropic ions such as magnesium, calcium, and lithium have refined our understanding of the limits of life.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
2
|
Kasiviswanathan P, Swanner ED, Halverson LJ, Vijayapalani P. Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS One 2022; 17:e0272209. [PMID: 35976812 PMCID: PMC9385024 DOI: 10.1371/journal.pone.0272209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
A fundamental challenge in human missions to Mars is producing consumable foods efficiently with the in situ resources such as soil, water, nutrients and solar radiation available on Mars. The low nutrient content of martian soil and high salinity of water render them unfit for direct use for propagating food crops on Mars. It is therefore essential to develop strategies to enhance nutrient content in Mars soil and to desalinate briny water for long-term missions on Mars. We report simple and efficient strategies for treating basaltic regolith simulant soil and briny water simulant for suitable resources for growing plants. We show that alfalfa plants grow well in a nutrient-limited basaltic regolith simulant soil and that the alfalfa biomass can be used as a biofertilizer to sustain growth and production of turnip, radish and lettuce in the basaltic regolith simulant soil. Moreover, we show that marine cyanobacterium Synechococcus sp. PCC 7002 effectively desalinates the briny water simulant, and that desalination can be further enhanced by filtration through basalt-type volcanic rocks. Our findings indicate that it is possible to grow food crops with alfalfa treated basaltic regolith martian soil as a substratum watered with biodesalinated water.
Collapse
Affiliation(s)
| | - Elizabeth D. Swanner
- Department of Geological & Atmospheric Sciences, Ames, Iowa, United States of America
| | - Larry J. Halverson
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Paramasivan Vijayapalani
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
3
|
Weingarten EA, Zee PC, Jackson CR. Microbial Communities in Saltpan Sediments Show Tolerance to Mars Analog Conditions, but Susceptibility to Chloride and Perchlorate Toxicity. ASTROBIOLOGY 2022; 22:838-850. [PMID: 35731161 PMCID: PMC9464085 DOI: 10.1089/ast.2021.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Brines at or near the surface of present-day Mars are a potential explanation for seasonally recurring dark streaks on the walls of craters, termed recurring slope lineae (RSL). Deliquescence and freezing point depression are possible drivers of brine stability, attributable to the high salinity observed in martian regolith including chlorides and perchlorates. Investigation of life, which may inhabit RSL, and the cellular mechanisms necessary for survival, must consider the tolerance of highly variable hydration, freeze-thaw cycles, and high osmolarity in addition to the anaerobic, oligotrophic, and irradiated environment. We propose the saltpan, an ephemeral, hypersaline wetland as an analogue for putative RSL hydrology. Saltpan sediment archaeal and bacterial communities showed tolerance of the Mars-analogous atmosphere, hydration, minerology, salinity, and temperature. Although active growth and a shift to well-adapted taxa were observed, susceptibility to low-concentration chloride and perchlorate addition suggested that such a composition was insufficient for beneficial water retention relative to added salt stress.
Collapse
Affiliation(s)
- Eric A. Weingarten
- Department of Biology, University of Mississippi, University, Mississippi, USA
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Peter C. Zee
- Department of Biology, University of Mississippi, University, Mississippi, USA
| | - Colin R. Jackson
- Department of Biology, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
4
|
Cesur RM, Ansari IM, Chen F, Clark BC, Schneegurt MA. Bacterial Growth in Brines Formed by the Deliquescence of Salts Relevant to Cold Arid Worlds. ASTROBIOLOGY 2022; 22:104-115. [PMID: 34748403 PMCID: PMC8785760 DOI: 10.1089/ast.2020.2336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Hygroscopic salts at Mars' near-surface (MgSO4, (per)chlorates, NaCl) may form brines by absorbing moisture from the atmosphere at certain times through the process of deliquescence. We have previously shown strong bacterial growth in saturated MgSO4 (∼67% w/v as epsomite) at room temperature, and growth was observed at the MgSO4 eutectic point (43% w/v at -4°C). Here, we have investigated the growth of salinotolerant microbes (Halomonas, Marinococcus, Planococcus) from Hot Lake, Washington; Basque Lake, British Columbia; and Great Salt Plains, Oklahoma under deliquescing conditions. Bacterial cultures were grown to mid-log phase in SP medium supplemented with 50% MgSO4 (as epsomite), 20% NaClO3, or 10% NaCl (w/v), and small aliquots in cups were dried by vacuum desiccation. When the dried culture was rehydrated by the manual addition of water, the culture resumed growth in the reconstituted brine. When desiccated cultures were maintained in a sealed container with a brine reservoir of the matching growth medium controlling the humidity of the headspace, the desiccated microbial culture evaporites formed brine by deliquescence using humidity alone. Bacterial cultures resumed growth in all three salts once rehydrated by deliquescence. Cultures of Halomonas sp. str. HL12 showed robust survival and growth when subjected to several cycles of desiccation and deliquescent or manual rehydration. Our laboratory demonstrations of microbial growth in deliquescent brines are relevant to the surface and near-subsurface of cold arid worlds like Mars. When conditions become wetter, hygroscopic evaporite minerals can deliquesce to produce the earliest habitable brines. Survival after desiccation and growth in deliquescent brines increases the likelihood that microbes from Earth, carried on spacecraft, pose a contamination risk to Mars.
Collapse
Affiliation(s)
- Robin M. Cesur
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Irfan M. Ansari
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Fei Chen
- Jet Propulsion Laboratory, Pasadena, California, USA
| | | | - Mark A. Schneegurt
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
5
|
Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines. Life (Basel) 2021; 11:life11111194. [PMID: 34833070 PMCID: PMC8619379 DOI: 10.3390/life11111194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
The availability of liquid water is a prerequisite for all lifeforms on Earth. In hyperarid subzero environments like the Dry Valleys in Antarctica or the near-subsurface of Mars liquid water might be provided temporarily by hygroscopic substances that absorb water from the atmosphere and lower the freezing point of water. To evaluate the potential of hygroscopic compounds to serve as a habitat, it is necessary to explore the microbial tolerances towards these substances and their life-limiting properties. Here we present a study investigating the tolerances of the halotolerant yeast Debaryomyces hansenii to various solutes. Growth experiments were conducted via counting colony forming units (CFUs) after inoculation of a liquid growth medium containing a specific solute concentration. The lowest water activities (aw) enabling growth were determined to be ~0.83 in glycerol and fructose-rich media. For all other solutes the growth-enabling aw was higher, due to additional stress factors such as chaotropicity and ionic strength. Additionally, we found that the solute tolerances of D. hansenii correlate with both the eutectic freezing point depressions and the deliquescence relative humidities of the respective solutes. Our findings strongly impact our understanding of the habitability of solute-rich low aw environments on Earth and beyond.
Collapse
|
6
|
Madigan MT, Kempher ML, Bender KS, Jung DO, Sattley WM, Lindemann SR, Konopka AE, Dohnalkova AC, Fredrickson JK. A green sulfur bacterium from epsomitic Hot Lake, Washington, USA. Can J Microbiol 2020; 67:332-341. [PMID: 33136441 DOI: 10.1139/cjm-2020-0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hot Lake is a small heliothermal and hypersaline lake in far north-central Washington State (USA) and is limnologically unusual because MgSO4 rather than NaCl is the dominant salt. In late summer, the Hot Lake metalimnion becomes distinctly green from blooms of planktonic phototrophs. In a study undertaken over 60 years ago, these blooms were predicted to include green sulfur bacteria, but no cultures were obtained. We sampled Hot Lake and established enrichment cultures for phototrophic sulfur bacteria in MgSO4-rich sulfidic media. Most enrichments turned green or red within 2 weeks, and from green-colored enrichments, pure cultures of a lobed green sulfur bacterium (phylum Chlorobi) were isolated. Phylogenetic analyses showed the organism to be a species of the prosthecate green sulfur bacterium Prosthecochloris. Cultures of this Hot Lake phototroph were halophilic and tolerated high levels of sulfide and MgSO4. In addition, unlike all recognized species of Prosthecochloris, the Hot Lake isolates grew at temperatures up to 45 °C, indicating an adaptation to the warm summer temperatures of the lake. Photoautotrophy by Hot Lake green sulfur bacteria may contribute dissolved organic matter to anoxic zones of the lake, and their diazotrophic capacity may provide a key source of bioavailable nitrogen, as well.
Collapse
Affiliation(s)
- Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Megan L Kempher
- Department of Microbiology and Plant Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Kelly S Bender
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Deborah O Jung
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - W Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA
| | - Stephen R Lindemann
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Allan E Konopka
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
7
|
Stevens AH, Cockell CS. A Systematic Study of the Limits of Life in Mixed Ion Solutions: Physicochemical Parameters Do Not Predict Habitability. Front Microbiol 2020; 11:1478. [PMID: 32670258 PMCID: PMC7332579 DOI: 10.3389/fmicb.2020.01478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
This study investigated what defines the limits of life in mixed ion solutions. Better understanding these limits should allow us to better predict the habitability of extreme environments on the Earth and extraterrestrial environments. We systematically examined the response of Bacillus subtilis, a well characterized non-halophile model organism, to a range of solutions made from single and mixed salts up to their solubility limits and measured at what concentration growth was arrested, specifically exploring Na, Mg, and Ca cations and Cl, SO4, and ClO4 anions. We measured the physicochemical properties of the solutions to identify which properties correlated with the limits of growth. Individual salts imposed a growth limit specific to the combination of cation and anion, although we generally observe that chloride salts allow growth at lower water activity than sulfate salts, with perchlorate restricting growth even at the highest measured water activity. Growth was limited at a wide range of ionic strength, with no apparently correlation. Despite the theoretically counteracting disordering effects (chaotropic) of perchlorates and ordering effects (kosmotropic) effects of sulfates, when these salts were combined they instead additively narrowed the window for growth in both the Na and Mg cation systems, in the same manner as the combined effects of two chaotropic Ca salts. Our results imply that away from hard limits that might be imposed by physicochemical properties such as water activity, ionic strength or chaotropicity in highly concentrated brines, these properties do not set the limits of life. Instead these limits are highly specific to the salts and organisms in question. This specificity means that the habitability of extreme environments cannot be predicted, even with accurate measurements of the physicochemical conditions present.
Collapse
Affiliation(s)
- Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
8
|
Nepal S, Kumar P. Growth, Cell Division, and Gene Expression of Escherichia coli at Elevated Concentrations of Magnesium Sulfate: Implications for Habitability of Europa and Mars. Microorganisms 2020; 8:E637. [PMID: 32349403 PMCID: PMC7285182 DOI: 10.3390/microorganisms8050637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/20/2023] Open
Abstract
We perform quantitative studies of the growth, death, and gene expression of Escherichia coli in a wide range of magnesium sulfate (MgSO 4 ) concentrations (0-2.5 M). Elevated concentration of MgSO 4 causes the inhibition of cell growth, leading to an increase in the population doubling time. We find that cells exhibit three distinct morphological phenotypes-(i) normal, (ii) filamentous, and (iii) small cells at 1 . 25 M MgSO 4 . Filamentous cells arise due to the lack of cell division, while the small cells arise due to the partial plasmolysis of the cells. We further find that cell death starts for salt concentrations >1.25 M and increases with an increasing concentration of MgSO 4 . For salt concentrations ≥1.66 M, the growth of cells stops and all the cells become smaller than the control cells, suggesting the plasmolysis of the population. Cells grown at salt concentration up to 2 . 07 M are reversible in both the growth rate and morphology upon the removal of the salt stress. The time scale of reversibility increases with increasing salt concentration. Finally, we investigate the expression of an osmotically inducible gene (osmC), genes involved in magnesium transport (corA), sulfate transport (cysP), and osmotically driven transport of water (aqpZ). We find that a high concentration of magnesium sulfate leads to the upregulation of cysP and osmC.
Collapse
Affiliation(s)
- Sudip Nepal
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA;
- Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Pradeep Kumar
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA;
- Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
9
|
Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet? GEOSCIENCES 2019. [DOI: 10.3390/geosciences9090361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mars is a planet of great interest in the search for signatures of past or present life beyond Earth. The years of research, and more advanced instrumentation, have yielded a lot of evidence which may be considered by the scientific community as proof of past or present habitability of Mars. Recent discoveries including seasonal methane releases and a subglacial lake are exciting, yet challenging findings. Concurrently, laboratory and environmental studies on the limits of microbial life in extreme environments on Earth broaden our knowledge of the possibility of Mars habitability. In this review, we aim to: (1) Discuss the characteristics of the Martian surface and subsurface that may be conducive to habitability either in the past or at present; (2) discuss laboratory-based studies on Earth that provide us with discoveries on the limits of life; and (3) summarize the current state of knowledge in terms of direction for future research.
Collapse
|