1
|
Troisio I, Bertocchi M, Ventrella D, Scozzoli M, Di Vito M, Truzzi E, Benvenuti S, Mattarelli P, Bacci ML, Elmi A. Short- and long-term effects of essential oils on swine spermatozoa during liquid phase refrigeration. Sci Rep 2024; 14:285. [PMID: 38168599 PMCID: PMC10762118 DOI: 10.1038/s41598-023-51030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
The application of essential oils as potential alternatives to antibiotics in swine semen storage is promising, due to their antioxidant and antibacterial properties. However, detrimental effects on spermatozoa should be clarified first. The aim of this study was to evaluate 9 essential oils (EOs; Satureja montana, Pelargonium graveolens, Cymbopogon nardus, Melaleuca leucadendron, Eucaliptus globulus, Citrus limon, Lavandula angustifolia, Lavandula hybrida, Mentha piperita) and a blend (GL mix) on key morpho-functional parameters of swine spermatozoa. Test compounds were firstly chemo-characterized and experimental doses were prepared by suspending a fixed number of spermatozoa with 3 different concentrations (0.1, 0.5, 1 mg/mL) of EOs. Experimental doses were stored at 16 °C and sampled after 3 and 120 h for analysis. Overall, S. montana, P. graveolens and L. angustifolia EOs induced the strongest alterations, with C. nardus and E. globulus EOs being the best tolerated. Swine spermatozoa represent a good preliminary testing platform to screen toxicity and its different patterns. The comprehensive overview on the potential mechanisms of action of some of the most common EOs, despite of the direct aim of the study being swine reproduction, may be exploited in other fields of research within both veterinary and human medicine.
Collapse
Affiliation(s)
- Ilaria Troisio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Martina Bertocchi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy.
| | - Maurizio Scozzoli
- Italian Society for Research on Essential Oils (Società Italiana per la Ricerca sugli Oli Essenziali-SIROE), Rome, RM, Italy
| | - Maura Di Vito
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, RM, Italy
| | - Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, MO, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, MO, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, BO, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
2
|
Mariotti M, Lombardini G, Rizzo S, Scarafile D, Modesto M, Truzzi E, Benvenuti S, Elmi A, Bertocchi M, Fiorentini L, Gambi L, Scozzoli M, Mattarelli P. Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections. Microorganisms 2022; 10:822. [PMID: 35456873 PMCID: PMC9029798 DOI: 10.3390/microorganisms10040822] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The extensive use of antibiotics has contributed to the current antibiotic resistance crisis. Livestock infections of Salmonella spp, Clostridium spp. and E. coli antimicrobial-resistant bacteria represent a public threat to human and animal health. To reduce the incidence of these zoonoses, essential oils (EOs) could be effective antibiotic alternatives. This study aims at identifying EOs safe for use, effective both in complementary therapy and in the environmental sanitization of intensive farming. Natural products were chemo-characterized by gas chromatography. Three S. Typhimurium, three C. perfringens and four E. coli strains isolated from poultry and swine farms were used to assess the antimicrobial properties of nine EOs and a modified GR-OLI (mGR-OLI). The toxicity of the most effective ones (Cinnamomum zeylanicum, Cz; Origanum vulgare, Ov) was also evaluated on porcine spermatozoa and Galleria mellonella larvae. Cz, Ov and mGR-OLI showed the strongest antimicrobial activity; their volatile components were also able to significantly inhibit the growth of tested strains. In vitro, Ov toxicity was slightly lower than Cz, while it showed no toxicity on G. mellonella larvae. In conclusion, the study confirms the importance of evaluating natural products to consolidate the idea of safe EO applications in reducing and preventing intensive livestock infections.
Collapse
Affiliation(s)
- Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Giulia Lombardini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Silvia Rizzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Donatella Scarafile
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| | - Monica Modesto
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| | - Eleonora Truzzi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (S.B.)
| | - Stefania Benvenuti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (S.B.)
| | - Alberto Elmi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.E.); (M.B.)
| | - Martina Bertocchi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.E.); (M.B.)
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER)—Sede Territoriale di Forlì, Via Don Eugenio Servadei 3E/3F, 47122 Forlì, Italy; (L.F.); (L.G.)
| | - Lorenzo Gambi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER)—Sede Territoriale di Forlì, Via Don Eugenio Servadei 3E/3F, 47122 Forlì, Italy; (L.F.); (L.G.)
| | - Maurizio Scozzoli
- Società Italiana per la Ricerca sugli Oli Essenziali (SIROE), Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Mattarelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| |
Collapse
|
3
|
Bertocchi M, Rigillo A, Elmi A, Ventrella D, Aniballi C, G. Scorpio D, Scozzoli M, Bettini G, Forni M, Bacci ML. Preliminary Assessment of the Mucosal Toxicity of Tea Tree ( Melaleuca alternifolia) and Rosemary ( Rosmarinus officinalis) Essential Oils on Novel Porcine Uterus Models. Int J Mol Sci 2020; 21:ijms21093350. [PMID: 32397373 PMCID: PMC7247571 DOI: 10.3390/ijms21093350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance, an ever-growing global crisis, is strongly linked to the swine production industry. In previous studies, Melaleucaalternifolia and Rosmarinusofficinalis essential oils have been evaluated for toxicity on porcine spermatozoa and for antimicrobial capabilities in artificial insemination doses, with the future perspective of their use as antibiotic alternatives. The aim of the present research was to develop and validate in vitro and ex vivo models of porcine uterine mucosa for the evaluation of mucosal toxicity of essential oils. The in vitro model assessed the toxicity of a wider range of concentrations of both essential oils (from 0.2 to 500 mg/mL) on sections of uterine tissue, while the ex vivo model was achieved by filling the uterine horns. The damage induced by the oils was assessed by Evans Blue (EB) permeability assay and histologically. The expression of ZO-1, a protein involved in the composition of tight junctions, was assessed through immunohistochemical and immunofluorescence analysis. The results showed that low concentrations (0.2–0.4 mg/mL) of both essential oils, already identified as non-spermicidal but still antimicrobial, did not alter the structure and permeability of the swine uterine mucosa. Overall, these findings strengthen the hypothesis of a safe use of essential oils in inseminating doses of boar to replace antibiotics.
Collapse
Affiliation(s)
- Martina Bertocchi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Antonella Rigillo
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
- Correspondence: ; Tel.: +39-0512097923
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Camilla Aniballi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Diana G. Scorpio
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Giuliano Bettini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| |
Collapse
|
4
|
In Vitro Effects of Tea Tree Oil (Melaleuca Alternifolia Essential Oil) and its Principal Component Terpinen-4-ol on Swine Spermatozoa. Molecules 2019; 24:molecules24061071. [PMID: 30893764 PMCID: PMC6471158 DOI: 10.3390/molecules24061071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
The growing interest towards essential oils stems from their biological capabilities that include antibacterial and antioxidant effects. Such properties may be extremely useful in the reproductive field; nonetheless essential oils show toxic effects that can lead to cell disruption. The present study aimed to evaluate and compare the effects of tea tree oil (TTO) and its principal component terpinen-4-ol (TER) on the morpho-functional parameters of swine spermatozoa. Experimental samples were prepared by suspending 15 × 107 spermatozoa in 5 mL of medium with different concentrations of the above-mentioned compounds: from 0.2 to 2 mg/mL at an interval of 0.2 for TTO, while TER concentrations were adjusted according to its presence in TTO (41.5%). After 3 h incubation at 16 °C, samples were analyzed for pH, viability, acrosome status, and objective motility. The results highlighted a concentration-dependent effect of TTO with total motility as the most sensitive parameter. TER was better tolerated, and the most sensitive parameters were related to membrane integrity, suggesting a different pattern of interaction. The study confirms the importance of evaluating the effects of natural compounds on spermatozoa before exploiting their beneficial effects. Spermatozoa seem to be good candidates for preliminary toxicological screenings in the light of their peculiar properties.
Collapse
|
5
|
Detection and characterization of Lactobacillus spp. in the porcine seminal plasma and their influence on boar semen quality. PLoS One 2018; 13:e0202699. [PMID: 30192779 PMCID: PMC6128545 DOI: 10.1371/journal.pone.0202699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
The presence of pathogenic bacteria in ejaculates has been a topic in boar semen preservation over the last decades. Since little information is available on commensal bacteria in boar semen, the aim of the present study was to identify commensal lactobacilli in fresh cryopreserved boar semen and to examine their influence on boar semen quality. Therefore, 111 boar ejaculates were investigated for the presence of Lactobacillus species. Thirty samples (27%) contained viable Lactobacillus species (e.g. L. amylovorus, L. animalis, L. reuteri and Weisella minor). L. animalis and L. buchneri DSM 32407 (isolated from the bovine uterus) qualified for further examinations based on their growth rate in six antibiotic-free boar semen extenders. After a 120 min short-term incubation with an antibiotic-free BTS-extender, progressive motility was diminished (P = 0.001) upon addition of 105 and 106 colony forming units (CFU/mL) L. animalis. The supplementation with L. buchneri DSM 32407 had no significant (P > 0.05) influence on sperm quality during short-term co-incubation. After 168 h long-term co-incubation, motility analysis revealed a negative (P = 0.026) impact of 105 CFU/mL L. buchneri DSM 32407. A concentration- and storage-dependent effect is particularly obvious (P < 0.001) using 106 CFU/mL L. buchneri DSM 32407. Most notably, the thermo-resistance (TRT) for 106 CFU/mL L. buchneri DSM 32407 (P = 0.001) was inferior to BTS with and without gentamicin after 72 and 168 h of semen co-incubation. The supplementation of 105 CFU/mL L. buchneri DSM 32407 impaired progressive motility to a lesser extent. The percentage of mitochondrially active spermatozoa after 96 h (P = 0.009) and membrane-intact spermatozoa after 168 h (P < 0.001) was lower when 106 CFU/mL L. buchneri DSM 32407 were suspended compared with all other groups. Finally, the addition of L. buchneri DSM 32407 to BTS-extended boar semen had no competitive effect on the total amount of bacteria 48 h after co-incubation. In summary, the present study demonstrated that there are Lactobacillus species present in the porcine seminal plasma, which can be cultivated using standard procedures. However, long-term co-incubation of lactic acid bacteria with spermatozoa had a negative influence on spermatozoa.
Collapse
|
6
|
Elmi A, Ventrella D, Barone F, Filippini G, Benvenuti S, Pisi A, Scozzoli M, Bacci ML. Thymbra capitata (L.) Cav. and Rosmarinus officinalis (L.) Essential Oils: In Vitro Effects and Toxicity on Swine Spermatozoa. Molecules 2017; 22:molecules22122162. [PMID: 29211030 PMCID: PMC6149686 DOI: 10.3390/molecules22122162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Essential oils possess a variety of biological properties (i.e., antioxidant, antibacterial, and cytotoxic) that could possibly be applied in reproductive medicine, but their effects on spermatozoa are still partially unknown. The aim of the study was to describe the effects of Thymbra capitata (L.) Cav. and Rosmarinus officinalis (L.) essential oils on the main morpho-functional parameters of swine spermatozoa. Essential oils were preliminary characterized by gas chromatography and added with emulsifiers to facilitate diffusion. Experimental samples were prepared by suspending a fixed number of spermatozoa in 5 mL of medium with 10 different concentrations of essential oil (0.2–2 mg/mL, at intervals of 0.2). After 3 h of incubation, samples were analyzed for pH, viability, objective motility, and acrosome status. Results showed that the effects of the essential oils are concentration-dependent and that R. officinalis is well tolerated up to 0.6 mg/mL. T. capitata impaired the spermatozoa starting from the lowest concentration, with complete spermicidal effect from 0.4 mg/mL. The patterns of damage, confirmed by SEM, were different and quite distinct. As expected, spermatozoa proved to be sensitive to external stimuli and capable of showing different functional patterns, providing interesting insights to the action/toxicity mechanisms. The results of the present work represent the first step towards the systematic characterization of the effects of these compounds on spermatozoa. This kind of studies are necessary to strengthen the idea of future applications of essential oils in the reproductive field due to their antioxidant, antibacterial, or spermicidal properties.
Collapse
Affiliation(s)
- Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy.
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy.
| | - Francesca Barone
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy.
| | - Gianfranco Filippini
- Department of Agricultural Sciences, University of Bologna, Via Fanin 44, 40127 Bologna, Italy.
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy.
| | - Annamaria Pisi
- Department of Agricultural Sciences, University of Bologna, Via Fanin 44, 40127 Bologna, Italy.
| | | | - Maria L Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy.
| |
Collapse
|
7
|
Relative abundance of heat shock proteins and clusterin transcripts in spermatozoa collected from boar routinely utilised in an artificial insemination centre: preliminary results. Vet Res Commun 2017; 41:233-239. [PMID: 28429153 DOI: 10.1007/s11259-017-9689-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/10/2017] [Indexed: 01/02/2023]
Abstract
It is widely accepted that mature sperm contains RNA. The first hypothesis was that sperm RNAs have no functions of their own but are simply residues of spermatogenesis reflecting the events that occurred during their formation in the testes. More recently new discoveries have essentially expanded these views, showing that sperm mRNAs constitute a population of stable full-length transcripts, many of which are selectively retained during spermatogenesis and delivered to oocytes contributing to early embryo development. It is well known that semen quality can be influenced by occasional physical stress, infection, and variation in temperature and the definition of new markers for evaluation of semen could offer knowledge about the fertility potential of a semen sample. The aim of the present study was to evaluate the presence and the relative quantity of transcripts and protein of heat shock protein 70 (HSP70), 90 (HSP90) and clusterin (CLU) in Percoll-selected spermatozoa collected from seven adult boars of proven fertility routinely employed for artificial insemination. Our results showed the presence of HSP70, HSP90 and CLU transcripts with different level of expression: high for HSPs and low for CLU transcripts. The transcript level of both HSPs are similar among selected spermatozoa derived from high quality sperm with the exception of one boar that showed a reduced content of HSP70 and HSP90 mRNA together with a lower semen quality. At protein level, both HSPs were detected with similar amount among all seven boars whilst no band was evidenced for CLU protein.
Collapse
|
8
|
Barone F, Ventrella D, Zannoni A, Forni M, Bacci ML. Can Microfiltered Seminal Plasma Preserve the Morphofunctional Characteristics of Porcine Spermatozoa in the Absence of Antibiotics? A Preliminary Study. Reprod Domest Anim 2016; 51:604-10. [PMID: 27174664 DOI: 10.1111/rda.12699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022]
Abstract
Artificial insemination is extensively performed in pig farms in Europe, the United States and Canada. Antibiotics are typically added to the inseminating dose to limit bacterial growth during liquid phase storage at 16°C, as bacterial contamination is unavoidable. The World Organization for Animal Health (OIE) and the Food and Agriculture Organization (FAO) take action to control and reduce antibiotic use in animals as more bacteria are becoming resistant to antimicrobials. To avoid the use of antibiotics, we prepared inseminating doses using microfiltered seminal plasma (SP). Microfiltration is a common technology used to reduce bacterial contamination but may retain seminal substances, influencing sperm quality during storage. Therefore, the aim of this study was to evaluate the morphofunctional parameters of spermatozoa during storage at 16°C in doses prepared with or without microfiltered SP, with or without the addition of antibiotics, in a Latin square design. Artificial insemination doses with microfiltered SP and without antibiotic addition preserved spermatozoa viability, mitochondrial membrane potential, acrosome integrity and objective motility, with absolute values equal or even better than those observed in conventional doses. In conclusion, although the results could be considered preliminary due to the small sample size, this study suggests that microfiltration of SP can be a simple method, feasible on farms, to replace antibiotic use in extended doses stored in the liquid phase at 16°C for up to 7 days.
Collapse
Affiliation(s)
- F Barone
- Department of Veterinary Medical Sciences, DIMEVET, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - D Ventrella
- Department of Veterinary Medical Sciences, DIMEVET, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - A Zannoni
- Department of Veterinary Medical Sciences, DIMEVET, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - M Forni
- Department of Veterinary Medical Sciences, DIMEVET, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - M L Bacci
- Department of Veterinary Medical Sciences, DIMEVET, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
9
|
Effect of commercial long-term extenders on metabolic activity and membrane integrity of boar spermatozoa stored at 17 degrees C. Pol J Vet Sci 2013; 16:517-25. [PMID: 24195287 DOI: 10.2478/pjvs-2013-0072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was aimed to analyze the metabolic activity and membrane integrity of boar spermatozoa following storage in long-term semen extenders. Boar semen was diluted with Androhep EnduraGuard (AeG), DILU-Cell (DC), SafeCell Plus (SCP) and Vitasem LD (VLD) extenders and stored for 10 days at 17 degrees C. Parameters of the analyzed sperm metabolic activity included total motility (TMOT), progressive motility (PMOT), high mitochondrial membrane potential (MMP) and ATP content, whereas those of the membrane integrity included plasma membrane integrity (PMI) and normal apical ridge (NAR) acrosome. Extender type was a significant (P < 0.05) source of variation in all the analyzed sperm parameters, except for ATP content. Furthermore, the storage time had a significant effect (P < 0.05) on the sperm metabolic activity and membrane integrity during semen storage. In all extenders the metabolic activity and membrane integrity of the stored spermatozoa decreased continuously over time. Among the four analyzed extenders, AeG and SCP showed the best performance in terms of TMOT and PMI on Days 5, 7 and 10 of storage. Marked differences in the proportions of spermatozoa with high MMP were observed between the extenders, particularly on Day 10 of storage. There were not any marked differences in sperm ATP content between the extenders, regardless of the storage time. Furthermore, the percentage of spermatozoa with NAR acrosomes decreased during prolonged storage, being markedly lower in DC-diluted semen compared with semen diluted with either AeG or SCP extender. The results of this study indicated that components of the long-term extenders have different effects on the sperm functionality and prolonged semen longevity by delaying the processes associated with sperm ageing during liquid storage.
Collapse
|
10
|
Yeste M, Barrera X, Coll D, Bonet S. The effects on boar sperm quality of dietary supplementation with omega-3 polyunsaturated fatty acids differ among porcine breeds. Theriogenology 2011; 76:184-96. [DOI: 10.1016/j.theriogenology.2011.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/29/2011] [Indexed: 11/28/2022]
|
11
|
Purdy P, Tharp N, Stewart T, Spiller S, Blackburn H. Implications of the pH and temperature of diluted, cooled boar semen on fresh and frozen-thawed sperm motility characteristics. Theriogenology 2010; 74:1304-10. [DOI: 10.1016/j.theriogenology.2010.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/15/2010] [Accepted: 04/24/2010] [Indexed: 11/16/2022]
|
12
|
Sperm-mediated gene transfer–treated spermatozoa maintain good quality parameters and in vitro fertilization ability in swine. Theriogenology 2009; 72:1163-70. [DOI: 10.1016/j.theriogenology.2009.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/29/2009] [Accepted: 06/22/2009] [Indexed: 11/24/2022]
|