1
|
Sun H, Jiang Z, Chen Z, Liu G, Liu Z. Effects of fermented unconventional protein feed on pig production in China. Front Vet Sci 2024; 11:1446233. [PMID: 39144079 PMCID: PMC11322053 DOI: 10.3389/fvets.2024.1446233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Unconventional protein feeds, characterized by low nutritional value, high variability, and poor palatability, have limited their application in swine production. Fermentation technology holds the key to addressing these shortcomings. Given the ban on antibiotics in China, the inferior quality of imported pig breeds, and long-term dependence on imported soybean, the prospects for fermented unconventional protein feeds are promising. This paper delves into the common types of fermented unconventional protein feeds, factors influencing the fermentation process, the mechanisms by which they enhance swine health, and the challenges and prospects of fermented feeds, offering theoretical insights for the future development of the feed industry.
Collapse
Affiliation(s)
- Haoxuan Sun
- Cofco Joycome (Jilin) Co., Ltd., Songyuan, China
| | - Zipeng Jiang
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Zexue Liu
- COFCO Wuhan Meat Product Co., Ltd., Wuhan, China
| |
Collapse
|
2
|
Zhang M, Yang Z, Wu G, Xu F, Zhang J, Luo X, Ma Y, Pang H, Duan Y, Chen J, Cai Y, Wang L, Tan Z. Effects of Probiotic-Fermented Feed on the Growth Profile, Immune Functions, and Intestinal Microbiota of Bamei Piglets. Animals (Basel) 2024; 14:647. [PMID: 38396614 PMCID: PMC10886304 DOI: 10.3390/ani14040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Purebred Bamei piglets present problems, including slow growth, respiratory disease, and post-weaning stress. This study investigated the effects of Lactobacillus plantarum QP28-1- and Bacillus subtilis QB8-fermented feed supplementation on the growth performance, immunity, and intestinal microflora of Bamei piglets from Qinghai, China. A total of 48 purebred Bamei piglets (25 days; 6.8 ± 0.97 kg) were divided into the following four groups for a 28-day diet experiment: basal feed (CK); diet containing 10% Lactobacillus plantarum-fermented feed (L); diet containing 10% Bacillus subtilis-fermented feed (B); and diet containing a mixture of 5% Lactobacillus plantarum + 5% Bacillus subtilis-fermented feed (H). The daily weight gain and daily food intake of group H increased (p < 0.05), and the feed/weight gain ratios of the groups fed with fermented feed decreased more than that of the CK group. The levels of three immune factors, namely immunoglobulin (Ig)M, IgG, and interferon-γ, were higher (p < 0.05), whereas those of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were lower (p < 0.05) in the fermented feed groups than in the CK group. Total protein was higher (p < 0.05), while urea nitrogen, total cholesterol and triglycerides were lower (p < 0.05) in the mixed-fermented feed group than in the CK group. Analysis of the gut microbiota showed that the addition of fermented feed increased the α-diversity of the gut microbiota, increasing the abundances of probiotics including Lactobacillus, Muribaculaceae, Ruminococcaceae, Prevotellaceae, and Rikenellaceae. Additionally, correlation analysis demonstrated that several of these probiotic bacteria were closely related to serum immunity. In conclusion, fermented feed supplementation rebuilt the intestinal microbiota of Bamei piglets, thereby reducing the feed/weight ratio, improving feed intake, and enhancing immunity.
Collapse
Affiliation(s)
- Miao Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Zhenyu Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Fafang Xu
- Bamei Pig Original Breeding Base of Huzhu County, Haidong 810600, China;
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Xuan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Yuhong Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Huili Pang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Yaoke Duan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Jun Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Yimin Cai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
- Japan International Research Center for Agricultural Sciences, Crop, Livestock and Environment Division, Tsukuba 305-8686, Japan
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Zhongfang Tan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| |
Collapse
|
3
|
Yang J, Zhang X, Zhou Z, Li C, Luo R, Liu H, Fu H, Zhong Z, Shen L, Cao S, Luo Y, Li D, Peng G. Protective Effects of Bacillus subtilis HH2 against Oral Enterotoxigenic Escherichia coli in Beagles. Vet Sci 2023; 10:432. [PMID: 37505837 PMCID: PMC10384286 DOI: 10.3390/vetsci10070432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
This study evaluated the protective effect of Bacillus subtilis HH2 on beagles orally challenged with enterotoxigenic Escherichia coli (ETEC). We assessed the physiological parameters and the severity of diarrhea, as well as the changes in three serum immunoglobulins (IgG, IgA, and IgM), plasma diamine oxidase (DAO), D-lactate (D-LA), and the fecal microbiome. Feeding B. subtilis HH2 significantly reduced the severity of diarrhea after the ETEC challenge (p < 0.05) and increased serum levels of IgG, IgA, and IgM (p < 0.01). B. subtilis HH2 administration also reduced serum levels of DAO at 48 h after the ETEC challenge (p < 0.05), but no significant changes were observed in D-LA (p > 0.05). Oral ETEC challenge significantly reduced the richness and diversity of gut microbiota in beagles not pre-fed with B. subtilis HH2 (p < 0.05), while B. subtilis HH2 feeding and oral ETEC challenge significantly altered the gut microbiota structure of beagles (p < 0.01). Moreover, 14 days of B. subtilis HH2 feeding reduced the relative abundance of Deinococcus-Thermus in feces. This study reveals that B. subtilis HH2 alleviates diarrhea caused by ETEC, enhances non-specific immunity, reduces ETEC-induced damage to the intestinal mucosa, and regulates gut microbiota composition.
Collapse
Affiliation(s)
- Jinpeng Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyue Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Caiwu Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Run Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Zhao K, Yin H, Yan H, Tang W, Diao H, Wang Q, Qi R, Liu J. Dietary Supplementation of Lactobacillus johnsonii RS-7 Improved Antioxidant and Immune Function of Weaned Piglets. Animals (Basel) 2023; 13:ani13101595. [PMID: 37238025 DOI: 10.3390/ani13101595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated the effects of dietary supplementation of lactic acid bacteria on the immune and antioxidant performance of weaned pigs. A total of 128 Duroc × Landrace × Yorkshire piglets weaned on day 28 with an average body weight of 8.95 ± 1.15 kg were selected and randomly divided into four treatment groups according to body weight and sex for a 28-day study. The four dietary treatments were basal diet (CON), and CON with 0.05% (LJ0.05), 0.1% (LJ0.1), and 0.2% (LJ0.2) Lactobacillus johnsonii RS-7, respectively. The lowest feed-to-gain ratio (F:G) was found when LJ0.1 was added to the diet. The addition of compound lactic acid bacteria to the diet increased the concentrations of TP, ALB, IgA, and IgM on day 14 and IgG, IgA, and IgM on day 28 (p < 0.05) in the blood, with trait values greater for pigs fed LJ0.1 than CON pigs (p < 0.05). Concentrations of antioxidants (CAT, T-AOC, MDA, T-SOD, and GSH) in serum, intestinal mucosa, spleen, liver, and pancreas improved. In summary, dietary supplementation of Lactobacillus johnsonii RS-7 improved the antioxidant and immune function of weaned piglets.
Collapse
Affiliation(s)
- Kai Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Yibin Municipal Bureau of Agriculture and Rural Affairs, Yibin 644000, China
| | - Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenjie Tang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd., Chengdu 610066, China
| | - Hui Diao
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd., Chengdu 610066, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
5
|
Tang X, Zhang K, Xiong K. Fecal Microbial Changes in Response to Finishing Pigs Directly Fed With Fermented Feed. Front Vet Sci 2022; 9:894909. [PMID: 35937291 PMCID: PMC9354886 DOI: 10.3389/fvets.2022.894909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
The present study investigated the effects of fermented complete feed (FCF) on fecal microbial composition during the grower-finisher period. A total of 20 pigs (Duroc × Landrace × Yorkshire, 48.74± 1.49 kg) were divided randomly into two groups: the CN group (pigs fed with a basal diet) and the FCF group (pigs fed with FCF). After a 60-day trial period, 3 pigs with middle-weight from each treatment were selected for fecal sampling and fecal microbiota analysis. The results showed that the FCF significantly increased operational taxonomic units (OUT) numbers, alpha diversity (Simpson index and Shannon index), and beta diversity, which means that FCF increased the fecal microbiota diversity. At the phylum level, the abundance of Tenericutes, Spirochaetae, Verrucomicrobia, and Cyanobacteria were changed in pigs fed with FCF; and at the genus level, the abundance of Christensenellaceae_R-7_group, Treponema_2, Ruminococcaceae_UCG-005, Prevotellaceae_UCG-003, Phascolarctobacterium, Roseburia, and Prevotella_9 were changed in pigs fed with FCF. The linear discriminant analysis effect size (LEfSe) analysis showed that Roseburia and Prevotella_9 genera were increased, while Tenericutes phyla and Streptococcus, Christensenellaceae_R-7_group, and Lactobacillus genera were decreased in the FCF group compared to the CN group. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) results predicted that the relative abundance of infectious diseases: parasitic associated genes, xenobiotics biodegradation, and metabolism-associated genes were significantly reduced in the FCF group when compared with the CN group, and the relative abundance of signal transduction associated genes, amino acid metabolism-related genes, and replication and repair associated genes were significantly higher in the FCF group when compared with the CN group. In addition, the relative abundance of transport and catabolism-associated genes, membrane transport-associated genes, and biosynthesis of other secondary metabolite-associated genes tended to be higher in the FCF group when compared with the CN group; and the relative abundance of immune diseases associated genes tended to be lower in the FCF group when compared with the CN group. In conclusion, the FCF influenced the alpha and beta diversity of the fecal microbiota of pigs.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kai Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
- *Correspondence: Kangning Xiong
| |
Collapse
|
6
|
Determination of the available energy, standardized ileal digestibility of amino acids of fermented corn germ meal replacing soybean meal in growing pig diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:259-268. [PMID: 35600545 PMCID: PMC9097634 DOI: 10.1016/j.aninu.2021.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Three experiments were conducted to compare the digestible (DE), metabolizable energy (ME), and standardized ileal digestibility (SID) of amino acids (AA) in fermented corn germ meal (FCGM) and soybean meal (SBM), and evaluate the effects of FCGM replacing SBM in growing pig diets. In Exp. 1, 18 barrows with initial body weight (BW) of 60.2 ± 3.40 kg were randomly allotted to 3 treatments with 6 replicates per treatment. The control diet used corn as the only energy ingredient, and 2 test diets were made by replacing 25.8% of corn with FCGM or SBM. The DE and ME of FCGM were less (P < 0.01) than those of SBM. In Exp. 2, 18 barrows (59.3 ± 2.52 kg BW) with ileal T-cannulas were randomly allotted to 3 treatments with 6 replicates per treatment. The SID of arginine, tryptophan and proline were greater (P < 0.05) and the tyrosine was less (P = 0.01) in SBM compared with FCGM. In Exp. 3, 144 growing pigs (56.1 ± 5.22 kg BW) were randomly allotted to 4 treatments with 6 pens per treatment (3 barrows and 3 gilts per pen). Four diets (FCGM0, FCGM10, FCGM20 and FCGM30) were formulated using FCGM to replace 0%, 10%, 20% and 30% of SBM, respectively. The ME and SID values of AA of SBM and FCGM were determined by Exp. 1 and 2. Results showed that increasing FCGM inclusion quadratically (P < 0.05) increased the average daily gain (ADG), average daily feed intake, and the levels of serum immunoglobulin G (IgG) and urea nitrogen, and linearly (P < 0.05) increased the serum IgM, the propanoic acid, butyric acid, total volatile fatty acid (VFA) and the Shannon index of microbiota in feces. Besides, the relative abundance of genus Streptococcus in FCGM0, Lactobacillus in FCGM10 and Lachnospiraceae in FCGM30 were increased (P < 0.05) compared with other treatments. In conclusion, we recommend replacing 11.80% of SBM with FCGM to obtain the optimal ADG of growing pigs. Moreover, as the ratio of FCGM replacing SBM increased in diet, the immunity, intestinal microbiota and total VFA composition of growing pigs were improved.
Collapse
|
7
|
Taranu I, Marin D, Pistol G, Untea A, Vlassa M, Filip M, Gras M, Rotar C, Anghel A. Assessment of the ability of dietary yeast-fermented rapeseed
meal to modulate inflammatory and oxidative stress
in piglets after weaning. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/148055/2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Tang X, Liu X, Zhang K. Effects of Microbial Fermented Feed on Serum Biochemical Profile, Carcass Traits, Meat Amino Acid and Fatty Acid Profile, and Gut Microbiome Composition of Finishing Pigs. Front Vet Sci 2021; 8:744630. [PMID: 34805337 PMCID: PMC8600044 DOI: 10.3389/fvets.2021.744630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Microbial fermented feed is an important part of feed industry, while little research has focused on the solid-state fermentation of complete feed. Herein, the purpose of the present study was to investigate the effects of fermented complete feed (FCF) on the growth performance, biochemical profile, carcass traits, meat proximate composition, meat amino acid and fatty acid profile, and gut microbiome composition of finishing pigs, thereby providing references for the application of FCF in animal production. Twenty Duroc × Landrace × Yorkshire pigs with an average body weight (BW) of 48.74 ± 1.49 kg were divided randomly into control group (pigs received a basal diet, CN, n = 10) and FCF group (pigs fed with FCF, n = 10). The experiment lasted for 60 days. FCF improved the growth performance, which was indicated by a significantly increased final BW, average daily gain and average daily feed intake, and a significantly decreased feed-to-gain ratio. FCF improved biochemical profile, which was indicated by a higher alkaline phosphatase, glucose, immunoglobulin G, immunoglobulin M, superoxide dismutase, and total antioxidant capacity content. Pigs that received FCF had better carcass traits and meat quality than did pigs that received basal diet, which was indicated by a higher carcass length, crude protein content, lysine content, Glu content, C18:ln9c, C18:2n6c, C20:4n6, and unsaturated fatty acid content and a lower average back-fat thickness, C18:0, and saturated fatty acids. FCF significantly reduced the relative abundances of presumably pathogenic bacteria of phylum Proteobacteria and genus Escherichia–Shigella and enhanced the relative abundances of likely beneficial bacteria of phylum Firmicutes and genus Clostridium. In summary, FCF had a certain effect on the improvement of growth performance, serum biochemical profile, carcass traits, meat proximate composition, amino acid and fatty acid profile, and gut microbiome composition of finishing pigs.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kai Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
9
|
Lee SH, Park CK. Effect of deep-sea mineral water on growth performance, water intake, blood characteristics and serum immunoglobulins in the growing-finishing pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:998-1007. [PMID: 34796343 PMCID: PMC8564302 DOI: 10.5187/jast.2021.e76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
Brine mineral water (BMW) is groundwater near the deep sea, and the mineral component of the BMW is different from the water of the deep sea because the components of BMW are derived from the unique geographical features surrounding it. Recently, BMW has attracted attention due to the unique health-related minerals it possesses; however, the influence of BMW on physiological function has not yet been determined in domestic animals. Therefore, this experiment investigated the influence of BMW on the growth performance, water intake, blood properties, and immunoglobulin (Ig) levels of serum in growing-finishing pigs. A total of 64 pig barrows (Landrace × Yorkshire × Duroc) with an average initial weight of 40.56 ± 0.17 kg were used in the experiment, and 0%, 2%, 3%, and 5% samples of BMW diluted with freshwater were provided to experimental animals during the 56 days. We found that the gain/feed ratio in the 3% BMW group was significantly higher than that in the 5% BMW group of growing-finishing pigs (p < 0.05). The water intake was significantly increased in the 5% BMW group compared with the other groups (p < 0.05) of growing-finishing pigs. Additionally, the concentrations of red blood cells (RBCs), hemoglobin (HGB), and hematocrit (HCT) were significantly higher in the 3% BMW group than in the control group. The level of high-density lipoprotein cholesterol was higher in the 3% BMW group than in the 5% BMW group (p < 0.05). Furthermore, IgG and IgM levels in the serum were significantly higher in the 2% and 3% BMW groups than in the control group (p < 0.05). These results suggest that a dilution of 3% BMW in the intake water could improve the levels of RBCs and serum Igs in growing-finishing pigs.
Collapse
Affiliation(s)
- Sang-Hee Lee
- Institute of Animal Resources, Kangwon National University, Chuncheon 24341, Korea.,School of Information and Communications Technology, University of Tasmania, TAS 7001, Australia
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
10
|
In Vivo Implications of Potential Probiotic Lactobacillus reuteri LR6 on the Gut and Immunological Parameters as an Adjuvant Against Protein Energy Malnutrition. Probiotics Antimicrob Proteins 2021; 12:517-534. [PMID: 31218544 DOI: 10.1007/s12602-019-09563-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study investigated the impact of probiotic Lactobacillus reuteri LR6 on the gut and systemic immunity using protein energy malnourished (PEM) murine model. Thirty male Swiss albino mice were divided into five groups: control (C), malnourished (M), probiotic fermented milk (PFM), skim milk (SM), and bacterial suspension (BS) with six mice per group. Group C was fed with conventional diet throughout the study while the other groups were fed with protein calorie restricted diet until the development of malnutrition. After development of malnutrition, group M was continued with the restricted diet while other groups were fed with re-nourished diet supplemented with PFM, SM, and BS for 1 week, respectively. Thereafter, mice were sacrificed and different histological, microbiological, and immunological parameters were studied. Probiotics feeding in PEM model as fermented product or bacterial suspension improved the intestinal health in terms of intact morphology of colonic crypts, normal goblet cells, and intact lamina propria with no inflammation in large intestine, absence of fibrosis, and no inflammation in spleen. The number of secretory IgA+ cells was significantly higher in group PFM and BS. Also, increase in the phagocytic percentage of the macrophages and bone marrow derived dendritic cells (DCs) were observed in the PFM and BS group in comparison to the group M. In comparison to the group M and SM, lactobacilli, bifidobacteria, and Firmicutes counts were significantly higher in the group PFM and BS. This study concludes that probiotic supplementation to re-nutrition diet could emerge as wonder therapeutics against PEM.
Collapse
|
11
|
Yang KM, Zhu C, Wang L, Cao ST, Yang XF, Gao KG, Jiang ZY. Early supplementation with Lactobacillus plantarum in liquid diet modulates intestinal innate immunity through toll-like receptor 4-mediated mitogen-activated protein kinase signaling pathways in young piglets challenged with Escherichia coli K88. J Anim Sci 2021; 99:6259343. [PMID: 33928383 DOI: 10.1093/jas/skab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of early supplementation during 4 to 18 d of age with Lactobacillus plantarum (LP) in liquid diets on intestinal innate immune response in young piglets infected with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two barrow piglets at 4 d old were assigned to basal or LP-supplemented liquid diet (5 × 1010 CFU·kg-1). On day 15, piglets from each group were orally challenged with either ETEC K88 (1 × 108 CFU·kg-1) or the same amount of phosphate-buffered saline. The intestinal mucosa, mesenteric lymph node (MLN), and spleen samples were collected on day 18. Here, we found that LP pretreatment significantly decreased the mRNA relative expression of inflammatory cytokines (interleukin [IL]-1β, IL-8, and tumor necrosis factor-α), porcine β-defensin 2 (pBD-2), and mucins (MUC1 and MUC4) in the jejunal mucosa in piglets challenged with ETEC K88 (P < 0.05). Moreover, LP significantly decreased the ileal mucosa mRNA relative expression of IL-8 and MUC4 in young piglets challenged with ETEC K88 (P < 0.05). Furthermore, the piglets of the LP + ETEC K88 group had lower protein levels of IL-8, secretory immunoglobulin A, pBD-2, and MUC4 in the jejunal mucosa than those challenged with ETEC K88 (P < 0.05). Besides, LP supplementation reduced the percentage of gamma/delta T cells receptor (γδTCR) and CD172a+ (SWC3+) cells in MLN and the percentage of γδTCR cells in the spleen of young piglets after the ETEC K88 challenge. Supplementation with LP in liquid diets prevented the upregulated protein abundance of toll-like receptor (TLR) 4, phosphorylation-p38, and phosphorylation-extracellular signal-regulated protein kinases in the jejunal mucosa induced by ETEC K88 (P < 0.05). In conclusion, LP supplementation in liquid diet possesses anti-inflammatory activity and modulates the intestinal innate immunity during the early life of young piglets challenged with ETEC K88, which might be attributed to the suppression of TLR4-mediated mitogen-activated protein kinase signaling pathways. Early supplementation with LP in liquid diets regulates the innate immune response, representing a promising immunoregulation strategy for maintaining intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Kuanmin M Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Cui Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, P.R. China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Shuting T Cao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Xuefen F Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Kaiguo G Gao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Zongyong Y Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| |
Collapse
|
12
|
Screening of Lactic Acid Bacteria with Inhibitory Activity against ETEC K88 as Feed Additive and the Effects on Sows and Piglets. Animals (Basel) 2021; 11:ani11061719. [PMID: 34207593 PMCID: PMC8227144 DOI: 10.3390/ani11061719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Numerous reports have suggested that lactic acid bacteria (LAB), which are important probiotics, can protect animals against pathogen-induced injury and inflammation, regulate gut microflora, enhance digestive tract function, improve animal growth performance, and decrease the incidence of diarrhea caused by enterotoxigenic (ETEC) that expresses K88. This research selected Lactobacillus (L.) reuteri P7, L. amylovorus P8, and L. johnsonii P15 with good inhibition against ETEC K88 and excellent probiotic properties screened from 295 LAB strains isolated from fecal samples from 55 healthy weaned piglets for a study on feeding of sows in late pregnancy and weaned piglets. Feed supplementation with these three strains improved reproductive performance of sows and growth performance of piglets, decreased the incidence of diarrhea in piglets, and increased the antioxidant capacity of serum in both sows and piglets. Therefore, L. reuteri P7, L. amylovorus P8, and L. johnsonii P15 might be considered as potential antibiotic alternatives for further study. Abstract Enterotoxigenic Escherichia coli (ETEC), which expresses K88 is the principal microorganism responsible for bacterial diarrhea in pig husbandry, and the indiscriminate use of antibiotics has caused many problems; therefore, antibiotics need to be replaced in order to prevent diarrhea caused by ETEC K88. The objective of this study was to screen excellent lactic acid bacteria (LAB) strains that inhibit ETEC K88 and explore their effects as probiotic supplementation on reproduction, growth performance, diarrheal incidence, and antioxidant capacity of serum in sows and weaned piglets. Three LAB strains, P7, P8, and P15, screened from 295 LAB strains and assigned to Lactobacillus (L.) reuteri, L. amylovorus, and L. johnsonii with high inhibitory activity against ETEC K88 were selected for a study on feeding of sows and weaned piglets. These strains were chosen for their good physiological and biochemical characteristics, excellent exopolysaccharide (EPS) production capacity, hydrophobicity, auto-aggregation ability, survival in gastrointestinal (GI) fluids, lack of hemolytic activity, and broad-spectrum activity against a wide range of microorganisms. The results indicate that LAB strains P7, P8, and P15 had significant effects on improving the reproductive performance of sows and the growth performance of weaned piglets, increasing the activity of antioxidant enzymes and immune indexes in both.
Collapse
|
13
|
Torok VA, Luyckx K, Lapidge S. Human food waste to animal feed: opportunities and challenges. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
By 2050, the demand for animal protein is estimated to increase by 70%. Concurrently, United Nations (UN) member countries have committed to reduce food waste by 50% by 2030. Moreover, even if the UN Intergovernmental Panel on Climate Change dietary-change recommendations are followed, measures to produce food and animal feed more efficiently will become increasingly important in creating a more sustainable food future. Currently, livestock animals consume over a third of global grain production. However, livestock animals, including insects, could function as efficient bioprocessors for converting unavoidable food waste into valuable animal protein. Establishing such a circular food system would simultaneously reduce both the negative environmental impacts of food waste going to landfill and intensive livestock production, as well as meet the need for increased livestock feed. To be successful in establishing a food waste to livestock feed industry, it will be critical to ensure that feed safety is appropriately regulated to prevent adverse animal health, welfare, biosecurity, food safety, economic, market access and food insecurity outcomes. Currently, regulatory frameworks in most industrialised countries either prohibit feeding of food waste to livestock or limit the wastes permissible. However, there is a growing body of knowledge showing that if the correct processing and safety measures are implemented, that food waste from retail and food service can be effectively and safety utilised in commercial production systems. The Japanese have developed a successful food waste to pig feed industry, based on both liquid and dry feeding systems, which is regulated and encouraged under national policy. They have developed licenced ‘Ecofeed’-branded products, and the pork industry has not been negatively affected by emergency animal diseases through this feeding practice. If other countries are to establish similar food waste to livestock feed industries, then strategies to mitigate food safety and biosecurity concerns will need to be developed and implemented. Regional techno-economic analysis will also be required to assess industry profitability and determine the potential investment required for new collection, storage and feed production infrastructure. Furthermore, legislation, based on scientifically robust research, will be required to incentivise food-waste producers and the livestock industry to actively engage and drive change.
Collapse
|
14
|
Huang HJ, Weng BC, Hsuuw YD, Lee YS, Chen KL. Dietary Supplementation of Two-Stage Fermented Feather-Soybean Meal Product on Growth Performance and Immunity in Finishing Pigs. Animals (Basel) 2021; 11:ani11061527. [PMID: 34073850 PMCID: PMC8225001 DOI: 10.3390/ani11061527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Feathers contain around 90% of keratin which compose of unbalanced amino acids with low digestibility and limiting the usage in monogastric animal diets. To improve the nutrient value of feather through fermentation using keratinase-producing microbes pose a high economic potential. This study investigates the effects of two-stage fermented feather-soybean meal product (TSFP) on growth performance, blood characteristics, and immunity of finishing pigs. In growth performance, 2.5–5% TSFP promotes the average daily feed intake and feed conversion rate with a best performance of 5%. In blood characteristics, 5% TSFP increased HDL-C, and decreased LDL-C and blood urea nitrogen content. In immunity, 5% TSFP increased lymphoblastogenesis stimulated by lipopolysaccharide and concanavalin A, and promoting IFN-γ, IgA productions, and phagocytic cells oxygen burst capacity. It appears that TSFP improves the growth performance and immunity of finishing pigs. Abstract This study investigates the effects of two-stage fermented feather meal-soybean meal product (TSFP) on growth performance, blood characteristics, and immunity of finishing pigs. Firstly, feather meal-soybean meal is subjected to aerobic fermentation with Bacillus subtilis var. natto N21, B. subtilis Da2 and Da15, B. amyloliquefaciens Da6, Da16 for two days, and anaerobic fermentation with B. coagulans L12 for three days. Then, the fermented product is air-dried into an end product—TSFP. Eighty hybrid pigs (Duroc x KHAPS) with equal numbers of both sexes are randomly assigned into 3% fish meal, 0%, 2.5%, or 5.0% TSFP groups with five replicates per group. Our results show that the average daily feed intake and feed conversion rate of TSFP groups are significantly better than the other groups at 0–3 weeks (p < 0.05). The 5% TSFP group significantly increased HDL-C in the blood (p < 0.05), and decreased LDL-C and blood urea nitrogen content (p < 0.05). The lipopolysaccharide (LPS) and concanavalin A (ConA) in 5% TSFP group and interferon-γ (IFN-γ) content in 2.5% and 5% TSFP groups are significantly higher than the other groups (p < 0.05). The phagocytic oxygen burst capacity and serum IgA content of the 5% TSFP group are significantly higher than those of the fishmeal group (p < 0.05). The CD3, CD4, and CD4 + CD8 + T cells subsets in 2.5% and 5% TSFP groups are significantly higher than the control group (p < 0.05). In conclusion, TSFP has a positive effect on the growth performance and immunity of finishing pigs with the best performance on 5% TSFP.
Collapse
Affiliation(s)
- Hsien-Juang Huang
- Kaohsiung Animal Propagation Station, COA-LRI, Pingtung 912013, Taiwan;
- The Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Bor-Chun Weng
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 600355, Taiwan;
| | - Yan-Der Hsuuw
- The Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Yueh-Sheng Lee
- The Graduate Institute of Animal Sciences, National Chiayi University, Chiayi 600355, Taiwan;
| | - Kuo-Lung Chen
- The Graduate Institute of Animal Sciences, National Chiayi University, Chiayi 600355, Taiwan;
- Correspondence: ; Tel.: +886-5-271-3252
| |
Collapse
|
15
|
Standardized ileal digestible tryptophan to lysine ratios affect performance and regulate intestinal mRNA expression of amino acid transporters in weaning pigs fed a low crude protein diet. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Geng T, He F, Su S, Sun K, Zhao L, Zhao Y, Bao N, Pan L, Sun H. Probiotics Lactobacillus rhamnosus GG ATCC53103 and Lactobacillus plantarum JL01 induce cytokine alterations by the production of TCDA, DHA, and succinic and palmitic acids, and enhance immunity of weaned piglets. Res Vet Sci 2021; 137:56-67. [PMID: 33932824 DOI: 10.1016/j.rvsc.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 01/20/2023]
Abstract
Probiotics, including Lactobacillus rhamnosus GG ATCC53103 and Lactobacillus plantarum JL01, can improve growth performance and immunity of piglets, and relieve weaning stress-related immune disorders such as intestinal infections and inflammation. This study aimed to evaluate the ability of co-administration of the probiotics L. rhamnosus GG ATCC53103 and L. plantarum JL01 to stimulate immune responses and improve gut health during the critical weaning period in piglets. Forty-eight weaned piglets were randomly divided into four groups, and fed daily for 28 days either without, or with the two probiotics independently, or in combination. On day 28, we analyzed the cytokine and bacterial changes in intestinal mucosa and the hepatic portal vein blood metabolites of the weaned piglets. Our results showed that combined L. rhamnosus GG ATCC53103 and L. plantarum JL01 significantly increased (p < 0.05) the growth performance and expression of IL-10 and TGF-β1 mRNAs. In contrast, this treatment significantly decreased (p < 0.05) IL-1β mRNA level in the jejunum, ileum, and cecum. Furthermore, the secretion of IL-6 in the cecum, IL-1β in the jejunum, ileum, and cecum, and TNF-α in the jejunum and ileum was significantly decreased (p < 0.05). The relative abundance of Prevotella_9 and Enterococcus in ileum and cecum was significantly increased (p < 0.05). The relative abundance of Ruminococcus_1 and Ruminococcaceae_UCG-005 in cecum was significantly decreased (p < 0.05). Prevotella_9 and Enterococcus may increase the accumulation of (4Z,7Z,10Z,13Z,16Z,19Z)-4,7,10,13,16,19-docosahexaenoic acid (DHA) and tauroursodeoxycholic acid (TCDA) in portal vein blood, while Ruminococcus_1 and Ruminococcaceae_UCG-005 may decrease the accumulation of succinic and palmitic acids. These results indicate that L. rhamnosus GG ATCC53103 and L. plantarum JL01 may regulate cytokine levels by reducing the accumulation of succinic and palmitic acids and increasing the accumulation of TCDA and DHA, thereby enhancing the immunity of weaned piglets.
Collapse
Affiliation(s)
- Tingting Geng
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Feng He
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Shuai Su
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Kecheng Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Lei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Li Pan
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
17
|
An J, Cho J. Potential immune-modulatory effects of wheat phytase on the performance of a mouse macrophage cell line, Raw 264.7, exposed to long-chain inorganic polyphosphate. Anim Biosci 2020; 34:463-470. [PMID: 32777888 PMCID: PMC7961190 DOI: 10.5713/ajas.20.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Objective This experiment was conducted to find out the immunological effects of wheat phytase when long-chain inorganic polyphosphate (polyP) treated with wheat phytase was added to a macrophage cell line, Raw 264.7, when compared to intact long-chain polyP. Methods Nitric oxide (NO) production of Raw 264.7 cells exposed to P700, a long-chain polyP with an average of 1,150 phosphate residues, treated with or without wheat phytase, was measured by Griess method. Phagocytosis assay of P700 treated with or without phytase in Raw 264.7 cells was investigated using neutral red uptake. The secretion of tumor necrosis factor α (TNF-α) by Raw 264.7 cells with wheat phytase-treated P700 compared to intact P700 was observed by using Mouse TNF-α enzyme-linked immunosorbent assay kit. Results P700 treated with wheat phytase effectively increased NO production of Raw 264.7 cells by 172% when compared with intact P700 at 12 h exposure. At 5 mM of P700 concentration, wheat phytase promoted NO production of macrophages most strongly. P700, treated with wheat phytase, stimulated phagocytosis in macrophages at 12 h exposure by about 1.7-fold compared to intact P700. In addition, P700 treated with wheat phytase effectively increased in vitro phagocytic activity of Raw 264.7 cells at a concentration above 5 mM when compared to intact P700. P700 dephosphorylated by wheat phytase increased the release of TNF-α from Raw 264.7 cells by 143% over that from intact P700 after 6 h exposure. At the concentration of 50 μM P700, wheat phytase increased the secretion of cytokine, TNF-α, by 124% over that from intact P700. Conclusion In animal husbandry, wheat phytase can mitigate the long-chain polyP causing damage by improving the immune capabilities of macrophages in the host. Thus, wheat phytase has potential as an immunological modulator and future feed additive for regulating immune responses caused by inflammation induced by long-chain polyP from bacterial infection.
Collapse
Affiliation(s)
- Jeongmin An
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jaiesoon Cho
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
18
|
Satessa GD, Tamez-Hidalgo P, Kjærulff S, Vargas-Bello-Pérez E, Dhakal R, Nielsen MO. Effects of Increasing Doses of Lactobacillus Pre-Fermented Rapeseed Product with or without Inclusion of Macroalgae Product on Weaner Piglet Performance and Intestinal Development. Animals (Basel) 2020; 10:E559. [PMID: 32230825 PMCID: PMC7222423 DOI: 10.3390/ani10040559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the effects of increasing doses of pre-fermented rapeseed meal (FRM) without or with inclusion of the brown macroalgae Ascophyllum nodosum (AN) on weaner piglets' performance and gut development. Ten days pre-weaning, standardized litters were randomly assigned to one of nine isoenergetic and isoproteic diets comprising (on DM basis): no supplement (negative control, NC), 2500 ppm ZnO (positive control, PC), 8, 10, 12, 15 or 25% FRM, and 10% FRM plus 0.6 or 1.0% AN. Fifty piglets receiving the same pre-weaning diets were weaned at 28 days of age and transferred to one pen, where they continued on the pre-weaning diet until day 92. At 41 days, six piglets per treatment were sacrificed for blood and intestinal samplings. The average daily gain was at least sustained at any dose of FRM (increased at 8% FRM, 28-41 days) from 18-41 days similar to PC but unaffected by inclusion of AN. The percentage of piglets that completed the experiment was increased by FRM compared to NC, despite detection of diarrhea symptoms. FRM showed quadratic dose-response effects on colon and mid-jejunum crypts depth, and enterocyte and mid-jejunum villus heights with optimum development at 8% or 10% FRM, respectively, but this was abolished when AN was also added. In conclusion, FRM sustained piglet growth performance and intestinal development similar to ZnO with an optimum inclusion level of 8-10% of dietary DM.
Collapse
Affiliation(s)
- Gizaw Dabessa Satessa
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; (E.V.-B.-P.); (R.D.)
| | | | - Søren Kjærulff
- Fermentationexperts A/S, Vorbassevej 12, DK-6622 Copenhagen, Denmark (S.K.)
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; (E.V.-B.-P.); (R.D.)
| | - Rajan Dhakal
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; (E.V.-B.-P.); (R.D.)
| | - Mette Olaf Nielsen
- Department of Animal Sciences, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
19
|
Zhang W, Ji H, Zhang D, Liu H, Wang S, Wang J, Wang Y. Complete Genome Sequencing of Lactobacillus plantarum ZLP001, a Potential Probiotic That Enhances Intestinal Epithelial Barrier Function and Defense Against Pathogens in Pigs. Front Physiol 2018; 9:1689. [PMID: 30542296 PMCID: PMC6277807 DOI: 10.3389/fphys.2018.01689] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/09/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Wei Zhang
- Department of Animal Nutrition, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haifeng Ji
- Department of Animal Nutrition, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Department of Animal Nutrition, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Liu
- Department of Animal Nutrition, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Sixin Wang
- Department of Animal Nutrition, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Department of Animal Nutrition, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yamin Wang
- Department of Animal Nutrition, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
20
|
Complete Genome Sequence of Lactobacillus plantarum Strain LQ80, Selected for Preparation of Fermented Liquid Feed for Pigs. GENOME ANNOUNCEMENTS 2018; 6:6/25/e00530-18. [PMID: 29930046 PMCID: PMC6013602 DOI: 10.1128/genomea.00530-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lactobacillus plantarum LQ80 is a strain isolated from liquid feed for pigs. We determined the complete genome sequence of this strain using the PacBio RS II platform. LQ80 contained a single circular chromosome of 3,230,192 bp, with 44.66% G+C content and seven plasmids.
Collapse
|
21
|
Liu Q, Ni X, Wang Q, Peng Z, Niu L, Wang H, Zhou Y, Sun H, Pan K, Jing B, Zeng D. Lactobacillus plantarum BSGP201683 Isolated from Giant Panda Feces Attenuated Inflammation and Improved Gut Microflora in Mice Challenged with Enterotoxigenic Escherichia coli. Front Microbiol 2017; 8:1885. [PMID: 29018435 PMCID: PMC5623042 DOI: 10.3389/fmicb.2017.01885] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022] Open
Abstract
In this work, we searched for an effective probiotic that can help control intestinal infection, particularly enterotoxigenic Escherichia coli K88 (ETEC) invasion, in giant panda (Ailuropoda melanoleuca). As a potential probiotic strain, Lactobacillus plantarum BSGP201683 (L. plantarum G83) was isolated from the feces of giant panda and proven beneficial in vitro. This study was aimed to evaluate the protective effect of L. plantarum G83 in mice challenged with ETEC. The mice were orally administered with 0.2 mL of PBS containing L. plantarum G83 at 0 colony-forming units (cfu) mL−1 (control; negative control, ETEC group), 5.0 × 108 cfu mL−1 (LDLP), 5.0 × 109 cfu mL−1 (MDLP), and 5.0 × 1010 cfu mL−1 (HDLP) for 14 consecutive days. At day 15, the mice (LDLP, MDLP, HDLP, and ETEC groups) were challenged with ETEC and assessed at 0, 24, and 144 h. Animal health status; chemical and biological intestinal barriers; and body weight were measured. Results showed that L. plantarum G83 supplementation protected the mouse gut mainly by attenuating inflammation and improving the gut microflora. Most indices significantly changed at 24 h after challenge compared to those at 0 and 144 h. All treatment groups showed inhibited plasma diamine oxidase activity and D-lactate concentration. Tight-junction protein expression was down-regulated, and interleukin (IL)-1β, IL-6, IL-8, TLR4, and MyD88 levels were up-regulated in the jejunum in the LDLP and MDLP groups. The number of the Enterobacteriaceae family and the heat-labile enterotoxin (LT) gene decreased (P < 0.05) in the colons in the LDLP and MDLP groups. All data indicated that L. plantarum G83 could attenuate acute intestinal inflammation caused by ETEC infection, and the low and intermediate doses were superior to the high dose. These findings suggested that L. plantarum G83 may serve as a protective probiotic for intestinal disease and merits further investigation.
Collapse
Affiliation(s)
- Qian Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiang Wang
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Zhirong Peng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Hengsong Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Effects of dietary natural and fermented herb combination on growth performance, carcass traits and meat quality in grower-finisher pigs. Meat Sci 2016; 122:7-15. [DOI: 10.1016/j.meatsci.2016.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 06/15/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
|
23
|
Soto L, Astesana D, Zbrun M, Blajman J, Salvetti N, Berisvil A, Rosmini M, Signorini M, Frizzo L. Probiotic effect on calves infected with Salmonella Dublin: haematological parameters and serum biochemical profile. Benef Microbes 2016; 7:23-33. [DOI: 10.3920/bm2014.0176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the effect of a probiotic/lactose inoculum on haematological and immunological parameters and renal and hepatic biochemical profiles before and during a Salmonella Dublin DSPV 595T challenge in young calves. Twenty eight calves, divided into a control and probiotic group were used. The probiotic group was supplemented with 100 g lactose/calf/d and 1010 cfu/calf/d of each strain of a probiotic inoculum composed of Lactobacillus casei DSPV318T, Lactobacillus salivarius DSPV315T and Pediococcus acidilactici DSPV006T throughout the experiment. The pathogen was administered on day 11 of the experiment, at an oral dose of 109 cfu/animal (LD50). Aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), urea, red blood cells, haemoglobin, haematocrit, mean cell haemoglobin (MCH), mean corpuscular volume, mean corpuscular haemoglobin concentration (MCHC), white blood cells, lymphocytes, neutrophils, band neutrophils, monocytes, eosinophils, basophils and the neutrophils/lymphocytes ratio were measured on days 1, 10, 20 and 27 of the experiment. In addition, animals were necropsied to evaluate immunoglobulin A (IgA) production in the jejunal mucosa. The most significant differences caused by the administration of the inoculum/lactose were found during the acute phase of Salmonella challenge (9 days after challenge), when a difference between groups in neutrophils/lymphocytes ratio were detected. These results suggest that the probiotic/lactose inoculum administration increases the calf’s ability to respond to the disease increasing the systemic immune response specific. No differences were found in haemoglobin, haematocrit, MCH, MCHC, AST, urea, GGT, band neutrophils, eosinophils, monocytes and IgA in the jejunum between the two groups of calves under the experimental conditions of this study. Further studies must be conducted to evaluate different probiotic/pathogens doses and different sampling times, to achieve a greater understanding of the effects of this inoculum on intestinal infections in young calves and of its mechanism of action.
Collapse
Affiliation(s)
- L.P. Soto
- Laboratorio de Análisis de Alimentos, ICIVET-CONICET, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
- Dpto. de Salud Pública, Facultad de Ciencias Veterinarias, UNL, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
| | - D.M. Astesana
- Laboratorio de Análisis de Alimentos, ICIVET-CONICET, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
| | - M.V. Zbrun
- Dpto. de Salud Pública, Facultad de Ciencias Veterinarias, UNL, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
| | - J.E. Blajman
- Laboratorio de Análisis de Alimentos, ICIVET-CONICET, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
| | - N.R. Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, ICIVET-CONICET, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
| | - A.P. Berisvil
- Dpto. de Salud Pública, Facultad de Ciencias Veterinarias, UNL, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
| | - M.R. Rosmini
- Dpto. de Salud Pública, Facultad de Ciencias Veterinarias, UNL, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Agropecuarias, Universidad Católica de Córdoba. Camino a Alta Gracia, Km 10, Córdoba, Argentina
| | - M.L. Signorini
- Dpto. de Salud Pública, Facultad de Ciencias Veterinarias, UNL, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
- CONICET, Instituto Nacional de Tecnología Agropecuaria, EEA Rafaela, Ruta 34, km No. 227, Santa Fe, Rafaela, Argentina
| | - L.S. Frizzo
- Laboratorio de Análisis de Alimentos, ICIVET-CONICET, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
- Dpto. de Salud Pública, Facultad de Ciencias Veterinarias, UNL, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
| |
Collapse
|
24
|
Andrejčáková Z, Sopková D, Vlčková R, Kulichová L, Gancarčíková S, Almášiová V, Holovská K, Petrilla V, Krešáková L. Synbiotics suppress the release of lactate dehydrogenase, promote non-specific immunity and integrity of jejunum mucosa in piglets. Anim Sci J 2015; 87:1157-66. [PMID: 27581561 PMCID: PMC7159591 DOI: 10.1111/asj.12558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/14/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
The aim of our experiment was to study how synbiotics are able to deal with the problems of post‐weaning piglets. Lactobacillus plantarum – BiocenolTM LP96 (CCM 7512), Lactobacillus fermentum – BiocenolTM LF99 (CCM 7514) and flaxseed (rich in n‐3 polyunsaturated fatty acids) were administered to 36 conventional piglets from a problematic breed with confirmed presence of enterotoxigenic Escherichia coli and Coronavirus. The experimental piglets were supplied with probiotic cheeses and crushed flax‐seed in the period starting 10 days before weaning and lasting up to 14 days post‐weaning. Piglets in the control group were supplied only control cheese. The impact of such additives on the release of lactate dehydrogenase (LDH; spectroscopic and electrophoretic assay), alteration of immunity (index of metabolic activity), jejunum histology (light microscopy), and health of conventional piglets from a problematic breed (monitoring of hematology, consistency and moisture of feces and body temperature) were examined. We found significant decrease in LDH leakage in the blood serum and tissue extracts, indicating better cell membrane integrity in the individual organs of animals. Probiotics and flaxseed applied together seem to be a good source of nutrients to improve the immune status and the integrity of jejunum mucosa during infection. © 2015 Japanese Society of Animal Science
Collapse
Affiliation(s)
- Zuzana Andrejčáková
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Drahomíra Sopková
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Radoslava Vlčková
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Lucia Kulichová
- Department of Epizootology and Preventive Veterinary Medicine, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Soňa Gancarčíková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Viera Almášiová
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Katarína Holovská
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Vladimír Petrilla
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Lenka Krešáková
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| |
Collapse
|
25
|
Lactulose and Lactobacillus plantarum, a potential complementary synbiotic to control postweaning colibacillosis in piglets. Appl Environ Microbiol 2014; 80:4879-86. [PMID: 24907322 DOI: 10.1128/aem.00770-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The potential of a prebiotic oligosaccharide lactulose, a probiotic strain of Lactobacillus plantarum, or their synbiotic combination to control postweaning colibacillosis in pigs was evaluated using an enterotoxigenic Escherichia coli (ETEC) K88 oral challenge. Seventy-two weanlings were fed four diets: a control diet (CTR), that diet supplemented with L. plantarum (2 × 10(10) CFU · day(-1)) (LPN), that diet supplemented with 10 g · kg(-1) lactulose (LAC), or a combination of the two treatments (SYN). After 7 days, the pigs were orally challenged. Six pigs per treatment were euthanized on days 6 and 10 postchallenge (PC). Inclusion of lactulose improved the average daily gain (ADG) (P < 0.05) and increased lactobacilli (P < 0.05) and the percentage of butyric acid (P < 0.02) in the colon. An increase in the ileum villous height (P < 0.05) and a reduction of the pig major acute-phase protein (Pig-MAP) in serum (P < 0.01) were observed also. The inclusion of the probiotic increased numbers of L. plantarum bacteria in the ileum and colon (P < 0.05) and in the total lactobacilli in the colon and showed a trend to reduce diarrhea (P = 0.09). The concentrations of ammonia in ileal and colonic digesta were decreased (P < 0.05), and the villous height (P < 0.01) and number of ileal goblet cells (P < 0.05) increased, at day 10 PC. A decrease in plasmatic tumor necrosis factor alpha (TNF-α) (P < 0.01) was also seen. The positive effects of the two additives were combined in the SYN treatment, resulting in a complementary synbiotic with potential to be used to control postweaning colibacillosis.
Collapse
|
26
|
Choi YH, Kim KW, Han HS, Nam TJ, Lee BJ. Dietary Hizikia fusiformis glycoprotein-induced IGF-I and IGFBP-3 associated to somatic growth, polyunsaturated fatty acid metabolism, and immunity in juvenile olive flounder Paralichthys olivaceus. Comp Biochem Physiol A Mol Integr Physiol 2014; 167:1-6. [DOI: 10.1016/j.cbpa.2013.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 01/05/2023]
|
27
|
Missotten J, Michiels J, Dierick N, Ovyn A, Akbarian A, De Smet S. Effect of fermented moist feed on performance, gut bacteria and gut histo-morphology in broilers. Br Poult Sci 2013; 54:627-34. [DOI: 10.1080/00071668.2013.811718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Chytilová M, Mudroňová D, Nemcová R, Gancarčíková S, Buleca V, Koščová J, Tkáčiková L. Anti-inflammatory and immunoregulatory effects of flax-seed oil and Lactobacillus plantarum - Biocenol™ LP96 in gnotobiotic pigs challenged with enterotoxigenic Escherichia coli. Res Vet Sci 2013; 95:103-9. [PMID: 23465779 DOI: 10.1016/j.rvsc.2013.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 12/29/2022]
Abstract
The aim of this study was to determine the immune response after preventive administration of flax-seed oil (rich in n-3 PUFAs) or probiotic strain Lactobacillus plantarum - Biocenol™ LP96 or their combination in the jejunum of ETEC-challenged gnotobiotic pigs. Subsequently, gene expression of selected cytokines, phagocytic activity of leukocytes from peripheral blood and percentage of CD2(+), CD4(+), CD8(+) and CD4(+)CD25(+) lymphocytes in jejunal mucosa were evaluated. Our results showed that combined treatment down-regulates IL-1α and IL-8 gene expression, up-regulates IFN-γ and tends to regulate inflammation induced by ETEC through cytokine IL-10. In general, changes in cytokine gene expression correlated with the proportions of immune cells isolated from the same part of the jejunal mucosa. Results indicate that probiotic L. plantarum in combination with flax-seed oil rich in n-3 PUFAs has anti-inflammatory properties, stimulates Th1-mediated cell immunity and phagocytosis, and tends to regulate the inflammatory response induced by ETEC.
Collapse
Affiliation(s)
- M Chytilová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
29
|
Chu GM, Kim JH, Kim HY, Ha JH, Jung MS, Song Y, Cho JH, Lee SJ, Ibrahim RIH, Lee SS, Song YM. Effects of bamboo charcoal on the growth performance, blood characteristics and noxious gas emission in fattening pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2013. [DOI: 10.1080/09712119.2012.738219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Chu GM, Jung CK, Kim HY, Ha JH, Kim JH, Jung MS, Lee SJ, Song Y, Ibrahim RIH, Cho JH, Lee SS, Song YM. Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs. Anim Sci J 2012; 84:113-20. [PMID: 23384352 DOI: 10.1111/j.1740-0929.2012.01045.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was carried out to investigate the effects of bamboo charcoal and bamboo vinegar as alternatives of antibiotics in the diet of fattening pigs and their influence on growth performance, immune responses and fecal microflora populations. Crossed pigs (n = 144, 79 kg body weight) were divided into 12 heads per pen, four diets and three replications. The basal diet (negative control: NC) was supplemented with 0.3% antibiotics (positive control: PC), 0.3% bamboo charcoal (BC) and 0.3% bamboo vinegar (BV). Average daily weight gain and feed efficiency were higher (P < 0.05) in PC, BC and BV. The concentration of lactate dehydrogenase and cortisol were lower (P < 0.05), but the concentration of immunoglobulin G (IgG) and IgA were higher (P < 0.05) in PC, BC and BV. Counts of coliform bacteria and Salmonella spp. were lower (P < 0.05), while the counts of fecal anaerobic total bacteria and lactic acid bacteria were higher (P < 0.05) in PC, BC and BV. A reasonable inclusion of bamboo charcoal or bamboo vinegar as antibiotics in the diet of fattening pigs leads to a better growth performance, immune responses and fecal microflora populations. The results of the present study suggest that bamboo charcoal or bamboo vinegar could be a potential additives in animal production as an alternative to antibiotics.
Collapse
Affiliation(s)
- Gyo Moon Chu
- Swine Science & Technology Center, Gyeongnam National University of Science and Technology, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chu G, Song Y. Effect of dietary addition of wormwood (Artemisia montana Pampan) on performance of fattening pigs and selected hematological and immunological indices. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Wang J, Yin F, Zhu C, Yu H, Niven S, de Lange C, Gong J. Evaluation of probiotic bacteria for their effects on the growth performance and intestinal microbiota of newly-weaned pigs fed fermented high-moisture maize. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Fermented liquid feed—Microbial and nutritional aspects and impact on enteric diseases in pigs. Anim Feed Sci Technol 2012. [DOI: 10.1016/j.anifeedsci.2011.12.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|