1
|
Larsson MNA, Morell Miranda P, Pan L, Başak Vural K, Kaptan D, Rodrigues Soares AE, Kivikero H, Kantanen J, Somel M, Özer F, Johansson AM, Storå J, Günther T. Ancient Sheep Genomes Reveal Four Millennia of North European Short-Tailed Sheep in the Baltic Sea Region. Genome Biol Evol 2024; 16:evae114. [PMID: 38795367 PMCID: PMC11162877 DOI: 10.1093/gbe/evae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 05/27/2024] Open
Abstract
Sheep are among the earliest domesticated livestock species, with a wide variety of breeds present today. However, it remains unclear how far back this diversity goes, with formal documentation only dating back a few centuries. North European short-tailed (NEST) breeds are often assumed to be among the oldest domestic sheep populations, even thought to represent relicts of the earliest sheep expansions during the Neolithic period reaching Scandinavia <6,000 years ago. This study sequenced the genomes (up to 11.6X) of five sheep remains from the Baltic islands of Gotland and Åland, dating from the Late Neolithic (∼4,100 cal BP) to historical times (∼1,600 CE). Our findings indicate that these ancient sheep largely possessed the genetic characteristics of modern NEST breeds, suggesting a substantial degree of long-term continuity of this sheep type in the Baltic Sea region. Despite the wide temporal spread, population genetic analyses show high levels of affinity between the ancient genomes and they also exhibit relatively high genetic diversity when compared to modern NEST breeds, implying a loss of diversity in most breeds during the last centuries associated with breed formation and recent bottlenecks. Our results shed light on the development of breeds in Northern Europe specifically as well as the development of genetic diversity in sheep breeds, and their expansion from the domestication center in general.
Collapse
Affiliation(s)
- Martin N A Larsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Li Pan
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Hanna Kivikero
- Department of Culture, University of Helsinki, Helsinki, Finland
| | - Juha Kantanen
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Anna M Johansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Storå
- Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Gudra D, Valdovska A, Kairisa D, Galina D, Jonkus D, Ustinova M, Viksne K, Kalnina I, Fridmanis D. Genomic diversity of the locally developed Latvian Darkheaded sheep breed. Heliyon 2024; 10:e31455. [PMID: 38807890 PMCID: PMC11130721 DOI: 10.1016/j.heliyon.2024.e31455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
The Latvian Darkheaded is the only locally developed sheep breed. The breed was formed at the beginning of the 20th century by crossing local coarse-wooled sheep with the British Shropshire and Oxfordshire breeds. The breed was later improved by adding Ile-de-France, Texel, German blackheads, and Finnsheep to achieve higher prolificacy and better meat quality. Previous studies have reported the Latvian Darkheaded sheep to be closely related to Estonian and Lithuanian Blackface breeds, according to microsatellite data. To expand our knowledge of the genetic resources of the Latvian Darkheaded breed, we conducted a whole-genome resequencing analysis on 40 native sheep. The investigation showed that local sheep harbor genetic diversity levels similar to those observed among other improved breeds of European origin, including Charollais and Suffolk. Genome-wide nucleotide diversity (π) in Latvian Darkheaded sheep was 3.91 × 10-3, whereas the average observed heterozygosity among the 40 animals was 0.267 and 0.438 within the subsample of unrelated individuals. The Ne has rapidly decreased to 200 ten generations ago with a recent drop to Ne 73 four generations ago. However, inbreeding levels based on runs of homozygosity were, on average, low, with FROH ranging between 0.016 and 0.059. The analysis of the genomic composition of the breed confirmed shared ancestry with sheep of British origin, reflecting the history of the breed. Nevertheless, Latvian Darkheaded sheep were genetically separable. The contemporary Latvian Darkheaded sheep population is genetically diverse with a low inbreeding rate. However, further development of breed management programs is necessary to prevent an increase in inbreeding, loss of genetic diversity, and depletion of breed-specific genetic resources, ensuring the preservation of the native Latvian Darkheaded sheep.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| | - Anda Valdovska
- Latvia University of Life Sciences and Technologies, Jelgava, LV, 3001, Latvia
| | - Daina Kairisa
- Latvia University of Life Sciences and Technologies, Jelgava, LV, 3001, Latvia
| | - Daiga Galina
- Latvia University of Life Sciences and Technologies, Jelgava, LV, 3001, Latvia
| | - Daina Jonkus
- Latvia University of Life Sciences and Technologies, Jelgava, LV, 3001, Latvia
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| | - Kristine Viksne
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| |
Collapse
|
3
|
Liu Y, Yang F, Liu X, Ye L, Guo J. Mineral characteristics of viscera of Hulunbuir grassland short-tailed sheep from Inner Mongolia, China. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Ben Sassi-Zaidy Y, Mohamed-Brahmi A, Chaouch M, Maretto F, Cendron F, Charfi-Cheikhrouha F, Ben Abderrazak S, Djemali M, Cassandro M. Historical Westward Migration Phases of Ovis aries Inferred from the Population Structure and the Phylogeography of Occidental Mediterranean Native Sheep Breeds. Genes (Basel) 2022; 13:genes13081421. [PMID: 36011332 PMCID: PMC9408117 DOI: 10.3390/genes13081421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, the genetic relationship and the population structure of western Mediterranean basin native sheep breeds are investigated, analyzing Maghrebian, Central Italian, and Venetian sheep with a highly informative microsatellite markers panel. The phylogeographical analysis, between breeds’ differentiation level (Wright’s fixation index), gene flow, ancestral relatedness measured by molecular coancestry, genetic distances, divergence times estimates and structure analyses, were revealed based on the assessment of 975 genotyped animals. The results unveiled the past introduction and migration history of sheep in the occidental Mediterranean basin since the early Neolithic. Our findings provided a scenario of three westward sheep migration phases fitting properly to the westward Neolithic expansion argued by zooarcheological, historical and human genetic studies.
Collapse
Affiliation(s)
- Yousra Ben Sassi-Zaidy
- Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
- Laboratory of Animal Genetic and Feed Resources Research, Department of Animal Science, Institut National Agronomique de Tunis (INAT), University of Carthage, Tunis-Mahragène Tunis 2078, Tunisia
- Correspondence: (Y.B.S.-Z.); (F.C.); Tel.: +39-049-8272871 (F.C.); Fax: +39-049-8272633 (F.C.)
| | - Aziza Mohamed-Brahmi
- Laboratory of Agricultural Production Systems Sustainability in the North Western Region of Tunisia, Department of Animal Production, Ecole Supérieure d’Agriculture du Kef Boulifa, University of Jendouba, Le Kef 7119, Tunisia
| | - Melek Chaouch
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR11IPT06), Institut Pasteur de Tunis, Tunis 1002, Tunisia
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR16IPT09), Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Fabio Maretto
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
| | - Filippo Cendron
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
- Correspondence: (Y.B.S.-Z.); (F.C.); Tel.: +39-049-8272871 (F.C.); Fax: +39-049-8272633 (F.C.)
| | - Faouzia Charfi-Cheikhrouha
- Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Souha Ben Abderrazak
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR11IPT06), Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Mnaour Djemali
- Laboratory of Animal Genetic and Feed Resources Research, Department of Animal Science, Institut National Agronomique de Tunis (INAT), University of Carthage, Tunis-Mahragène Tunis 2078, Tunisia
| | - Martino Cassandro
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
| |
Collapse
|
5
|
Factors affecting birth weight and pre-weaning growth rate of lambs from the Icelandic sheep breed. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Ghoreishifar SM, Rochus CM, Moghaddaszadeh-Ahrabi S, Davoudi P, Salek Ardestani S, Zinovieva NA, Deniskova TE, Johansson AM. Shared Ancestry and Signatures of Recent Selection in Gotland Sheep. Genes (Basel) 2021; 12:genes12030433. [PMID: 33802939 PMCID: PMC8002741 DOI: 10.3390/genes12030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Gotland sheep, a breed native to Gotland, Sweden (an island in the Baltic Sea), split from the Gute sheep breed approximately 100 years ago, and since, has probably been crossed with other breeds. This breed has recently gained popularity, due to its pelt quality. This study estimates the shared ancestors and identifies recent selection signatures in Gotland sheep using 600 K single nucleotide polymorphism (SNP) genotype data. Admixture analysis shows that the Gotland sheep is a distinct breed, but also has shared ancestral genomic components with Gute (~50%), Karakul (~30%), Romanov (~20%), and Fjällnäs (~10%) sheep breeds. Two complementary methods were applied to detect selection signatures: A Bayesian population differentiation FST and an integrated haplotype homozygosity score (iHS). Our results find that seven significant SNPs (q-value < 0.05) using the FST analysis and 55 significant SNPs (p-value < 0.0001) using the iHS analysis. Of the candidate genes that contain significant markers, or are in proximity to them, we identify several belongings to the keratin genes, RXFP2, ADCY1, ENOX1, USF2, COX7A1, ARHGAP28, CRYBB2, CAPNS1, FMO3, and GREB1. These genes are involved in wool quality, polled and horned phenotypes, fertility, twining rate, meat quality, and growth traits. In summary, our results provide shared founders of Gotland sheep and insight into genomic regions maintained under selection after the breed was formed. These results contribute to the detection of candidate genes and QTLs underlying economic traits in sheep.
Collapse
Affiliation(s)
- Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-11167, Iran;
| | - Christina Marie Rochus
- Animal Breeding and Genomics, Wageningen University and Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands;
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz 5157944533, Iran;
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada; (P.D.); (S.S.A.)
| | - Siavash Salek Ardestani
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada; (P.D.); (S.S.A.)
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia; (N.A.Z.); (T.E.D.)
| | - Tatiana E. Deniskova
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia; (N.A.Z.); (T.E.D.)
| | - Anna M. Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
7
|
Brunberg E, Eythórsdóttir E, Dýrmundsson ÓR, Grøva L. The presence of Icelandic leadersheep affects flock behaviour when exposed to a predator test. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Retroviral analysis reveals the ancient origin of Kihnu native sheep in Estonia: implications for breed conservation. Sci Rep 2020; 10:17340. [PMID: 33060653 PMCID: PMC7566594 DOI: 10.1038/s41598-020-74415-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 12/04/2022] Open
Abstract
Native animal breeds constitute an invaluable pool of genetic resources in a changing environment. Discovering native breeds and safeguarding their genetic diversity through specific conservation programs is therefore of high importance. Endogenous retroviruses have proved to be a reliable genetic marker for studying the demographic history of sheep (Ovis aries). Previous research has revealed two migratory episodes of domesticated sheep from the Middle East to Europe. The first episode included predominantly ‘primitive populations’, while the second and most recent is hypothesised to have included sheep with markedly improved wool production. To examine whether the recently discovered Kihnu native sheep in Estonia have historically been part of the first migratory episode and to what extent they have preserved primitive genetic characters, we analysed retroviral insertions in 80 modern Kihnu sheep and 83 ancient sheep from the Bronze Age to Modern Period (850 BCE–1950 CE). We identified that the Kihnu sheep have preserved ‘primitive’, ‘Nordic’, and other ‘ancient’ retrotypes that were present both in archaeological and modern samples, confirming their shared ancestry and suggesting that contemporary Kihnu native sheep originate from the first migratory episode. However, over the course of history, there has been a gradual decrease in the frequency of primitive retrotypes. Furthermore, Kihnu sheep possessed several ‘novel’ retrotypes that were absent in archaeological individuals, but were shared with improvement breeds, suggesting recent crossing within the last two centuries. To preserve these ancient lineages, our results are being applied in the conservation program of the Kihnu Native Sheep Society.
Collapse
|
9
|
Rochus CM, Jonas E, Johansson AM. Population structure of five native sheep breeds of Sweden estimated with high density SNP genotypes. BMC Genet 2020; 21:27. [PMID: 32143561 PMCID: PMC7060653 DOI: 10.1186/s12863-020-0827-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/19/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Native Swedish sheep breeds are part of the North European short-tailed sheep group; characterized in part by their genetic uniqueness. Our objective was to study the population structure of native Swedish sheep. Five breeds were genotyped using the 600 K SNP array. Dalapäls and Klövsjö sheep are from the middle of Sweden; Gotland and Gute sheep from Gotland, an island in the Baltic Sea; and Fjällnäs sheep from northern Sweden. We studied population structure by: principal component analysis (PCA), cluster-based analysis of admixture, and an estimated population tree. RESULTS The analyses of the five Swedish breeds revealed that these breeds are five distinct breeds, while Gute and Gotland are more closely related to each other as seen in all analyses. All breeds had long branch lengths in the population tree indicating they've been subjected to drift. We repeated our analyses using 39 K SNP and including 50 K SNP genotypes from other European and southwestern Asian breeds from the Sheep HapMap project and 600 K SNP genotypes from a dataset of French sheep. Results arranged breeds into five groups: south-west Asia, south-west Europe, central Europe, north Europe and north European short-tailed sheep. Within this last group, Norwegian and Icelandic breeds, Finn and Romanov sheep, Scottish breeds, and Gute and Gotland sheep were more closely related while the remaining Swedish breeds and Ouessant sheep were distinct from all breeds and had longer branches in the population tree. CONCLUSIONS We showed population structure of five Swedish breeds and their structure within European and southwestern Asian breeds. Swedish breeds are unique, distinct breeds that have been subjected to drift but group with other north European short-tailed sheep.
Collapse
Affiliation(s)
- Christina Marie Rochus
- Department of Animal Breeding and Genetics; Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7023, SE75007, Uppsala, Sweden.,UFR Génétique, Élevage et Reproduction, Sciences de la Vie et Santé, AgroParisTech, Université Paris-Saclay, Paris, France.,Génétique Physiologie Systèmes d'Elevage (GenPhySE), Animal Genetics Division, INRA, Castanet Tolosan, France.,Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | - Elisabeth Jonas
- Department of Animal Breeding and Genetics; Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7023, SE75007, Uppsala, Sweden
| | - Anna M Johansson
- Department of Animal Breeding and Genetics; Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7023, SE75007, Uppsala, Sweden.
| |
Collapse
|
10
|
Kierkegaard LS, Groeneveld LF, Kettunen A, Berg P. The status and need for characterization of Nordic animal genetic resources. ACTA AGR SCAND A-AN 2020. [DOI: 10.1080/09064702.2020.1722216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Anne Kettunen
- Farm Animal Section, NordGen – The Nordic Genetic Resource Center, Ås, Norway
- Nofima AS, Ås, Norway
| | - Peer Berg
- Farm Animal Section, NordGen – The Nordic Genetic Resource Center, Ås, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Rochus CM, Westberg Sunesson K, Jonas E, Mikko S, Johansson AM. Mutations in ASIP and MC1R: dominant black and recessive black alleles segregate in native Swedish sheep populations. Anim Genet 2019; 50:712-717. [PMID: 31475378 DOI: 10.1111/age.12837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 01/03/2023]
Abstract
By studying genes associated with coat colour, we can understand the role of these genes in pigmentation but also gain insight into selection history. North European short-tailed sheep, including Swedish breeds, have variation in their coat colour, making them good models to expand current knowledge of mutations associated with coat colour in sheep. We studied ASIP and MC1R, two genes with known roles in pigmentation, and their association with black coat colour. We did this by sequencing the coding regions of ASIP in 149 animals and MC1R in 129 animals from seven native Swedish sheep breeds in individuals with black, white or grey fleece. Previously known mutations in ASIP [recessive black allele: g.100_105del (D5 ) and/or g.5172T>A] were associated with black coat colour in Klövsjö and Roslag sheep breeds and mutations in both ASIP and MC1R (dominant black allele: c.218T>A and/or c.361G>A) were associated with black coat colour in Swedish Finewool. In Gotland, Gute, Värmland and Helsinge sheep breeds, coat colour inheritance was more complex: only 11 of 16 individuals with black fleece had genotypes that could explain their black colour. These breeds have grey individuals in their populations, and grey is believed to be a result of mutations and allelic copy number variation within the ASIP duplication, which could be a possible explanation for the lack of a clear inheritance pattern in these breeds. Finally, we found a novel missense mutation in MC1R (c.452G>A) in Gotland, Gute and Värmland sheep and evidence of a duplication of MC1R in Gotland sheep.
Collapse
Affiliation(s)
- C M Rochus
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden.,UFR Génétique, Élevage et Reproduction, Sciences de la Vie et Santé, AgroParisTech, Université Paris Saclay, 16 rue Claude Bernard, F-75231, Paris Cedex 05, France.,Génétique Physiologie Systèmes d'Elevage, Animal Genetics Division, INRA, 24 chemin de Borde-Rouge-Auzeville Tolosane, F-31326 Castanet-Tolosan, France
| | - K Westberg Sunesson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden
| | - E Jonas
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden
| | - S Mikko
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden
| | - A M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden
| |
Collapse
|
12
|
Schönherz AA, Szekeres BD, Nielsen VH, Guldbrandtsen B. Population structure and genetic characterization of two native Danish sheep breeds. ACTA AGR SCAND A-AN 2019. [DOI: 10.1080/09064702.2019.1639804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A. A. Schönherz
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - B. D. Szekeres
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - V. H. Nielsen
- Danish Centre for Food and Agriculture, Aarhus University, Tjele, Denmark
| | - B. Guldbrandtsen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| |
Collapse
|
13
|
Deniskova TE, Dotsev AV, Selionova MI, Kunz E, Medugorac I, Reyer H, Wimmers K, Barbato M, Traspov AA, Brem G, Zinovieva NA. Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping. Genet Sel Evol 2018; 50:29. [PMID: 29793424 PMCID: PMC5968526 DOI: 10.1186/s12711-018-0399-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 05/16/2018] [Indexed: 11/28/2022] Open
Abstract
Background Russia has a diverse variety of native and locally developed sheep breeds with coarse, fine, and semi-fine wool, which inhabit different climate zones and landscapes that range from hot deserts to harsh northern areas. To date, no genome-wide information has been used to investigate the history and genetic characteristics of the extant local Russian sheep populations. To infer the population structure and genome-wide diversity of Russian sheep, 25 local breeds were genotyped with the OvineSNP50 BeadChip. Furthermore, to evaluate admixture contributions from foreign breeds in Russian sheep, a set of 58 worldwide breeds from publicly available genotypes was added to our data. Results We recorded similar observed heterozygosity (0.354–0.395) and allelic richness (1.890–1.955) levels across the analyzed breeds and they are comparable with those observed in the worldwide breeds. Recent effective population sizes estimated from linkage disequilibrium five generations ago ranged from 65 to 543. Multi-dimensional scaling, admixture, and neighbor-net analyses consistently identified a two-step subdivision of the Russian local sheep breeds. A first split clustered the Russian sheep populations according to their wool type (fine wool, semi-fine wool and coarse wool). The Dagestan Mountain and Baikal fine-fleeced breeds differ from the other Merino-derived local breeds. The semi-fine wool cluster combined a breed of Romanian origin, Tsigai, with its derivative Altai Mountain, the two Romney-introgressed breeds Kuibyshev and North Caucasian, and the Lincoln-introgressed Russian longhaired breed. The coarse-wool group comprised the Nordic short-tailed Romanov, the long-fat-tailed outlier Kuchugur and two clusters of fat-tailed sheep: the Caucasian Mountain breeds and the Buubei, Karakul, Edilbai, Kalmyk and Tuva breeds. The Russian fat-tailed breeds shared co-ancestry with sheep from China and Southwestern Asia (Iran). Conclusions In this study, we derived the genetic characteristics of the major Russian local sheep breeds, which are moderately diverse and have a strong population structure. Pooling our data with a worldwide genotyping set gave deeper insight into the history and origin of the Russian sheep populations. Electronic supplementary material The online version of this article (10.1186/s12711-018-0399-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tatiana E Deniskova
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132.
| | - Arsen V Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132
| | - Marina I Selionova
- All-Russian Research Institute of Sheep and Goat Breeding, Zootechnichesky Lane 15, Stavropol, Russia, 355017
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinaerstr. 13, 80539, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinaerstr. 13, 80539, Munich, Germany
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Mario Barbato
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Alexei A Traspov
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132.
| |
Collapse
|
14
|
Rochus CM, Johansson AM. Estimation of genetic diversity in Gute sheep: pedigree and microsatellite analyses of an ancient Swedish breed. Hereditas 2017; 154:4. [PMID: 28163665 PMCID: PMC5282709 DOI: 10.1186/s41065-017-0026-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/20/2017] [Indexed: 12/03/2022] Open
Abstract
Background Breeds with small population size are in danger of an increased inbreeding rate and loss of genetic diversity, which puts them at risk for extinction. In Sweden there are a number of local breeds, native breeds which have adapted to specific areas in Sweden, for which efforts are being made to keep them pure and healthy over time. One example of such a breed is the Swedish Gute sheep. The objective of this study was to estimate inbreeding and genetic diversity of Swedish Gute sheep. Results Three datasets were analysed: pedigree information of the whole population, pedigree information for 100 animals of the population, and microsatellite genotypes for 94 of the 100 animals. The average inbreeding coefficient for lambs born during a six year time period (2007–2012) did not increase during that time period. The inbreeding calculated from the entire pedigree (0.038) and for a sample of the population (0.018) was very low. Sheep were more heterozygous at the microsatellite markers than expected (average multilocus heterozygosity and Ritland inbreeding estimates 1.01845 and -0.03931) and five of seven microsatellite markers were not in Hardy Weinberg equilibrium due to heterozygosity excess. The total effective population size estimated from the pedigree information was 155.4 and the average harmonic mean effective population size estimated from microsatellites was 88.3. Pedigree and microsatellite genotype estimations of inbreeding were consistent with a breeding program with the purpose of reducing inbreeding. Conclusion Our results showed that current breeding programs of the Swedish Gute sheep are consistent with efforts of keeping this breed viable and these breeding programs are an example for other small local breeds in conserving breeds for the future. Electronic supplementary material The online version of this article (doi:10.1186/s41065-017-0026-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina M Rochus
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7023, Uppsala, SE-75007 Sweden.,UFR Génétique, Élevage et Reproduction; Sciences de la Vie et Santé, AgroParisTech, Université Paris-Saclay, Paris, France.,Génétique Physiologie Systèmes d'Elevage (GenPhySE), Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7023, Uppsala, SE-75007 Sweden
| |
Collapse
|
15
|
von Holstein ICC, Makarewicz CA. Geographical variability in northern European sheep wool isotopic composition (δ(13) C, δ(15) N, δ(2) H values). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1423-1434. [PMID: 27197035 DOI: 10.1002/rcm.7578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE Light stable isotopic analysis of herbivore proteinaceous tissues (hair, muscle, milk) is critical for authenticating the point of origin of finished agricultural or industrial products in both ancient and modern economies. This study examined the distribution of light stable isotopes in herbivores in northern Europe (Iceland to Finland), which is expected to depend on regional-level environmental inputs (precipitation, temperature) and local variables (vegetation type, fodder type, soil type). METHODS Sheep wool was obtained from animals managed using traditional methods and located across a gradient of northern European environments. Defatted whole-year samples were analysed by isotope ratio mass spectrometry (IRMS) for carbon (δ(13) C values), nitrogen (δ(15) N values) and un-exchangeable hydrogen (δ(2) H values) isotopic composition. RESULTS Wool δ(13) C, δ(15) N and δ(2) H values showed the same correlations to local mean annual precipitation and temperature as were expected for graze plants. Wool δ(2) H values were correlated with local modelled meteoric water δ(2) H values, mediated by plant solid tissue and leaf water fractionations. Cluster analysis distinguished wool from Sweden and the Baltic region from more western material. Local variation in vegetation or soil type did not disrupt dependence on climatic variables but did affect geospatial discrimination. CONCLUSIONS Wool isotopic composition in northern Europe is controlled by the effects of local precipitation and temperature on graze plant inputs, and is only weakly affected by pasture type. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Cheryl A Makarewicz
- Institut für Ur- und Frühgeschichte, Christian-Albrechts-Universität, D-24098, Kiel, Germany
| |
Collapse
|
16
|
Beynon SE, Slavov GT, Farré M, Sunduimijid B, Waddams K, Davies B, Haresign W, Kijas J, MacLeod IM, Newbold CJ, Davies L, Larkin DM. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genet 2015; 16:65. [PMID: 26091804 PMCID: PMC4474581 DOI: 10.1186/s12863-015-0216-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background One of the most economically important areas within the Welsh agricultural sector is sheep farming, contributing around £230 million to the UK economy annually. Phenotypic selection over several centuries has generated a number of native sheep breeds, which are presumably adapted to the diverse and challenging landscape of Wales. Little is known about the history, genetic diversity and relationships of these breeds with other European breeds. We genotyped 353 individuals from 18 native Welsh sheep breeds using the Illumina OvineSNP50 array and characterised the genetic structure of these breeds. Our genotyping data were then combined with, and compared to, those from a set of 74 worldwide breeds, previously collected during the International Sheep Genome Consortium HapMap project. Results Model based clustering of the Welsh and European breeds indicated shared ancestry. This finding was supported by multidimensional scaling analysis (MDS), which revealed separation of the European, African and Asian breeds. As expected, the commercial Texel and Merino breeds appeared to have extensive co-ancestry with most European breeds. Consistently high levels of haplotype sharing were observed between native Welsh and other European breeds. The Welsh breeds did not, however, form a genetically homogeneous group, with pairwise FST between breeds averaging 0.107 and ranging between 0.020 and 0.201. Four subpopulations were identified within the 18 native breeds, with high homogeneity observed amongst the majority of mountain breeds. Recent effective population sizes estimated from linkage disequilibrium ranged from 88 to 825. Conclusions Welsh breeds are highly diverse with low to moderate effective population sizes and form at least four distinct genetic groups. Our data suggest common ancestry between the native Welsh and European breeds. These findings provide the basis for future genome-wide association studies and a first step towards developing genomics assisted breeding strategies in the UK. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0216-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah E Beynon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK.
| | - Gancho T Slavov
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK.
| | - Marta Farré
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK. .,Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK.
| | - Bolormaa Sunduimijid
- Victorian Department of Environment and Primary Industries, Bundoora, VIC, 3083, Australia.
| | - Kate Waddams
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK.
| | - Brian Davies
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK.
| | - William Haresign
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK.
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| | - Iona M MacLeod
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - C Jamie Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK.
| | - Lynfa Davies
- Hybu Cig Cymru, Meat Promotion Wales, Tŷ Rheidol, Parc Merlin, Aberystwyth, SY23 3FF, UK.
| | - Denis M Larkin
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK. .,Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
17
|
Mukiibi R, Rochus CM, Andersson G, Johansson AM. The use of endogenous retroviruses as markers to describe the genetic relationships among local Swedish sheep breeds. Anim Genet 2015; 46:220-3. [PMID: 25644015 DOI: 10.1111/age.12264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 12/01/2022]
Abstract
The aim of this study was to describe the genetic relationships among five Swedish sheep breeds using insertional polymorphisms of six endogenous Jaagsiekte retroviruses of sheep. Although the Swedish breeds were found to have genomes of 'primitive' origin, there also are indications of the presence of more recently derived sheep breeds within the ancestries of three of the breeds.
Collapse
Affiliation(s)
- R Mukiibi
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | | | | | | |
Collapse
|
18
|
Performance and utilization of Northern European short-tailed breeds of sheep and their crosses in North America: a review. Animal 2012; 4:1283-96. [PMID: 22444648 DOI: 10.1017/s1751731110000856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The five Northern European short-tailed sheep breeds present in North America are the Finnsheep, Romanov, Icelandic, Shetland and Gotland. The Finnsheep and Romanov were first imported in 1966 and 1986, respectively, for their high reproductive performance. The Shetland, Icelandic and Gotland breeds were first imported in 1980, 1985 and 2005, respectively, for the uniqueness of their physical appearance and their unique fleeces desired by fiber craftspeople. There have been no scientific studies conducted on the performance of the Shetland, Icelandic or Gotland breeds relative to other breeds of sheep in North America. However, the Shetland and Icelandic breeds have become very popular in the United States and ranked 9th and 18th, respectively, among 35 breeds of sheep for number of purebred animals registered in 2008. The performance of the Finnsheep breed in North America relative to domestic breeds has been thoroughly investigated. Compared to several domestic purebreds and crosses, sheep with Finnsheep breeding had a younger age at puberty, greater fertility to autumn mating, greater litter size, greater survival to weaning, similar growth rate, similar subcutaneous fat thickness, smaller loin muscle area and greater percentage of kidney and pelvic fat. Each 1% increase in Finnsheep breeding in ewes was associated with approximately 0.01 more lambs born per ewe lambing. In North American studies, Romanov ewes were superior to Finnsheep ewes for reproductive rate and lamb production per ewe under both autumn and spring mating. Lambs of the two breeds were similar for survival, growth and carcass traits. Romanov and Romanov-cross ewes produced fleeces that were heavily contaminated with medulated and colored fibers and were of very low commercial value. Three composite breeds containing 25% to 49% Finnsheep breeding (Polypay, Rideau Arcott and Outaouais Arcott) were developed in North America and are now more popular than the Finnsheep breed.
Collapse
|
19
|
|