1
|
Skibiel AL. Hepatic mitochondrial bioenergetics and metabolism across lactation and in response to heat stress in dairy cows. JDS COMMUNICATIONS 2024; 5:247-252. [PMID: 38646582 PMCID: PMC11026913 DOI: 10.3168/jdsc.2023-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/01/2023] [Indexed: 04/23/2024]
Abstract
Lactation is energetically demanding for the dairy cow. Numerous morphological and metabolic changes orchestrated across different tissues in the body partition nutrients for milk synthesis. The liver is a key organ coordinating modifications in metabolism that increase substrate availability for the mammary gland. Impaired capacity to make the needed physiological adjustments for lactation, such as occurs with heat stress, can result in metabolic disease and poor lactation performance. At the cellular level, increases in mitochondrial density and bioenergetic and biosynthetic capacity are critical adaptations for successful lactation, providing energy and substrates for milk synthesis. Mitochondria are also involved in coordinating adaptation to a variety of stressors by providing the metabolic foundation to enlist a stress response. Heat stress can damage mitochondrial structures and impair mitochondrial function, with implications for pathogenesis and production. This systematic review focuses on the hepatic mitochondrial adaptations to lactation and the mitochondrial responses to heat stress. Future research directions are also discussed that may lead to improvements in managing the metabolic needs of the lactating cow and diminishing the adverse production and health consequences from environmental stress.
Collapse
Affiliation(s)
- Amy L. Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844
| |
Collapse
|
2
|
Bhatt V, Tiwari AK. Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases. Int J Neurosci 2023; 133:1167-1192. [PMID: 35549800 DOI: 10.1080/00207454.2022.2057849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Sirtuins are Nicotinamide Adenine Dinucleotide (NAD+) dependent class ІΙΙ histone deacetylases enzymes (HDACs) present from lower to higher organisms such as bacteria (Sulfolobus solfataricus L. major), yeasts (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), humans (Homo sapiens sapiens), even in plants such as rice (Oryza sativa), thale cress (Arabidopsis thaliana), vine (Vitis vinifera L.) tomato (Solanum lycopersicum). Sirtuins play an important role in the regulation of various vital cellular functions during metabolism and ageing. It also plays a neuroprotective role by modulating several biological pathways such as apoptosis, DNA repair, protein aggregation, and inflammatory processes associated with ageing and neurodegenerative diseases. In this review, we have presented an updated Sirtuins and its role in ageing and age-related neurodegenerative diseases (NDDs). Further, this review also describes the therapeutic potential of Sirtuins and the use of Sirtuins inhibitor/activator for altering the NDDs disease pathology.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Poullet N, Devarieux O, Beramice D, Dantec L, Félicité Y, Feuillet D, Gourdine JL, Bambou JC. Comparative analysis of whole blood transcriptomics between European and local Caribbean pigs in response to feed restriction in a tropical climate. BMC Genomics 2023; 24:292. [PMID: 37254043 DOI: 10.1186/s12864-023-09381-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Feed restriction occurs frequently during pig growth, either due to economic reasons or stressful environmental conditions. Local breeds are suggested to have better tolerance to periods of feed restriction. However, the mechanisms underlying the response to feed restriction in different breeds is largely unknown. The aims of the present study were (1) to compare the blood transcriptome profile in response to feed restriction and refeeding of two contrasted breeds, Large White (LW), which has been selected for high performance, and Creole (CR), which is adapted to tropical conditions, and (2) to investigate the effect of a moderate feed restriction and refeeding on whole blood transcriptome. Analysis of blood transcriptome allows to study the response to feed restriction and refeeding in a dynamic way. RNAseq was performed on blood samples of growing LW and CR pigs at two time points: after 3 weeks of feed restriction and after 3 weeks of refeeding. The data was compared with samples from control animals offered the same diet on an ad libitum basis throughout the whole experiment. RESULTS In terms of performance (body weight and feed efficiency), CR pigs were less impacted by feed restriction than LW. The transcriptional response to feed restriction and refeeding between CR and LW was contrasted both in terms of number of DEGs and enriched pathways. CR demonstrated a stronger transcriptional response to feed restriction whereas LW had a stronger response to refeeding. Differences in the transcriptional response to feed restriction between CR and LW were related to cell stress response (Aldosterone Signalling, Protein ubiquitination, Unfolded Protein Signalling) whereas after refeeding, differences were linked to thermogenesis, metabolic pathways and cell proliferation (p38 MAPK, ERK/MAPK pathway). In both breeds, transcriptional changes related to the immune response were found after restriction and refeeding. CONCLUSIONS Altogether, the present study indicates that blood transcriptomics can be a useful tool to study differential genetic response to feed restriction in a dynamic way. The results indicate a differential response of blood gene expression to feed restriction and refeeding between breeds, affecting biological pathways that are in accordance with performance and thermoregulatory results.
Collapse
Affiliation(s)
- Nausicaa Poullet
- ASSET, INRAE, Petit-Bourg (Guadeloupe), ²PTEA, INRAE, Petit-Bourg (Guadeloupe), 97170, France.
| | - Orianne Devarieux
- ASSET, INRAE, Petit-Bourg (Guadeloupe), ²PTEA, INRAE, Petit-Bourg (Guadeloupe), 97170, France
| | | | | | - Yoann Félicité
- ASSET, INRAE, Petit-Bourg (Guadeloupe), ²PTEA, INRAE, Petit-Bourg (Guadeloupe), 97170, France
| | - Dalila Feuillet
- ASSET, INRAE, Petit-Bourg (Guadeloupe), ²PTEA, INRAE, Petit-Bourg (Guadeloupe), 97170, France
| | - Jean-Luc Gourdine
- ASSET, INRAE, Petit-Bourg (Guadeloupe), ²PTEA, INRAE, Petit-Bourg (Guadeloupe), 97170, France
| | - Jean-Christophe Bambou
- ASSET, INRAE, Petit-Bourg (Guadeloupe), ²PTEA, INRAE, Petit-Bourg (Guadeloupe), 97170, France
| |
Collapse
|
4
|
Xu X, Alcocer HM, Gravely ME, Jackson AR, Gonzalez JM. Effects of in ovo injection of nicotinamide riboside on high-yield broiler myogenesis. J Anim Sci 2022; 100:6652313. [PMID: 35908780 PMCID: PMC9339335 DOI: 10.1093/jas/skac203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/02/2022] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to determine the effects of in ovo injection of high-yield broiler embryos with nicotinamide riboside (NR) on pectoralis major muscle (PMM) development, growth, and gene expression. Fertilized Cobb 700 broiler eggs were randomly assigned to one of four treatments within a 2 × 2 factorial design. Factor 1 consisted of NR dose (DOS) with eggs receiving 0 or 2.5 mM NR. Factor 2 consisted of injection location (LOC), with treatments injected into either the yolk sac or albumen. At day 10 of incubation, 100 μL of the assigned NR dose was injected into the yolk sac of the developing embryo and chicks were euthanized within 24 h of hatching. Chick PMM and individual fiber morphometrics, and expression of genes associated with cell cycle progression were analyzed. There were DOS × LOC interactions for hatched chick PM weight and length (P < 0.04). When NR was injected into the albumen, PMM weight decreased (P < 0.05); when NR was injected into the yolk, PMM weight increased (P < 0.05). Pectoralis major length was not affected (P > 0.05) when NR was injected into the albumen but was increased (P < 0.05) when NR was injected into the yolk. There was a DOS × LOC interaction (P = 0.04) for muscle fiber density and tended to be a DOS × LOC interaction (P = 0.07) for muscle fiber CSA. Pectoralis major muscle fiber density was not affected when NR was injected into the albumen (P > 0.05), but density increased when NR was injected into the yolk (P < 0.05). There were DOS × LOC interactions for hatched chick COXII, cyclin D, and SIRT1 expression (P ≤ 0.04), which may indicate NR improves skeletal muscle development and growth by enhancing myoblast proliferation during embryonic development.
Collapse
Affiliation(s)
- Xiaoxing Xu
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Hanna M Alcocer
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Morgan E Gravely
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | | - John M Gonzalez
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Gui LS, Raza SHA, Zhou L, Garcia M, Abd El-Aziz AH, Wei D, Hou S, Jia J, Wang Z. Association between Single Nucleotide Polymorphisms in SIRT1 and SIRT2 Loci and Growth in Tibetan Sheep. Animals (Basel) 2020; 10:ani10081362. [PMID: 32781630 PMCID: PMC7459998 DOI: 10.3390/ani10081362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In summary, three single nucleotide polymorphisms (SNPs) were observed including two SNPs (g.3148 C > T and g.3570 G > A) in SIRT1, and one SNP (g.8074 T > A) in SIRT2 through sequence analysis. Association analyses suggested that all three SNPs were associated growth-related traits in Tibetan sheep. These findings imply that both SIRT1 and SIRT2 may play an important role in growth traits and are potential biomarkers for Marker-assisted selection (MAS). Abstract Silent information regulator 1 and 2 (SIRT1, 2) were NAD+-dependent histone or non-histone deacetylase, which emerged as key metabolic sensors in several tissues of mammals. In the present study, the search for polymorphisms within the ovine SIRT1 and SIRT2 loci as well as association analyses between SNPs and growth-related traits were performed in Tibetan sheep. To determine the expression pattern of SIRT1 and SIRT2 genes in Tibetan sheep, the quantitative real-time polymerase chain reaction (qPCR) analysis revealed that those two genes were widely expressed in diverse tissues. Expression of SIRT1 was less in abomasum of lamb, whereas it was greater in duodenum within adult stage. In the case of SIRT2, the greatest expression was observed in reticulum (lamb) and in muscle (adult), whereas the least expression was in liver for lamb and in kidney for adult animals. The association analysis demonstrated that g.3148 C > T polymorphism of SIRT1 affected heart girth (p = 0.002). The g.8074 T > A SNP of SIRT2 had a significant correlation with body weight (p = 0.011) and body length (p = 0.008). These findings suggested that the SIRT1 and SIRT2 polymorphism was involved in growth-related traits in Tibetan sheep, which may be considered to be genetic markers for improving the growth traits of Tibetan sheep.
Collapse
Affiliation(s)
- Lin-sheng Gui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
| | - Sayed Haidar Abbas Raza
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Li Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
| | - Matthew Garcia
- School of Animal Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA;
| | - Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Shengzhen Hou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
| | - Jianlei Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
| | - Zhiyou Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
- Correspondence:
| |
Collapse
|
6
|
Xu D, He H, Jiang X, Hua R, Chen H, Yang L, Cheng J, Duan J, Li Q. SIRT2 plays a novel role on progesterone, estradiol and testosterone synthesis via PPARs/LXRα pathways in bovine ovarian granular cells. J Steroid Biochem Mol Biol 2019; 185:27-38. [PMID: 30009951 DOI: 10.1016/j.jsbmb.2018.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
SIRT2 has been shown to possess NAD+-dependent deacetylase and desuccinylase enzymatic activities, it also regulates metabolism homeostasis in mammals. Previous data has suggested that resveratrol, a potential activator of Sirtuins, played a stimulation role in steroidogenesis. Unfortunately, to date, the physiological roles of SIRT2 in ovarian granular cells (GCs) are largely unknown. Here, we studied the function and molecular mechanisms of SIRT2 on steroid hormone synthesis in GCs from Qinchuan cattle. Immunohistochemistry and western blotting showed that SIRT2 was expressed not only in GCs and cumulus cells, but also in oocytes and theca cells. We found that the secretion of progesterone was induced, whereas that of estrogen and testosterone secretion was suppressed by treatment with the SIRT2 inhibitor (Thiomyristoyl or SirReal2) or siRNA. Additionally, the PPARs/LXRα signaling pathways were suppressed by SIRT2 siRNA or inhibitors. The mRNA expression of CYP17, aromatase and StAR was suppressed, but the abundance of CYP11A1 mRNA was induced by SIRT2 inhibition. Furthermore, the PPARα agonist or PPARγ antagonist could mimic the effects of SIRT2 inhibition on hormones levels and gene expression associated with steroid hormone biosynthesis. In turn, those effects were abolished by the LXRα agonist (LXR-623). Together, these data support the hypothesis that SIRT2 regulates steroid hormone synthesis via the PPARs/LXRα pathways in GCs.
Collapse
Affiliation(s)
- Dejun Xu
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China. -
| | - Huanshan He
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China.
| | - Xiaohan Jiang
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China.
| | - Rongmao Hua
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China.
| | - Huali Chen
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China.
| | - Li Yang
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China.
| | - Jianyong Cheng
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China.
| | - Jiaxin Duan
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China.
| | - Qingwang Li
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Simó-Mirabet P, Perera E, Calduch-Giner JA, Afonso JM, Pérez-Sánchez J. Co-expression Analysis of Sirtuins and Related Metabolic Biomarkers in Juveniles of Gilthead Sea Bream ( Sparus aurata) With Differences in Growth Performance. Front Physiol 2018; 9:608. [PMID: 29922168 PMCID: PMC5996159 DOI: 10.3389/fphys.2018.00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
Sirtuins (SIRTs) represent a conserved protein family of deacetylases that act as master regulators of metabolism, but little is known about their roles in fish and livestock animals in general. The present study aimed to assess the value of SIRTs for the metabolic phenotyping of fish by assessing their co-expression with a wide-representation of markers of energy and lipid metabolism and intestinal function and health in two genetically different gilthead sea bream strains with differences in growth performance. Fish from the fast-growing strain exhibited higher feed intake, feed efficiency and plasma IGF-I levels, along with higher hepatosomatic index and lower mesenteric fat (lean phenotype). These observations suggest differences in tissue energy partitioning with an increased flux of fatty acids from adipose tissue toward the liver. The resulting increased risk of hepatic steatosis may be counteracted in the liver by reduced lipogenesis and enhanced triglyceride catabolism, in combination with a higher and more efficient oxidative metabolism in white skeletal muscle. These effects were supported by co-regulated changes in the expression profile of SIRTs (liver, sirt1; skeletal muscle, sirt2; adipose tissue, sirt5-6) and markers of oxidative metabolism (pgc1α, cpt1a, cs, nd2, cox1), mitochondrial respiration uncoupling (ucp3) and fatty acid and triglyceride metabolism (pparα, pparγ, elovl5, scd1a, lpl, atgl) that were specific to each strain and tissue. The anterior intestine of the fast-growing strain was better suited to cope with improved growth by increased expression of markers of nutrient absorption (fabp2), epithelial barrier integrity (cdh1, cdh17) and immunity (il1β, cd8b, lgals1, lgals8, sIgT, mIgT), which were correlated with low expression levels of sirt4 and markers of fatty acid oxidation (cpt1a). In the posterior intestine, the fast-growing strain showed a consistent up-regulation of sirt2, sirt3, sirt5 and sirt7 concurrently with increased expression levels of markers of cell proliferation (pcna), oxidative metabolism (nd2) and immunity (sIgT, mIgT). Together, these findings indicate that SIRTs may play different roles in the regulation of metabolism, inflammatory tone and growth in farmed fish, arising as powerful biomarkers for a reliable metabolic phenotyping of fish at the tissue-specific level.
Collapse
Affiliation(s)
- Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Juan M Afonso
- Aquaculture Research Group, Institute of Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria (GIA), Las Palmas, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| |
Collapse
|
8
|
Simó-Mirabet P, Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Tissue-specific gene expression and fasting regulation of sirtuin family in gilthead sea bream (Sparus aurata). J Comp Physiol B 2016; 187:153-163. [DOI: 10.1007/s00360-016-1014-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 01/12/2023]
|
9
|
Gui LS, Zhang YR, Liu GY, Zan LS. Expression of the SIRT2 gene and its relationship with body size traits in Qinchuan cattle (Bos taurus). Int J Mol Sci 2015; 16:2458-71. [PMID: 25622258 PMCID: PMC4346846 DOI: 10.3390/ijms16022458] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 11/30/2022] Open
Abstract
Silent information regulator 2 (SIRT2) is a member of the sirtuin family of class III NAD (nicotinamide adenine dinucleotide)-dependent protein deacetylases and may regulate senescence, metabolism and apoptosis. The aims of this study were to investigate whether the SIRT2 gene could be used as a candidate gene in the breeding of Qinchuan cattle. Real-time polymerase chain reaction (RT-PCR) results showed that among all types of tissue that were analyzed, the highest mRNA expression levels of the gene were found in subcutaneous fat. DNA sequencing of 468 individual Qinchuan cattle identified two novel, single nucleotide polymorphisms (g.19501 C > T and g.19518 C > T) in the 3' untranslated region (3'UTR) of the SIRT2 gene. The frequencies of SNP g.19501 C > T and g.19518 C > T were in Hardy-Weinberg disequilibrium in all the samples (chi-square test, χ2 < χ0.052). An association analysis showed that the two loci were significantly correlated with some body size traits and the H2H2 (-CT-CT-) diplotypes performed better than other combinations. These results indicated that the variations in the SIRT2 gene and their corresponding genotypes may be considered as molecular markers for economic traits in cattle breeding.
Collapse
Affiliation(s)
- Lin-Sheng Gui
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Ya-Ran Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Gui-Yao Liu
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resource, Yangling 712100, China.
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Effect of breed on the expression of Sirtuins (Sirt1-7) and antioxidant capacity in porcine brain. Animal 2013; 7:1994-8. [PMID: 24103559 DOI: 10.1017/s175173111300164x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sirtuins, NAD-dependent histone deacetylase (HDAC), are correlated to aging and antioxidant. The aim of this study was to determine breed differences of porcine Sirtuins expression and antioxidant capacity in brain between Jinhua pigs (a fatty breed of China) and Danish Landrace pigs (a leaner breed). Effect of age on Sirtuins' expression was also investigated. At the age of 180 days, the mRNA levels of Sirt1, as well as Sirt2 and Sirt4, in Jinhua pigs were greater, but the mRNA levels of Sirt3, Sirt5, Sirt6, and Sirt7 of Jinhua pigs were lower compared with Danish Landrace pigs. Likewise, at the same BW of 64 kg, the mRNA levels of Sirtuins, except Sirt5 and Sirt7, in Jinhua pigs were greater than Danish Landrace pigs. Meanwhile, Jinhua pigs possessed higher antioxidants activity than Danish Landrace pigs either at the same age or at the same BW. Furthermore, mRNA levels of Sirtuins were decreased with age in brain of the two breeds from 30 to 120 days. The results indicated that Sirtuins expression in brain was different between fatty and lean pigs, and Sirtuins expression may be correlated to antioxidant capacity. In addition, age could down-regulate Siruins expression in porcine brain.
Collapse
|