1
|
Mahar K, Gurao A, Kumar A, Pratap Singh L, Chitkara M, Gowane GR, Ahlawat S, Niranjan SK, Pundir RK, Kataria RS, Dige MS. Genomic inbreeding analysis reveals resilience and genetic diversity in Indian yak populations. Gene 2024; 928:148787. [PMID: 39053660 DOI: 10.1016/j.gene.2024.148787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The yak (Bos grunniens), renowned for its adaptability to extreme cold and hypoxic conditions, stands as a remarkable domestic animal crucial for sustaining livelihoods in harsh climates. We conducted a comprehensive analysis of the whole genome sequence data from three distinct Indian yak populations: Arunachali yak (n = 10), Himachali yak (n = 10), and Ladakhi yak (n = 10). The genomic data for Indian yaks were meticulously generated by our laboratory and compared with their Chinese counterpart, the Jinchuan yak (n = 8), for a more nuanced understanding. Our investigation revealed a total of 37,437 runs of homozygosity (ROH) segments in 34 animals representing four distinct yak populations. The Jinchuan yak population exhibited the highest proportion, constituting 80.8 % of total ROHs, predominantly as small segments (<0.1 Mb), accounting for 63 % of the overall ROHs. Further analysis uncovered a significantly higher degree of inbreeding in Chinese yaks compared to their Indian counterparts. The Indian yak populations, in contrast, demonstrated relatively lower and consistent levels of inbreeding. Moreover, we identified ROH hotspots that covered at least 60 % of individuals in our study, indicating their pivotal role in environmental adaptation. A total of five hotspot regions were detected, housing genes such as ENSBGRG00000015023 (WNT2), YIPF4, SPAST, TLN2, and DSG4. These genes are associated with traits including hair follicle initiation, nutrient stress response, microtubule assembly, development of cardiac muscle, hair follicle, and coat color. This observation strongly suggests that there is substantial selection acting on these genes, emphasizing their important role in environmental adaptation among yak populations.
Collapse
Affiliation(s)
- Karan Mahar
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Ankita Gurao
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Amod Kumar
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Lalit Pratap Singh
- Division of Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Meenakshi Chitkara
- Division of Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Gopal R Gowane
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Sonika Ahlawat
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - S K Niranjan
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - R K Pundir
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - R S Kataria
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - M S Dige
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| |
Collapse
|
2
|
Mahar K, Goli RC, Chishi KG, Ganguly I, Dixit SP, Singh S, Choudhary S, Rathi P, Chinnareddyvari CS, Diwakar V, Metta M, Prabhu IG, Kumar A, Sarkar S, Sukhija N, Kareningappa KK. [Runs of Homozygosity Decipher Genetic Diversity in Cattle Breed Dwelling in the Colder Regions of the World]. Cytogenet Genome Res 2024:1-11. [PMID: 39369710 DOI: 10.1159/000541723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Our study focuses on Yakutian cattle, a Siberian native breed, examining its inbreeding and diversity through genome-wide analysis of runs of homozygosity (ROHs). Yakutian cattle are adapted to Siberia's harsh sub-arctic conditions, enduring temperatures below -70°C. However, the population genetics studies on this breed are scanty, to document the genetic uniqueness in these cattle. RESULTS We analyzed 40 Yakutian cattle with strict quality control for ROH detection yielding 683 homozygous segments, averaging 17 per individual with an average length of 9 Mb. ROH regions were found to be involved in important pathways pertaining to cold adaptation. Autozygosity ranged from 1% to 12% of the genome, with a relatively low average inbreeding coefficient (FROH) of 0.057, as compared to other breeds. Also, the different diversity indicators, namely, principal component analysis, heterozygosity, and effective population size analysis, revealed the prevalence of genetic diversity within the breed. CONCLUSION Our findings on ROH are the first of its kind in Yakutian cattle that support their adaptability to colder environments, as evidenced by low inbreeding and high genetic diversity.
Collapse
Affiliation(s)
- Karan Mahar
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
| | - Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India,
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India,
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | | - S P Dixit
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sanjeev Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonu Choudhary
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pallavi Rathi
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Chandana Sree Chinnareddyvari
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Vikas Diwakar
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
| | | | | | - Amit Kumar
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Soumajit Sarkar
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Nidhi Sukhija
- CSB-Central Tasar Research and Training Institute, Ranchi, India
| | | |
Collapse
|
3
|
Mekonnen KT, Lee DH, Cho YG, Son AY, Seo KS. Genomic and Conventional Inbreeding Coefficient Estimation Using Different Estimator Models in Korean Duroc, Landrace, and Yorkshire Breeds Using 70K Porcine SNP BeadChip. Animals (Basel) 2024; 14:2621. [PMID: 39272406 PMCID: PMC11394220 DOI: 10.3390/ani14172621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The purpose of this study was to estimate the homozygosity distribution and compute genomic and conventional inbreeding coefficients in three genetically diverse pig breed populations. The genomic and pedigree data of Duroc (1586), Landrace (2256), and Yorkshire (3646) were analyzed. We estimated and compared various genomic and pedigree inbreeding coefficients using different models and approaches. A total of 709,384 ROH segments in Duroc, 816,898 in Landrace, and 1,401,781 in Yorkshire, with average lengths of 53.59 Mb, 56.21 Mb, and 53.46 Mb, respectively, were identified. Relatively, the Yorkshire breed had the shortest ROH segments, whereas the Landrace breed had the longest mean ROH segments. Sus scrofa chromosome 1 (SSC1) had the highest chromosomal coverage by ROH across all breeds. Across breeds, an absolute correlation (1.0) was seen between FROH total and FROH1-2Mb, showing that short ROH were the primary contributors to overall FROH values. The overall association between genomic and conventional inbreeding was weak, with values ranging from 0.058 to 0.140. In contrast, total genomic inbreeding (FROH) and ROH classes showed a strong association, ranging from 0.663 to 1.00, across the genotypes. The results of genomic and conventional inbreeding estimates improve our understanding of the genetic diversity among genotypes.
Collapse
Affiliation(s)
- Kefala Taye Mekonnen
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Animal Science, College of Agriculture and Environmental Science, Arsi University, Asella P.O. Box 193, Ethiopia
| | - Dong-Hui Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Young-Gyu Cho
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ah-Yeong Son
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Kang-Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
4
|
Liu SQ, Xu YJ, Chen ZT, Li H, Zhang Z, Wang QS, Pan YC. Genome-wide detection of runs of homozygosity and heterozygosity in Tunchang pigs. Animal 2024; 18:101236. [PMID: 39096602 DOI: 10.1016/j.animal.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/05/2024] Open
Abstract
Tunchang pigs, mainly distributed throughout Hainan Province of China, are well-known for their superior meat quality, crude feed tolerance, and adaptability to high temperatures and humidity. Runs of homozygosity (ROH) can provide valuable information about the inbreeding coefficient in individuals and selection signals that may reveal candidate genes associated with key functional traits. Runs of heterozygosity (ROHet) are commonly associated with balance selection, which can help us understand the adaptive evolutionary history of domestic animals. In this study, we investigated ROHs and ROHets in 88 Tunchang pigs. We also compared the estimates of inbreeding coefficients in individuals calculated based on four methods. In summary, we detected a total of 16 ROH islands in our study, and 100 genes were found within ROH regions. These genes were correlated with economically important traits such as reproduction (e.g., SERPIND1, HIRA), meat quality (e.g., PI4KA, TBX1), immunity (e.g., ESS2, RANBP1), adaption to heat stress (TXNRD2 and DGCR8), and crude food tolerance (TRPM6). Moreover, we discovered 18 ROHet islands harbouring genes associated with reproduction (e.g., ARHGEF12, BMPR2), immune system (e.g., BRD4, DNMT3B). These findings may help us design effective breeding and conservation strategies for this unique breed.
Collapse
Affiliation(s)
- S Q Liu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China; Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou, East 310058, China; Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
| | - Y J Xu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China; Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou, East 310058, China; Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
| | - Z T Chen
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou, East 310058, China
| | - H Li
- Hainan Longjian Animal Husbandry Development Co. Ltd, Lantian Road, Haikou 570203, China
| | - Z Zhang
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou, East 310058, China
| | - Q S Wang
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China; Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou, East 310058, China; Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
| | - Y C Pan
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China; Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou, East 310058, China; Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China.
| |
Collapse
|
5
|
Kusza S, Badaoui B, Wanjala G. Insights into the genomic homogeneity of Moroccan indigenous sheep breeds though the lens of runs of homozygosity. Sci Rep 2024; 14:16515. [PMID: 39019985 PMCID: PMC11255268 DOI: 10.1038/s41598-024-67558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Numerous studies have indicated that Morocco's indigenous sheep breeds are genetically homogenous, posing a risk to their survival in the challenging harsh climate conditions where they predominantly inhabit. To understand the genetic behind genetic homogeneity through the lens of runs of homozygosity (ROH), we analyzed the whole genome sequences of five indigenous sheep breeds (Beni Guil, Ouled Djellal, D'man, Sardi, Timahdite and Admixed).The results from principal component, admixture, Fst, and neighbour joining tree analyses consistently showed a homogenous genetic structure. This structure was characterized by an average length of 1.83 Mb for runs of homozygosity (ROH) segments, with a limited number of long ROH segments (24-48 Mb and > 48 Mb). The most common ROH segments were those ranging from 1-6 Mb. The most significant regions of homozygosity (ROH Islands) were mostly observed in two chromosomes, namely Chr1 and Chr5. Specifically, ROH Islands were exclusively discovered in the Ouled Djellal breed on Chr1, whereas Chr5 exhibited ROH Islands in all breeds. The analysis of ROH Island and iHS technique was employed to detect signatures of selection on Chr1 and Chr5. The results indicate that Chr5 had a high level of homogeneity, with the same genes being discovered across all breeds. In contrast, Chr1 displays some genetic variances between breeds. Genes identified on Chr5 included SLC39A1, IL23A, CAST, IL5, IL13, and IL4 which are responsible for immune response while genes identified on Chr1 include SOD1, SLAMF9, RTP4, CLDN1, and PRKAA2. ROH segment profile and effective population sizes patterns suggests that the genetic uniformity of studied breeds is the outcome of events that transpired between 250 and 300 generations ago. This research not only contributes to the understanding of ROH distribution across breeds but helps design and implement native sheep breeding and conservation strategies in Morocco. Future research, incorporating a broader sample size and utilizing the pangenome for reference, is recommended to further elucidate these breeds' genomic landscapes and adaptive mechanisms.
Collapse
Affiliation(s)
- Szilvia Kusza
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Bouabid Badaoui
- Faculty of Sciences, Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Mohammed V University in Rabat, Rabat, Morocco
- African Sustainable Agriculture Research Institute (ASARI),, Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - George Wanjala
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, Böszörményi út 138., 4032, Debrecen, Hungary
- Institute of Animal Sciences and Wildlife Management, University of Szeged, Andrássy út 15., 6800, Hódmezővásárhely, Hungary
| |
Collapse
|
6
|
Belay S, Belay G, Nigussie H, Ahbara AM, Tijjani A, Dessie T, Tarekegn GM, Jian-Lin H, Mor S, Woldekiros HS, Dobney K, Lebrasseur O, Hanotte O, Mwacharo JM. Anthropogenic events and responses to environmental stress are shaping the genomes of Ethiopian indigenous goats. Sci Rep 2024; 14:14908. [PMID: 38942813 PMCID: PMC11213886 DOI: 10.1038/s41598-024-65303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Anthropological and biophysical processes have shaped livestock genomes over Millenia and can explain their current geographic distribution and genetic divergence. We analyzed 57 Ethiopian indigenous domestic goat genomes alongside 67 equivalents of east, west, and north-west African, European, South Asian, Middle East, and wild Bezoar goats. Cluster, ADMIXTURE (K = 4) and phylogenetic analysis revealed four genetic groups comprising African, European, South Asian, and wild Bezoar goats. The Middle Eastern goats had an admixed genome of these four genetic groups. At K = 5, the West African Dwarf and Moroccan goats were separated from East African goats demonstrating a likely historical legacy of goat arrival and dispersal into Africa via the coastal Mediterranean Sea and the Horn of Africa. FST, XP-EHH, and Hp analysis revealed signatures of selection in Ethiopian goats overlaying genes for thermo-sensitivity, oxidative stress response, high-altitude hypoxic adaptation, reproductive fitness, pathogen defence, immunity, pigmentation, DNA repair, modulation of renal function and integrated fluid and electrolyte homeostasis. Notable examples include TRPV1 (a nociception gene); PTPMT1 (a critical hypoxia survival gene); RETREG (a regulator of reticulophagy during starvation), and WNK4 (a molecular switch for osmoregulation). These results suggest that human-mediated translocations and adaptation to contrasting environments are shaping indigenous African goat genomes.
Collapse
Affiliation(s)
- Shumuye Belay
- Tigray Agricultural Research Institute, Mekelle, Ethiopia.
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Helen Nigussie
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abulgasim M Ahbara
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Department of Zoology, Misurata University, Misurata, Libya
| | - Abdulfatai Tijjani
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Getinet M Tarekegn
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Institute of Biotechnology (IoB), Addis Ababa University, Addis Ababa, Ethiopia
| | - Han Jian-Lin
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siobhan Mor
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Helina S Woldekiros
- Department of Anthropology, Washington University in St. Louis, St. Louis, USA
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- University of Sydney, Sydney, Australia
| | - Ophelie Lebrasseur
- Palaeogenomics and Bioarchaeology Research Network, School of Archaeology, University of Oxford, Oxford, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK.
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia.
| |
Collapse
|
7
|
An ZX, Shi LG, Hou GY, Zhou HL, Xun WJ. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal 2024; 18:101147. [PMID: 38843669 DOI: 10.1016/j.animal.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 06/22/2024] Open
Abstract
Understanding the genetic characteristics of indigenous goat breeds is crucial for their conservation and breeding efforts. Hainan black goats, as a native breed of south China's tropical island province of Hainan, possess distinctive traits such as black hair, a moderate growth rate, good meat quality, and small body size. However, they exhibit exceptional resilience to rough feeding conditions, possess high-quality meat, and show remarkable resistance to stress and heat. In this study, we resequenced the whole genome of Hainan black goats to study the economic traits and genetic basis of these goats, we leveraged whole-genome sequencing data from 33 Hainan black goats to analyze single nucleotide polymorphism (SNP) density, Runs of homozygosity (ROH), Integrated Haplotype Score (iHS), effective population size (Ne), Nucleotide diversity Analysis (Pi) and selection characteristics. Our findings revealed that Hainan black goats harbor a substantial degree of genetic variation, with a total of 23 608 983 SNPs identified. Analysis of ROHs identified 53 710 segments, predominantly composed of short fragments, with inbreeding events mainly occurring in ancient ancestors, the estimates of inbreeding based on ROH in Hainan black goats typically exhibit moderate values ranging from 0.107 to 0.186. This is primarily attributed to significant declines in the effective population size over recent generations. Moreover, we identified 921 candidate genes within the intersection candidate region of ROH and iHS. Several of these genes are associated with crucial traits such as immunity (PTPRC, HYAL1, HYAL2, HYAL3, CENPE and PKN1), heat tolerance (GNG2, MAPK8, CAPN2, SLC1A1 and LEPR), meat quality (ACOX1, SSTR1, CAMK2B, PPP2CA and PGM1), cashmere production (AKT4, CHRM2, OXTR, AKT3, HMCN1 and CDK19), and stress resistance (TLR2, IFI44, ENPP1, STK3 and NFATC1). The presence of these genes may be attributed to the genetic adaptation of Hainan black goats to local climate conditions. The insights gained from this study provide valuable references and a solid foundation for the preservation, breeding, and utilization of Hainan black goats and their valuable genetic resources.
Collapse
Affiliation(s)
- Z X An
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - L G Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - G Y Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - H L Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - W J Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Carrara ER, Lopes PS, Veroneze R, Pereira RJ, Zadra LEF, Peixoto MGCD. Assessment of runs of homozygosity, heterozygosity-rich regions and genomic inbreeding estimates in a subpopulation of Guzerá (Bos indicus) dual-purpose cattle. J Anim Breed Genet 2024; 141:207-219. [PMID: 38010317 DOI: 10.1111/jbg.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
For decades, inbreeding in cattle has been evaluated using pedigree information. Nowadays, inbreeding coefficients can be obtained using genomic information such as runs of homozygosity (ROH). The aims of this study were to quantify ROH and heterozygosity-rich regions (HRR) in a subpopulation of Guzerá dual-purpose cattle, to examine ROH and HRR islands, and to compare inbreeding coefficients obtained by ROH with alternative genomic inbreeding coefficients. A subpopulation of 1733 Guzerá animals genotyped for 50k SNPs was used to obtain the ROH and HRR segments. Inbreeding coefficients by ROH (FROH ), by genomic relationship matrix based on VanRaden's method 1 using reference allele frequency in the population (FGRM ), by genomic relationship matrix based on VanRaden's method 1 using allele frequency fixed in 0.5 (FGRM_0.5 ), and by the proportion of homozygous loci (FHOM ) were calculated. A total of 15,660 ROH were identified, and the chromosome with the highest number of ROH was BTA6. A total of 4843 HRRs were identified, and the chromosome with the highest number of HRRs was BTA23. No ROH and HRR islands were identified according to established criteria, but the regions closest to the definition of an island were examined from 64 to 67 Mb of BTA6, from 36 to 37 Mb of BTA2 and from 0.50 to 1.25 Mb of BTA23. The genes identified in ROH islands have previously been associated with dairy and beef traits, while genes identified on HRR islands have previously been associated with reproductive traits and disease resistance. FROH was equal to 0.095 ± 0.084, and its Spearman correlation with FGRM was low (0.44) and moderate-high with FHOM (0.79) and with FGRM_0.5 (0.80). The inbreeding coefficients determined by ROH were higher than other cattle breeds' and higher than pedigree-based inbreeding in the Guzerá breed obtained in previous studies. It is recommended that future studies investigate the effects of inbreeding determined by ROH on the traits under selection in the subpopulation studied.
Collapse
Affiliation(s)
- E R Carrara
- Department of Animal Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - P S Lopes
- Department of Animal Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - R Veroneze
- Department of Animal Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - R J Pereira
- Mato Grosso Animal Breeding Group, Institute of Agrarian and Technological Sciences, Federal University of Rondonópolis, Rondonópolis, Mato Grosso, Brazil
| | - L E F Zadra
- Brazilian Center for the Genetic Improvement of Guzerá, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
9
|
Ristanic M, Zorc M, Glavinic U, Stevanovic J, Blagojevic J, Maletic M, Stanimirovic Z. Genome-Wide Analysis of Milk Production Traits and Selection Signatures in Serbian Holstein-Friesian Cattle. Animals (Basel) 2024; 14:669. [PMID: 38473054 DOI: 10.3390/ani14050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
To improve the genomic evaluation of milk-related traits in Holstein-Friesian (HF) cattle it is essential to identify the associated candidate genes. Novel SNP-based analyses, such as the genetic mapping of inherited diseases, GWAS, and genomic selection, have led to a new era of research. The aim of this study was to analyze the association of each individual SNP in Serbian HF cattle with milk production traits and inbreeding levels. The SNP 60 K chip Axiom Bovine BovMDv3 was deployed for the genotyping of 334 HF cows. The obtained genomic results, together with the collected phenotypic data, were used for a GWAS. Moreover, the identification of ROH segments was performed and served for inbreeding coefficient evaluation and ROH island detection. Using a GWAS, a polymorphism, rs110619097 (located in the intron of the CTNNA3 gene), was detected to be significantly (p < 0.01) associated with the milk protein concentration in the first lactation (adjusted to 305 days). The average genomic inbreeding value (FROH) was 0.079. ROH islands were discovered in proximity to genes associated with milk production traits and genomic regions under selection pressure for other economically important traits of dairy cattle. The findings of this pilot study provide useful information for a better understanding of the genetic architecture of milk production traits in Serbian HF dairy cows and can be used to improve lactation performances in Serbian HF cattle breeding programs.
Collapse
Affiliation(s)
- Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Minja Zorc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1000 Ljubljana, Slovenia
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jovan Blagojevic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Milan Maletic
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Li W, Wu X, Xiang D, Zhang W, Wu L, Meng X, Huo J, Yin Z, Fu G, Zhao G. Genome-Wide Detection for Runs of Homozygosity in Baoshan Pigs Using Whole Genome Resequencing. Genes (Basel) 2024; 15:233. [PMID: 38397222 PMCID: PMC10887577 DOI: 10.3390/genes15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Baoshan pigs (BS) are a local breed in Yunnan Province that may face inbreeding owing to its limited population size. To accurately evaluate the inbreeding level of the BS pig population, we used whole-genome resequencing to identify runs of homozygosity (ROH) regions in BS pigs, calculated the inbreeding coefficient based on pedigree and ROH, and screened candidate genes with important economic traits from ROH islands. A total of 22,633,391 SNPS were obtained from the whole genome of BS pigs, and 201 ROHs were detected from 532,450 SNPS after quality control. The number of medium-length ROH (1-5 Mb) was the highest (98.43%), the number of long ROH (>5 Mb) was the lowest (1.57%), and the inbreeding of BS pigs mainly occurred in distant generations. The inbreeding coefficient FROH, calculated based on ROH, was 0.018 ± 0.016, and the FPED, calculated based on the pedigree, was 0.027 ± 0.028, which were positively correlated. Forty ROH islands were identified, containing 507 genes and 891 QTLs. Several genes were associated with growth and development (IGFALS, PTN, DLX5, DKK1, WNT2), meat quality traits (MC3R, ACSM3, ECI1, CD36, ROCK1, CACNA2D1), and reproductive traits (NPW, TSHR, BMP7). This study provides a reference for the protection and utilization of BS pigs.
Collapse
Affiliation(s)
- Wenjun Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xudong Wu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Decai Xiang
- Institute of Pig and Animal Research, Yunnan Academy of Animal Husbandry and Veterinary Science, Kunming 650201, China;
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Lingxiang Wu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xintong Meng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Guowen Fu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| |
Collapse
|
11
|
Fröhlich DE, Wallner B, Juras R, Cothran EG, Velie BD. Relatedness and genomic inbreeding in a sample of Timor ponies. J Equine Vet Sci 2024; 133:105016. [PMID: 38281607 DOI: 10.1016/j.jevs.2024.105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Timor ponies (TP) were first shipped to Australia in the early 1800s and were highly valued as transport and pack animals, which resulted in TPs contributing to the development of Australian horse breeds. Today, while the exact number of TPs in Australia is currently unknown, there has been recent interest in establishing a domestic breeding program for Australian TPs. The aim of this study was to evaluate the relatedness of a sample of TPs, as well as provide estimates of genomic inbreeding levels to better inform the feasibility of using these animals as founders for a domestic breeding program. Hair samples from each horse were genotyped using the Illumina 80K Infinium Equine genotyping array and data were analysed using PLINK v1.90b7, KING 2.3.2 and R v4.3.1. The results illustrate that there are distantly related and minimally inbred horses within the sampled TPs. Lengths of the ROH segments also indicated that recent inbreeding events are likely to only have occurred in a third of the horses. Overall, these results are promising for the success of a domestic TP breeding program; however, considering the low number of domestic TPs known to reside in Australia, there would certainly still be substantial benefits to incorporating additional TPs either directly from Timor or from areas in Australia that are believed to contain wild descendants of TPs.
Collapse
Affiliation(s)
- Doris E Fröhlich
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77843, United States
| | - E Gus Cothran
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77843, United States
| | - Brandon D Velie
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| |
Collapse
|
12
|
Villalobos-Cortés A, Rodriguez G, Castillo H, Franco S. Characterization of casein variants in the Guaymi and Guabala breeds through a low-density chip arrangement. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2154216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Selma Franco
- Animal Health Laboratory, IDIAP, Divisa, Panama City, Panama
| |
Collapse
|
13
|
Tsheten G, Fuerst-Waltl B, Pfeiffer C, Sölkner J, Bovenhuis H, Mészáros G. Inbreeding depression and its effect on sperm quality traits in Pietrain pigs. J Anim Breed Genet 2023; 140:653-662. [PMID: 37409752 DOI: 10.1111/jbg.12816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
In most cases, inbreeding is expected to have unfavourable effects on traits in livestock. The consequences of inbreeding depression could be substantial, primarily in reproductive and sperm quality traits, and thus lead to decreased fertility. Therefore, the objectives of this study were (i) to compute inbreeding coefficients using pedigree (FPED ) and genomic data based on runs of homozygosity (ROH) in the genome (FROH ) of Austrian Pietrain pigs, and (ii) to assess inbreeding depression on four sperm quality traits. In total, 74,734 ejaculate records from 1034 Pietrain boars were used for inbreeding depression analyses. Traits were regressed on inbreeding coefficients using repeatability animal models. Pedigree-based inbreeding coefficients were lower than ROH-based inbreeding values. The correlations between pedigree and ROH-based inbreeding coefficients ranged from 0.186 to 0.357. Pedigree-based inbreeding affected only sperm motility while ROH-based inbreeding affected semen volume, number of spermatozoa, and motility. For example, a 1% increase in pedigree inbreeding considering 10 ancestor generations (FPED10 ) was significantly (p < 0.05) associated with a 0.231% decrease in sperm motility. Almost all estimated effects of inbreeding on the traits studied were unfavourable. It is advisable to properly manage the level of inbreeding to avoid high inbreeding depression in the future. Further, analysis of effects of inbreeding depression for other traits, including growth and litter size for the Austrian Pietrain population is strongly advised.
Collapse
Affiliation(s)
- Gyembo Tsheten
- Department of Livestock, Ministry of Agriculture and Livestock, Thimphu, Bhutan
| | - Birgit Fuerst-Waltl
- University of Natural Resources and Life Sciences, Division of Livestock Sciences, Vienna, Austria
| | | | - Johann Sölkner
- University of Natural Resources and Life Sciences, Division of Livestock Sciences, Vienna, Austria
| | - Henk Bovenhuis
- Wageningen University and Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Gábor Mészáros
- University of Natural Resources and Life Sciences, Division of Livestock Sciences, Vienna, Austria
| |
Collapse
|
14
|
Gao C, Wang K, Hu X, Lei Y, Xu C, Tian Y, Sun G, Tian Y, Kang X, Li W. Conservation priority and run of homozygosity pattern assessment of global chicken genetic resources. Poult Sci 2023; 102:103030. [PMID: 37716234 PMCID: PMC10511814 DOI: 10.1016/j.psj.2023.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 09/18/2023] Open
Abstract
The conservation of genetic resources is becoming increasingly important for the sustainable development of the poultry industry. In the present study, we systematically analyzed the population structure, conservation priority, runs of homozygosity (ROH) of chicken breeds globally, and proposed rational conservation strategies. We used a 600K Affymetrix Axiom HD genotyping SNP array dataset of 2,429 chickens from 134 populations. The chickens were divided into 5 groups based on their country of origin and sampling location: Asian chickens (AS-LOC), African chickens (AF), European local chickens (EU-LOC), Asian breeds sampled in Germany (AS-DE), and European breeds sampled in Germany (EU-DE). The results indicated that the population structure was consistent with the actual geographical distribution of the populations. AS-LOC had the highest positive contribution to the total gene (HT, 1.00%,) and allelic diversity (AT, 0.0014%), the lowest inbreeding degree and the fastest linkage disequilibrium (LD) decay rate; the lowest contribution are derived by European ex situ chicken breeds (EU-DE:HT = -0.072%, AT = -0.0014%), which showed the highest inbreeding and slowest LD decay. Breeds farmed in ex situ (AS-DE, EU-DE) conditions exhibited reduced genetic diversity and increased inbreeding due to small population size. Given limited funds, it is a better choice for government to conserve the breeds with the highest contribution to genetic diversity in each group. Therefore, we evaluated the contribution of each breed to genetic and allelic diversity in 5 groups. Among each group, KUR(AF), BANG(AS-LOC), ALxx(EU-LOC), BHwsch(AS-DE), and ARw(EU-DE) had the highest contribution to gene diversity in the order of the above grouping. Similarly, according to the allelic diversity standard (in the same order), ZIMxx, PIxx, ALxx, SHsch, and ARsch had the highest contribution. After analyzing ROH, we found a total of 144,708 fragments and 27 islands. The gene and genome regions identified by the ROH islands and QTLs indicate that chicken breeds have potential for adaptation to different production systems. Based on these findings, it is recommended to prioritize the conservation of breeds with the highest genetic diversity in each group, while paying more attention to the conservation of Asian and African breeds. Furthermore, providing a valuable reference for the conservation and utilization of chicken.
Collapse
Affiliation(s)
- Chaoqun Gao
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; The Shennong Laboratory, Zhengzhou 450046, Henan, China
| | - Kejun Wang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; The Shennong Laboratory, Zhengzhou 450046, Henan, China
| | - Xiaoyu Hu
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; The Shennong Laboratory, Zhengzhou 450046, Henan, China
| | - Yanru Lei
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; The Shennong Laboratory, Zhengzhou 450046, Henan, China
| | - Chunhong Xu
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; The Shennong Laboratory, Zhengzhou 450046, Henan, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Guirong Sun
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; The Shennong Laboratory, Zhengzhou 450046, Henan, China
| | - Yadong Tian
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; The Shennong Laboratory, Zhengzhou 450046, Henan, China
| | - Xiangtao Kang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; The Shennong Laboratory, Zhengzhou 450046, Henan, China
| | - Wenting Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; The Shennong Laboratory, Zhengzhou 450046, Henan, China.
| |
Collapse
|
15
|
Smaragdov MG. Identification of homozygosity-rich regions in the Holstein genome. Vavilovskii Zhurnal Genet Selektsii 2023; 27:471-479. [PMID: 37808215 PMCID: PMC10556852 DOI: 10.18699/vjgb-23-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, 371 Holstein cows from six herds and 26 Holstein bulls, which were used in these herds, were genotyped by the Illumina BovineSNP50 array. For runs of homozygosity (ROH) identification, consecutive and sliding runs were performed by the detectRUNS and Plink software. The missing calls did not significantly affect the ROH data. The mean number of ROH identified by consecutive runs was 95.4 ± 2.7, and that by sliding runs was 86.0 ± 2.6 in cows, while this number for Holstein bulls was lower 58.9 ± 1.9. The length of the ROH segments varied from 1 Mb to over 16 Mb, with the largest number of ROH having a length of 1-2 Mb. Of the 29 chromosomes, BTA 14, BTA 16, and BTA 7 were the most covered by ROH. The mean coefficient of inbreeding across the herds was 0.111 ± 0.003 and 0.104 ± 0.004 based on consecutive and sliding runs, respectively, and 0.078 ± 0.005 for bulls based on consecutive runs. These values do not exceed those for Holstein cattle in North America. The results of this study confirmed the more accurate identification of ROH by consecutive runs, and also that the number of allowed heterozygous SNPs may have a significant effect on ROH data.
Collapse
Affiliation(s)
- M G Smaragdov
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry, St. Petersburg, Pushkin, Russia
| |
Collapse
|
16
|
Nishio M, Inoue K, Ogawa S, Ichinoseki K, Arakawa A, Fukuzawa Y, Okamura T, Kobayashi E, Taniguchi M, Oe M, Ishii K. Comparing pedigree and genomic inbreeding coefficients, and inbreeding depression of reproductive traits in Japanese Black cattle. BMC Genomics 2023; 24:376. [PMID: 37403068 DOI: 10.1186/s12864-023-09480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Pedigree-based inbreeding coefficients have been generally included in statistical models for genetic evaluation of Japanese Black cattle. The use of genomic data is expected to provide precise assessment of inbreeding level and depression. Recently, many measures have been used for genome-based inbreeding coefficients; however, with no consensus on which is the most appropriate. Therefore, we compared the pedigree- ([Formula: see text]) and multiple genome-based inbreeding coefficients, which were calculated from the genomic relationship matrix with observed allele frequencies ([Formula: see text]), correlation between uniting gametes ([Formula: see text]), the observed vs expected number of homozygous genotypes ([Formula: see text]), runs of homozygosity (ROH) segments ([Formula: see text]) and heterozygosity by descent segments ([Formula: see text]). We quantified inbreeding depression from estimating regression coefficients of inbreeding coefficients on three reproductive traits: age at first calving (AFC), calving difficulty (CD) and gestation length (GL) in Japanese Black cattle. RESULTS The highest correlations with [Formula: see text] were for [Formula: see text] (0.86) and [Formula: see text] (0.85) whereas [Formula: see text] and [Formula: see text] provided weak correlations with [Formula: see text], with range 0.33-0.55. Except for [Formula: see text] and [Formula: see text], there were strong correlations among genome-based inbreeding coefficients ([Formula: see text] 0.94). The estimates of regression coefficients of inbreeding depression for [Formula: see text] was 2.1 for AFC, 0.63 for CD and -1.21 for GL, respectively, but [Formula: see text] had no significant effects on all traits. Genome-based inbreeding coefficients provided larger effects on all reproductive traits than [Formula: see text]. In particular, for CD, all estimated regression coefficients for genome-based inbreeding coefficients were significant, and for GL, that for [Formula: see text] had a significant.. Although there were no significant effects when using overall genome-level inbreeding coefficients for AFC and GL, [Formula: see text] provided significant effects at chromosomal level in four chromosomes for AFC, three chromosomes for CD, and two chromosomes for GL. In addition, similar results were obtained for [Formula: see text]. CONCLUSIONS Genome-based inbreeding coefficients can capture more phenotypic variation than [Formula: see text]. In particular, [Formula: see text] and [Formula: see text] can be considered good estimators for quantifying inbreeding level and identifying inbreeding depression at the chromosome level. These findings might improve the quantification of inbreeding and breeding programs using genome-based inbreeding coefficients.
Collapse
Affiliation(s)
- Motohide Nishio
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan.
| | - Keiichi Inoue
- University of Miyazaki, Miyazaki, Miyazaki, 889-2192, Japan
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Shinichiro Ogawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Kasumi Ichinoseki
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Aisaku Arakawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Yo Fukuzawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Toshihiro Okamura
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Eiji Kobayashi
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Masaaki Taniguchi
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Mika Oe
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Kazuo Ishii
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| |
Collapse
|
17
|
The coefficients of inbreeding revealed by ROH study among inbred individuals belonging to each type of the first cousin marriage: A preliminary report from North India. Genes Genomics 2023; 45:813-825. [PMID: 36807878 DOI: 10.1007/s13258-023-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Genome-wide runs of homozygosity (ROH) are appropriate to estimate genomic inbreeding, determine population history, unravel the genetic architecture of complex traits and disorders. OBJECTIVE The study sought to investigate and compare the actual proportion of homozygosity or autozygosity in the genomes of progeny of four subtypes of first cousin mating in humans, using both pedigree and genomic measures for autosomes and sex chromosomes. METHODS For this purpose, Illumina Global Screening Array-24 v1.0 BeadChip followed by cyto-ROH analysis through Illumina Genome Studio was used to characterise the homozygosity in five participants from North Indian state (Uttar Pradesh). PLINK v.1.9 software was used to estimate the genomic inbreeding coefficients viz. ROH-based inbreeding estimate (FROH) and homozygous loci-based inbreeding estimate (FHOM). RESULTS A total of 133 ROH segments were detected with maximum number and genomic coverage in Matrilateral Parallel (MP) type and minimum in outbred individual. ROH pattern revealed that MP type has a higher degree of homozygosity than other subtypes. The comparison of FROH, FHOM, and pedigree-based inbreeding estimate (FPED) showed some difference in theoretical and realised proportion of homozygosity for sex-chromosomal loci but not for autosome for each type of consanguinity. CONCLUSIONS This is the very first study to compare and estimate the pattern of homozygosity among the kindreds of first cousin unions. However, a greater number of individuals from each type of marriage is required for statistical inference of no difference between theoretical and realized homozygosity among different degrees of inbreeding prevalent in humans worldwide.
Collapse
|
18
|
Lavanchy E, Goudet J. Effect of reduced genomic representation on using runs of homozygosity for inbreeding characterization. Mol Ecol Resour 2023; 23:787-802. [PMID: 36626297 DOI: 10.1111/1755-0998.13755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Genomic measures of inbreeding based on identical-by-descent (IBD) segments are increasingly used to measure inbreeding and mostly estimated on SNP arrays and whole-genome sequencing (WGS) data. However, some softwares recurrently used for their estimation assume that genomic positions which have not been genotyped are nonvariant. This might be true for WGS data, but not for reduced genomic representations and can lead to spurious IBD segments estimation. In this project, we simulated the outputs of WGS, two SNP arrays of different sizes and RAD-sequencing for three populations with different sizes and histories. We compare the results of IBD segments estimation with two softwares: runs of homozygosity (ROHs) estimated with PLINK and homozygous-by-descent (HBD) segments estimated with RZooRoH. We demonstrate that to obtain meaningful estimates of inbreeding, RZooRoH requires a SNPs density 11 times smaller compared to PLINK: ranks of inbreeding coefficients were conserved among individuals above 22 SNPs/Mb for PLINK and 2 SNPs/Mb for RZooRoH. We also show that in populations with simple demographic histories, distribution of ROHs and HBD segments are correctly estimated with both SNP arrays and WGS. PLINK correctly estimated distribution of ROHs with SNP densities above 22 SNPs/Mb, while RZooRoH correctly estimated distribution of HBD segments with SNPs densities above 11 SNPs/Mb. However, in a population with a more complex demographic history, RZooRoH resulted in better distribution of IBD segments estimation compared to PLINK even with WGS data. Consequently, we advise researchers to use either methods relying on excess homozygosity averaged across SNPs or model-based HBD segments calling methods for inbreeding estimations.
Collapse
Affiliation(s)
- Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Neumann GB, Korkuć P, Arends D, Wolf MJ, May K, König S, Brockmann GA. Genomic diversity and relationship analyses of endangered German Black Pied cattle (DSN) to 68 other taurine breeds based on whole-genome sequencing. Front Genet 2023; 13:993959. [PMID: 36712857 PMCID: PMC9875303 DOI: 10.3389/fgene.2022.993959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind, DSN) are an endangered dual-purpose cattle breed originating from the North Sea region. The population comprises about 2,500 cattle and is considered one of the ancestral populations of the modern Holstein breed. The current study aimed at defining the breeds closest related to DSN cattle, characterizing their genomic diversity and inbreeding. In addition, the detection of selection signatures between DSN and Holstein was a goal. Relationship analyses using fixation index (FST), phylogenetic, and admixture analyses were performed between DSN and 68 other breeds from the 1000 Bull Genomes Project. Nucleotide diversity, observed heterozygosity, and expected heterozygosity were calculated as metrics for genomic diversity. Inbreeding was measured as excess of homozygosity (FHom) and genomic inbreeding (FRoH) through runs of homozygosity (RoHs). Region-wide FST and cross-population-extended haplotype homozygosity (XP-EHH) between DSN and Holstein were used to detect selection signatures between the two breeds, and RoH islands were used to detect selection signatures within DSN and Holstein. DSN showed a close genetic relationship with breeds from the Netherlands, Belgium, Northern Germany, and Scandinavia, such as Dutch Friesian Red, Dutch Improved Red, Belgian Red White Campine, Red White Dual Purpose, Modern Angler, Modern Danish Red, and Holstein. The nucleotide diversity in DSN (0.151%) was higher than in Holstein (0.147%) and other breeds, e.g., Norwegian Red (0.149%), Red White Dual Purpose (0.149%), Swedish Red (0.149%), Hereford (0.145%), Angus (0.143%), and Jersey (0.136%). The FHom and FRoH values in DSN were among the lowest. Regions with high FST between DSN and Holstein, significant XP-EHH regions, and RoH islands detected in both breeds harbor candidate genes that were previously reported for milk, meat, fertility, production, and health traits, including one QTL detected in DSN for endoparasite infection resistance. The selection signatures between DSN and Holstein provide evidence of regions responsible for the dual-purpose properties of DSN and the milk type of Holstein. Despite the small population size, DSN has a high level of diversity and low inbreeding. FST supports its relatedness to breeds from the same geographic origin and provides information on potential gene pools that could be used to maintain diversity in DSN.
Collapse
Affiliation(s)
- Guilherme B. Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Manuel J. Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Gudrun A. Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Gudrun A. Brockmann,
| |
Collapse
|
20
|
Assessment and Distribution of Runs of Homozygosity in Horse Breeds Representing Different Utility Types. Animals (Basel) 2022; 12:ani12233293. [PMID: 36496815 PMCID: PMC9736150 DOI: 10.3390/ani12233293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The present study reports runs of homozygosity (ROH) distribution in the genomes of six horse breeds (571 horses in total) representing three horse types (primitive, light, and draft horses) based on the 65k Equine BeadChip assay. Of major interest was the length, quantity, and frequency of ROH characteristics, as well as differences between horse breeds and types. Noticeable differences in the number, length and distribution of ROH between breeds were observed, as well as in genomic inbreeding coefficients. We also identified regions of the genome characterized by high ROH coverage, known as ROH islands, which may be signals of recent selection events. Eight to fourteen ROH islands were identified per breed, which spanned multiple genes. Many were involved in important horse breed characteristics, including WFIKNN2, CACNA1G, STXBP4, NOG, FAM184B, QDPR, LCORL, and the zinc finger protein family. Regions of the genome with zero ROH occurrences were also of major interest in specific populations. Depending on the breed, we detected between 2 to 57 no-ROH regions and identified 27 genes in these regions that were common for five breeds. These genes were involved in, e.g., muscle contractility (CACNA1A) and muscle development (miR-23, miR-24, miR-27). To sum up, the obtained results can be furthered analyzed in the topic of identification of markers unique for specific horse breed characteristics.
Collapse
|
21
|
Genetic Diversity and Selection Signatures in Jianchang Black Goats Revealed by Whole-Genome Sequencing Data. Animals (Basel) 2022; 12:ani12182365. [PMID: 36139225 PMCID: PMC9495118 DOI: 10.3390/ani12182365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the genetic composition of indigenous goats is essential to promote the scientific conservation and sustainable utilization of these breeds. The Jianchang Black (JC) goat, a Chinese native breed, is solid black and exhibits crude feed tolerance, but is characterized by a low growth rate and small body size. Based on the whole-genome sequencing data for 30 JC, 41 Jintang Black (JT), and 40 Yunshang Black (YS) goats, and 21 Bezoar ibexes, here, we investigated the genetic composition of JC goats by conducting analyses of the population structure, runs of homozygosity (ROH), genomic inbreeding, and selection signature. Our results revealed that JT and YS showed a close genetic relationship with a non-negligible amount of gene flows but were genetically distant from JC, apart from Bezoars. An average of 2039 ROHs were present in the autosomal genome per individual. The ROH-based inbreeding estimates in JC goats generally showed moderate values ranging from 0.134 to 0.264, mainly due to rapid declines in the effective population size during recent generations. The annotated genes (e.g., IL2, IL7, and KIT) overlapping with ROH islands were significantly enriched in immune-related biological processes. Further, we found 61 genes (e.g., STIM1, MYO9A, and KHDRBS2) under positive selection in JC goats via three complementary approaches, which may underly genetic adaptations to local environmental conditions. Our findings provided references for the conservation and sustainable utilization of JC goats.
Collapse
|
22
|
Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in southern China. PLoS One 2022; 17:e0271718. [PMID: 36006904 PMCID: PMC9409551 DOI: 10.1371/journal.pone.0271718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Runs of homozygosity (ROH) are continuous homozygous segments from the common ancestor of parents. Evaluating ROH pattern can help to understand inbreeding level and genetic basis of important traits. In this study, three representative cattle populations including Leiqiong cattle (LQC), Lufeng cattle (LFC) and Hainan cattle (HNC) were genotyped using the Illumina BovineHD SNPs array (770K) to assess ROH pattern at genome wide level. Totally, we identified 26,537 ROH with an average of 153 ROH per individual. The sizes of ROH ranged from 0.5 to 53.26Mb, and the average length was 1.03Mb. The average of FROH ranged from 0.10 (LQC) to 0.15 (HNC). Moreover, we identified 34 ROH islands (with frequency > 0.5) across genome. Based on these regions, we observed several breed-specific candidate genes related to adaptive traits. Several common genes related to immunity (TMEM173, MZB1 and SIL1), and heat stress (DNAJC18) were identified in all three populations. Three genes related to immunity (UGP2), development (PURA) and reproduction (VPS54) were detected in both HNC and LQC. Notably, we identified several breed-specific genes related to sperm development (BRDT and SPAG6) and heat stress (TAF7) in HNC, and immunity (CDC23 and NME5) and development (WNT87) in LFC. Our findings provided valuable insights into understanding the genomic homozygosity pattern and promoting the conservation of genetic resources of Chinese indigenous cattle.
Collapse
|
23
|
Chokoe TC, Hadebe K, Muchadeyi FC, Nephawe KA, Dzomba EF, Mphahlele TD, Matelele TC, Mtileni BJ. Conservation status and historical relatedness of South African communal indigenous goat populations using a genome-wide single-nucleotide polymorphism marker. Front Genet 2022; 13:909472. [PMID: 36017496 PMCID: PMC9395594 DOI: 10.3389/fgene.2022.909472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Indigenous goats form the majority of populations in smallholder, low input, low output production systems and are considered an important genetic resource due to their adaptability to different production environments and support of communal farming. Effective population size (Ne), inbreeding levels, and the runs of homozygosity (ROHs) are effective tools for exploring the genetic diversity and understanding the demographic history in efforts to support breeding strategies to use and conserve genetic resources. Across populations, the current Ne of Gauteng was the lowest at 371 animals, while the historical Ne across populations suggests that the ancestor Ne has decreased by 53.86%, 44.58%, 42.16%, and 41.16% in Free State (FS), North West (NW), Limpopo (LP), and Gauteng (GP), respectively, over the last 971 generations. Genomic inbreeding levels related to ancient kinship (FROH > 5 Mb) were highest in FS (0.08 ± 0.09) and lowest in the Eastern Cape (EC) (0.02 ± 0.02). A total of 871 ROH island regions which include important environmental adaptation and hermo-tolerance genes such as IL10RB, IL23A, FGF9, IGF1, EGR1, MTOR, and MAPK3 were identified (occurring in over 20% of the samples) in FS (n = 37), GP (n = 42), and NW (n = 2) populations only. The mean length of ROH across populations was 7.76 Mb and ranged from 1.61 Mb in KwaZulu-Natal (KZN) to 98.05 Mb (GP and NW). The distribution of ROH according to their size showed that the majority (n = 1949) of the detected ROH were > 5 Mb in length compared to the other categories. Assuming two hypothetical ancestral populations, the populations from KZN and LP are revealed, supporting PC 1. The genomes of KZN and LP share a common origin but have substantial admixture from the EC and NW populations. The findings revealed that the occurrence of high Ne and autozygosity varied largely across breeds in communal indigenous goat populations at recent and ancient events when a genome-wide single-nucleotide polymorphism (SNP) marker was used. The use of Illumina goat SNP50K BeadChip shows that there was a migration route of communal indigenous goat populations from the northern part (LP) of South Africa to the eastern areas of the KZN that confirmed their historical relatedness and coincides with the migration periods of the Bantu nation.
Collapse
Affiliation(s)
- T. C. Chokoe
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
- School of Agriculture & Environmental Sciences, University of Limpopo, Polokwane, South Africa
- *Correspondence: T. C. Chokoe,
| | - K. Hadebe
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - F. C. Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - K. A. Nephawe
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - E. F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of Kwazulu-Natal, Scottsville, South African
| | - T. D. Mphahlele
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - T. C. Matelele
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - B. J. Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
24
|
Toro-Ospina AM, Herrera Rios AC, Pimenta Schettini G, Vallejo Aristizabal VH, Bizarria dos Santos W, Zapata CA, Ortiz Morea EG. Identification of Runs of Homozygosity Islands and Genomic Estimated Inbreeding Values in Caqueteño Creole Cattle (Colombia). Genes (Basel) 2022; 13:genes13071232. [PMID: 35886015 PMCID: PMC9318017 DOI: 10.3390/genes13071232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
The Caqueteño Creole (CAQ) is a native breed of cattle from the Caquetá department (Colombia), adapted to tropical conditions, which is extremely important to production systems in those regions. However, CAQ is poorly studied. In this sense, population structure studies associated with runs of homozygosity (ROH) analysis would allow for a better understanding of CAQ. Through ROH analysis, it is possible to reveal genetic relationships between individuals, measure genome inbreeding levels, and identify regions associated with traits of economic interest. Samples from a CAQ population (n = 127) were genotyped with the Bovine HD BeadChip (777,000 SNPs) and analyzed with the PLINK 1.9 program to estimate FROH and ROH islands. We highlighted a decrease in inbreeding frequency for FROH 4−8 Mb, 8−16 Mb, and >16 Mb classes, indicating inbreeding control in recent matings. We also found genomic hotspot regions on chromosomes 3, 5, 6, 8, 16, 20, and 22, where chromosome 20 harbored four hotspots. Genes in those regions were associated with fertility and immunity traits, muscle development, and environmental resistance, which may be present in the CAQ breed due to natural selection. This indicates potential for production systems in tropical regions. However, further studies are necessary to elucidate the CAQ production objective.
Collapse
Affiliation(s)
- Alejandra M. Toro-Ospina
- Amazonian Research Center CIMAZ-MACAGUAL, Laboratory of Agrobiotechnology, University of the Amazon, Florencia 180002, Colombia; (A.C.H.R.); (V.H.V.A.); (C.A.Z.); (E.G.O.M.)
- Correspondence:
| | - Ana C. Herrera Rios
- Amazonian Research Center CIMAZ-MACAGUAL, Laboratory of Agrobiotechnology, University of the Amazon, Florencia 180002, Colombia; (A.C.H.R.); (V.H.V.A.); (C.A.Z.); (E.G.O.M.)
- Science and Humanities Faculty, Digital University Institute of Antioquia, IUDigital, Medellin, Antioquia 50010, Colombia
| | - Gustavo Pimenta Schettini
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0002, USA;
| | - Viviana H. Vallejo Aristizabal
- Amazonian Research Center CIMAZ-MACAGUAL, Laboratory of Agrobiotechnology, University of the Amazon, Florencia 180002, Colombia; (A.C.H.R.); (V.H.V.A.); (C.A.Z.); (E.G.O.M.)
| | - Wellington Bizarria dos Santos
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil;
| | - Cesar A. Zapata
- Amazonian Research Center CIMAZ-MACAGUAL, Laboratory of Agrobiotechnology, University of the Amazon, Florencia 180002, Colombia; (A.C.H.R.); (V.H.V.A.); (C.A.Z.); (E.G.O.M.)
| | - Edna Gicela Ortiz Morea
- Amazonian Research Center CIMAZ-MACAGUAL, Laboratory of Agrobiotechnology, University of the Amazon, Florencia 180002, Colombia; (A.C.H.R.); (V.H.V.A.); (C.A.Z.); (E.G.O.M.)
| |
Collapse
|
25
|
Colpitts J, McLoughlin PD, Poissant J. Runs of homozygosity in Sable Island feral horses reveal the genomic consequences of inbreeding and divergence from domestic breeds. BMC Genomics 2022; 23:501. [PMID: 35820826 PMCID: PMC9275264 DOI: 10.1186/s12864-022-08729-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding inbreeding and its impact on fitness and evolutionary potential is fundamental to species conservation and agriculture. Long stretches of homozygous genotypes, known as runs of homozygosity (ROH), result from inbreeding and their number and length can provide useful population-level information on inbreeding characteristics and locations of signatures of selection. However, the utility of ROH for conservation is limited for natural populations where baseline data and genomic tools are lacking. Comparing ROH metrics in recently feral vs. domestic populations of well understood species like the horse could provide information on the genetic health of those populations and offer insight into how such metrics compare between managed and unmanaged populations. Here we characterized ROH, inbreeding coefficients, and ROH islands in a feral horse population from Sable Island, Canada, using ~41 000 SNPs and contrasted results with those from 33 domestic breeds to assess the impacts of isolation on ROH abundance, length, distribution, and ROH islands. RESULTS ROH number, length, and ROH-based inbreeding coefficients (FROH) in Sable Island horses were generally greater than in domestic breeds. Short runs, which typically coalesce many generations prior, were more abundant than long runs in all populations, but run length distributions indicated more recent population bottlenecks in Sable Island horses. Nine ROH islands were detected in Sable Island horses, exhibiting very little overlap with those found in domestic breeds. Gene ontology (GO) enrichment analysis for Sable Island ROH islands revealed enrichment for genes associated with 3 clusters of biological pathways largely associated with metabolism and immune function. CONCLUSIONS This study indicates that Sable Island horses tend to be more inbred than their domestic counterparts and that most of this inbreeding is due to historical bottlenecks and founder effects rather than recent mating between close relatives. Unique ROH islands in the Sable Island population suggest adaptation to local selective pressures and/or strong genetic drift and highlight the value of this population as a reservoir of equine genetic variation. This research illustrates how ROH analyses can be applied to gain insights into the population history, genetic health, and divergence of wild or feral populations of conservation concern.
Collapse
Affiliation(s)
- Julie Colpitts
- Department of Biology, University of Saskatchewan, Saskatchewan, Canada.
| | | | - Jocelyn Poissant
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
26
|
Ugnivenko A, Nosevych D, Antoniuk T, Chumachenko I, Ivaniuta A, Slobodyanyuk N, Kryzhova Y, Rozbytska T, Gruntovskyi M, Marchyshyna Y. Manifestation of living and post-slaughter traits of productivity in inbred and outbred bull calves of Ukrainian meat cattle breed. POTRAVINARSTVO 2022. [DOI: 10.5219/1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selection in meat cattle herds requires caution due to the manifestation of inbred depression in traits that affect the economics of this livestock industry. This paper analyses the productivity of inbred and outbred bull calves of the Ukrainian meat cattle breed and justifies methods of pair selection in purebred herds with natural pairing. In bull calves, the growth of animals and traits of their meat productivity after slaughter were considered. Inbreeding was determined based on their pedigree. Inbred animals tended to have a growth rate of 10.2% from birth to 8 months of age. Afterwards, their average daily gain in live weight decreases sharply compared to outbred peers, who grow faster over a more extended period. From 8 to 18 months of age, it is probably (p >0.95) higher by 27.3% compared to inbred animals. Inbred bull calves have higher variability (Cv,%) in average daily gains. This indicates different adaptations to the environment during the suckling period and after weaning. Outbred animals tend to gain 2.3% of body weight at 12 months, 4.7 at 15 months, and 10.3% at 18 months. Its variability with age decreases by 7.4 points in inbred bull calves and 0.4 points in outbred ones, from 8 to 18 months. The inbred animals spent 29.5% more feed per kg of gain (p >0.95) than the outbred ones. Inbred bull calves vs outbred ones at 15 and 18 months of age tend to improve the expression of meat forms by 1.3 and 2.7%. They are relatively shorter and have a more rounded barrel. As a result, they have a shorter period of rapid growth. With the small size of the Ukrainian meat cattle population, one of the most important problems is reducing genetic variation in beef productivity traits and manifesting inbred depression in them. In purebred commercial herds, the mating of close animals should be avoided. To do this, an "order" for bulls should be made, and pairs should be selected without using inbreeding at different grades. Thus, outbred bull calves will reach live weight more quickly, spending less feed per growth unit, and have better basic slaughter traits.
Collapse
|
27
|
Zhang Y, Zhuo Y, Ning C, Zhou L, Liu JF. Estimate of inbreeding depression on growth and reproductive traits in a Large White pig population. G3 (BETHESDA, MD.) 2022; 12:jkac118. [PMID: 35551391 PMCID: PMC9258530 DOI: 10.1093/g3journal/jkac118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
With the broad application of genomic information, SNP-based measures of estimating inbreeding have been widely used in animal breeding, especially based on runs of homozygosity. Inbreeding depression is better estimated by SNP-based inbreeding coefficients than pedigree-based inbreeding in general. However, there are few comprehensive comparisons of multiple methods in pigs so far, to some extent limiting their application. In this study, to explore an appropriate strategy for estimating inbreeding depression on both growth traits and reproductive traits in a Large White pig population, we compared multiple methods for the inbreeding coefficient estimation based on both pedigree and genomic information. This pig population for analyzing the influence of inbreeding was from a pig breeding farm in the Inner Mongolia of China. There were 26,204 pigs with records of age at 100 kg (AGE) and back-fat thickness at 100 kg (BF), and 6,656 sows with reproductive records of the total number of piglets at birth (TNB), and the number of alive piglets at birth (NBA), and litter weight at birth. Inbreeding depression affected growth and reproductive traits. The results indicated that pedigree-based and SNP-based inbreeding coefficients had significant effects on AGE, TNB, and NBA, except for BF. However, only SNP-based inbreeding coefficients revealed a strong association with inbreeding depression on litter weight at birth. Runs of homozygosity-based methods showed a slight advantage over other methods in the correlation analysis of inbreeding coefficients and estimation of inbreeding depression. Furthermore, our results demonstrated that the model-based approach (RZooRoH) could avoid miscalculations of inbreeding and inbreeding depression caused by inappropriate parameters, which had a good performance on both AGE and reproductive traits. These findings might improve the extensive application of runs of homozygosity analysis in pig breeding and breed conservation.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yue Zhuo
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271000, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian-Feng Liu
- Corresponding author: College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China. ; Corresponding author: College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
28
|
Dadousis C, Ablondi M, Cipolat-Gotet C, van Kaam JT, Marusi M, Cassandro M, Sabbioni A, Summer A. Genomic inbreeding coefficients using imputed genotypes: Assessing different estimators in Holstein-Friesian dairy cows. J Dairy Sci 2022; 105:5926-5945. [DOI: 10.3168/jds.2021-21125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
|
29
|
Wang S, Yang J, Li G, Ding R, Zhuang Z, Ruan D, Wu J, Yang H, Zheng E, Cai G, Wang X, Wu Z. Identification of Homozygous Regions With Adverse Effects on the Five Economic Traits of Duroc Pigs. Front Vet Sci 2022; 9:855933. [PMID: 35573406 PMCID: PMC9096619 DOI: 10.3389/fvets.2022.855933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Runs of homozygosity (ROH) are widely used to estimate genomic inbreeding, which is linked to inbreeding depression on phenotypes. However, the adverse effects of specific homozygous regions on phenotypic characteristics are rarely studied in livestock. In this study, the 50 K SNP data of 3,770 S21 Duroc (American origin) and 2,096 S22 Duroc (Canadian origin) pigs were used to investigate the harmful ROH regions on five economic traits. The results showed that the two Duroc lines had different numbers and distributions of unfavorable ROHs, which may be related to the different selection directions and intensities between the two lines. A total of 114 and 58 ROH segments were found with significant adverse effects on the economic traits of S21 and S22 pigs, respectively. Serval pleiotropic ROHs were detected to reduce two or multiple phenotypic performances in two Duroc populations. Candidate genes in these shared regions were mainly related to growth, fertility, immunity, and fat deposition. We also observed that some ROH genotypes may cause opposite effects on different traits. This study not only enhances our understanding of the adverse effects of ROH on phenotypes, but also indicates that ROH information could be incorporated into breeding programs to estimate and control the detrimental effects of homozygous regions.
Collapse
Affiliation(s)
- Shiyuan Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Guixin Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Huaqiang Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Xiaopeng Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- *Correspondence: Xiaopeng Wang
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
- Zhenfang Wu
| |
Collapse
|
30
|
Abstract
This study is part of a project (Sheep Al.L. Chain, RDP Veneto Region) aiming to improve the competitiveness of local sheep breed farms through valorization of their links with mountain agroecosystems. We considered two local sheep breeds of the eastern Italian Alps, “Alpagota” and “Lamon”, which have a population of 400 and 3000 heads, respectively, and are used to produce lambs for typical products. A total of 35 farms (17 for Alpagota, with a total of 1652 heads; 18 for Lamon, with a total of 337 heads) were surveyed to collect data on farm organization, flock structure and management (farm questionnaire), land use management (GIS approach), and value chain organization (participatory processes). The link between the two local sheep breeds and mountain agroecosystems is very strong: land use is characterized by a large number of small patches of grasslands in marginal areas. Moving from the results of this study, a set of strategies aiming at improving the competitiveness of these systems have been proposed. Communication to the consumers and to the relevant stakeholders of the added value of local sheep breeds in marginal mountain agroecosystems can contribute to favor the resilience of small ruminant farms and the conservation of Alpine sheep breeds.
Collapse
|
31
|
Wang X, Li G, Ruan D, Zhuang Z, Ding R, Quan J, Wang S, Jiang Y, Huang J, Gu T, Hong L, Zheng E, Li Z, Cai G, Wu Z, Yang J. Runs of Homozygosity Uncover Potential Functional-Altering Mutation Associated With Body Weight and Length in Two Duroc Pig Lines. Front Vet Sci 2022; 9:832633. [PMID: 35350434 PMCID: PMC8957889 DOI: 10.3389/fvets.2022.832633] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Runs of homozygosity (ROH) are widely used to investigate genetic diversity, demographic history, and positive selection signatures of livestock. Commercial breeds provide excellent materials to reveal the landscape of ROH shaped during the intense selection process. Here, we used the GeneSeek Porcine 50K single-nucleotide polymorphism (SNP) Chip data of 3,770 American Duroc (AD) and 2,096 Canadian Duroc (CD) pigs to analyze the genome-wide ROH. First, we showed that AD had a moderate genetic differentiation with CD pigs, and AD had more abundant genetic diversity and significantly lower level of inbreeding than CD pigs. In addition, sows had larger levels of homozygosity than boars in AD pigs. These differences may be caused by differences in the selective intensity. Next, ROH hotspots revealed that many candidate genes are putatively under selection for growth, sperm, and muscle development in two lines. Population-specific ROHs inferred that AD pigs may have a special selection for female reproduction, while CD pigs may have a special selection for immunity. Moreover, in the overlapping ROH hotspots of two Duroc populations, we observed a missense mutation (rs81216249) located in the growth and fat deposition-related supergene (ARSB-DMGDH-BHMT) region. The derived allele of this variant originated from European pigs and was nearly fixed in Duroc pigs. Further selective sweep and association analyses indicated that this supergene was subjected to strong selection and probably contributed to the improvement of body weight and length in Duroc pigs. These findings will enhance our understanding of ROH patterns in different Duroc lines and provide promising trait-related genes and a functional-altering marker that can be used for genetic improvement of pigs.
Collapse
Affiliation(s)
- Xiaopeng Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Guixin Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shiyuan Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jinyan Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| |
Collapse
|
32
|
Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens. BMC Genomics 2022; 23:91. [PMID: 35100979 PMCID: PMC8805376 DOI: 10.1186/s12864-021-08280-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/23/2021] [Indexed: 01/12/2023] Open
Abstract
Background In Tibet, the two most important breeds are Tibetan chicken and Lhasa white chicken, and the duo exhibit specific adaptations to the high altitude thereby supplying proteins for humans living in the plateau. These breeds are partly included in the conservation plans because they represent important chicken genetic resources. However, the genetic diversity of these chickens is rarely investigated. Based on whole-genome sequencing data of 113 chickens from 4 populations of Tibetan chicken including Shigatse (SH), Nyemo (NM), Dagze (DZ) and Nyingchi (LZ), as well as Lhasa white (LW) chicken breed, we investigated the genetic diversity of these chicken breeds by genetic differentiation, run of homozygosity (ROH), genomic inbreeding and selection signature analyses. Results Our results revealed high genetic diversity across the five chicken populations. The linkage disequilibrium decay was highest in LZ, while subtle genetic differentiation was found between LZ and other populations (Fst ranging from 0.05 to 0.10). Furthermore, the highest ROH-based inbreeding estimate (FROH) of 0.11 was observed in LZ. In other populations, the FROH ranged from 0.04 to 0.06. In total, 74, 111, 62, 42 and 54 ROH islands containing SNPs ranked top 1% for concurrency were identified in SH, NM, DZ, LZ and LW, respectively. Genes common to the ROH islands in the five populations included BDNF, CCDC34, LGR4, LIN7C, GLS, LOC101747789, MYO1B, STAT1 and STAT4. This suggested their essential roles in adaptation of the chickens. We also identified a common candidate genomic region harboring AMY2A, NTNG1 and VAV3 genes in all populations. These genes had been implicated in digestion, neurite growth and high-altitude adaptation. Conclusions High genetic diversity is observed in Tibetan native chickens. Inbreeding is more intense in the Nyingchi population which is also genetically distant from other chicken populations. Candidate genes in ROH islands are likely to be the drivers of adaptation to high altitude exhibited by the five Tibetan native chicken populations. Our findings contribute to the understanding of genetic diversity offer valuable insights for the genetic mechanism of adaptation, and provide veritable tools that can help in the design and implementation of breeding and conservation strategies for Tibetan native chickens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08280-z.
Collapse
|
33
|
Schiavo G, Bovo S, Ribani A, Moscatelli G, Bonacini M, Prandi M, Mancin E, Mantovani R, Dall'Olio S, Fontanesi L. Comparative analysis of inbreeding parameters and runs of homozygosity islands in 2 Italian autochthonous cattle breeds mainly raised in the Parmigiano-Reggiano cheese production region. J Dairy Sci 2021; 105:2408-2425. [PMID: 34955250 DOI: 10.3168/jds.2021-20915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023]
Abstract
Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (FPED). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.
Collapse
Affiliation(s)
- Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Giulia Moscatelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Massimo Bonacini
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Via Masaccio 11, 42124 Reggio Emilia, Italy
| | - Marco Prandi
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Via Masaccio 11, 42124 Reggio Emilia, Italy
| | - Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Stefania Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy.
| |
Collapse
|
34
|
Neumann GB, Korkuć P, Arends D, Wolf MJ, May K, Reißmann M, Elzaki S, König S, Brockmann GA. Design and performance of a bovine 200 k SNP chip developed for endangered German Black Pied cattle (DSN). BMC Genomics 2021; 22:905. [PMID: 34922441 PMCID: PMC8684242 DOI: 10.1186/s12864-021-08237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/03/2021] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND German Black Pied cattle (DSN) are an endangered dual-purpose breed which was largely replaced by Holstein cattle due to their lower milk yield. DSN cattle are kept as a genetic reserve with a current herd size of around 2500 animals. The ability to track sequence variants specific to DSN could help to support the conservation of DSN's genetic diversity and to provide avenues for genetic improvement. RESULTS Whole-genome sequencing data of 304 DSN cattle were used to design a customized DSN200k SNP chip harboring 182,154 variants (173,569 SNPs and 8585 indels) based on ten selection categories. We included variants of interest to DSN such as DSN unique variants and variants from previous association studies in DSN, but also variants of general interest such as variants with predicted consequences of high, moderate, or low impact on the transcripts and SNPs from the Illumina BovineSNP50 BeadChip. Further, the selection of variants based on haplotype blocks ensured that the whole-genome was uniformly covered with an average variant distance of 14.4 kb on autosomes. Using 300 DSN and 162 animals from other cattle breeds including Holstein, endangered local cattle populations, and also a Bos indicus breed, performance of the SNP chip was evaluated. Altogether, 171,978 (94.31%) of the variants were successfully called in at least one of the analyzed breeds. In DSN, the number of successfully called variants was 166,563 (91.44%) while 156,684 (86.02%) were segregating at a minor allele frequency > 1%. The concordance rate between technical replicates was 99.83 ± 0.19%. CONCLUSION The DSN200k SNP chip was proved useful for DSN and other Bos taurus as well as one Bos indicus breed. It is suitable for genetic diversity management and marker-assisted selection of DSN animals. Moreover, variants that were segregating in other breeds can be used for the design of breed-specific customized SNP chips. This will be of great value in the application of conservation programs for endangered local populations in the future.
Collapse
Affiliation(s)
- Guilherme B Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Manuel J Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Gießen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Gießen, Germany
| | - Monika Reißmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Salma Elzaki
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Khartoum North, Sudan
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Gießen, Germany
| | - Gudrun A Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Bertolini F, Moscatelli G, Schiavo G, Bovo S, Ribani A, Ballan M, Bonacini M, Prandi M, Dall'Olio S, Fontanesi L. Signatures of selection are present in the genome of two close autochthonous cattle breeds raised in the North of Italy and mainly distinguished for their coat colours. J Anim Breed Genet 2021; 139:307-319. [PMID: 34841617 PMCID: PMC9300179 DOI: 10.1111/jbg.12659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
Autochthonous cattle breeds are genetic resources that, in many cases, have been fixed for inheritable exterior phenotypes useful to understand the genetic mechanisms affecting these breed-specific traits. Reggiana and Modenese are two closely related autochthonous cattle breeds mainly raised in the production area of the well-known Protected Designation of Origin Parmigiano-Reggiano cheese, in the North of Italy. These breeds can be mainly distinguished for their standard coat colour: solid red in Reggiana and solid white with pale shades of grey in Modenese. In this study we genotyped with the GeneSeek GGP Bovine 150k single nucleotide polymorphism (SNP) chip almost half of the extant cattle populations of Reggiana (n = 1109 and Modenese (n = 326) and used genome-wide information in comparative FST analyses to detect signatures of selection that diverge between these two autochthonous breeds. The two breeds could be clearly distinguished using multidimensional scaling plots and admixture analysis. Considering the top 0.0005% FST values, a total of 64 markers were detected in the single-marker analysis. The top FST value was detected for the melanocortin 1 receptor (MC1R) gene mutation, which determines the red coat colour of the Reggiana breed. Another coat colour gene, agouti signalling protein (ASIP), emerged amongst this list of top SNPs. These results were also confirmed with the window-based analyses, which included 0.5-Mb or 1-Mb genome regions. As variability affecting ASIP has been associated with white coat colour in sheep and goats, these results highlighted this gene as a strong candidate affecting coat colour in Modenese breed. This study demonstrates how population genomic approaches designed to take advantage from the diversity between local genetic resources could provide interesting hints to explain exterior traits not yet completely investigated in cattle.
Collapse
Affiliation(s)
- Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Giulia Moscatelli
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giuseppina Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Samuele Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Anisa Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Mohamad Ballan
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Massimo Bonacini
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Reggio Emilia, Italy
| | - Marco Prandi
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Reggio Emilia, Italy
| | - Stefania Dall'Olio
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Luca Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Correlation of Genomic and Pedigree Inbreeding Coefficients in Small Cattle Populations. Animals (Basel) 2021; 11:ani11113234. [PMID: 34827966 PMCID: PMC8614534 DOI: 10.3390/ani11113234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This study aimed to evaluate the consistency of different methodologies and sources of information used to estimate inbreeding coefficients in small populations by analyzing the correlation between them in the Holstein population of Mexico and to choose the best option in order to aid breeding programs to improve the productive traits of Holstein cattle in small-specialized populations. Abstract This study aimed to identify inbreeding coefficient (F) estimators useful for improvement programs in a small Holstein population through the evaluation of different methodologies in the Mexican Holstein population. F was estimated as follows: (a) from pedigree information (Fped); (b) through runs of homozygosity (Froh); (c) from the number of observed and expected homozygotic SNP in the individuals (Fgeno); (d) through the genomic relationship matrix (Fmg). The study included information from 4277 animals with pedigree records and 100,806 SNP. The average and standard deviation values of F were 3.11 ± 2.30 for Fped, −0.02 ± 3.55 for Fgeno, 2.77 ± 0.71 for Froh and 3.03 ± 3.05 for Fmg. The correlations between coefficients varied from 0.30 between Fped and Froh, to 0.96 between Fgeno and Fmg. Differences in the level of inbreeding among the parent’s country of origin were found regardless of the method used. The correlations among genomic inbreeding coefficients were high; however, they were low with Fped, so further research on this topic is required.
Collapse
|
37
|
Weng Z, Xu Y, Zhong M, Li W, Chen J, Zhong F, Du B, Zhang B, Huang X. Runs of homozygosity analysis reveals population characteristics of yellow-feathered chickens using re-sequencing data. Br Poult Sci 2021; 63:307-315. [PMID: 34747677 DOI: 10.1080/00071668.2021.2003752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. To evaluate the inbreeding of yellow-feathered chickens (YFCs) and identify genes related to their unique characteristics, whole-genome re-sequencing data were applied to detect runs of homozygosity (ROH) in the genomes of ten YFC breeds. The number, length, distribution of ROH, and inbreeding coefficient in different YFC populations were calculated. Genomic regions with high frequency in ROH were annotated.2. In total, 25,547 ROH with an average length of 335 kb were detected, with most being <1 Mb. The domination of short ROH reflected the long breeding history of this chicken. The number, length, frequency, and distribution of ROH varied among chicken populations, and high genetic diversity was maintained.3. Numerous genes related to YFC characteristics were identified in the high-frequency ROH regions. Among these, IFNA, IFNB, IL11RA, IL22RA1, IFNLR1, and TRIF genes were involved in disease resistance. The AMY, G6PC, SDHB, GCNT4, and ACO genes were associated with energy material metabolism; and FABPL, AQP7, ACAA2, and RYR2 were related to meat quality and flavour. The KITLG, CREB3, RYR2, and LGR4 genes, related to pigmentation, were detected.4. This ROH-based inbreeding evaluation laid the foundation for breeding and conservation of YFC populations, and the candidate genes identified can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Zhuoxian Weng
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Yongjie Xu
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Ming Zhong
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Weina Li
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Jiebo Chen
- Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Fusheng Zhong
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Bingwang Du
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Bin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xunhe Huang
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| |
Collapse
|
38
|
Fabbri MC, Dadousis C, Tiezzi F, Maltecca C, Lozada-Soto E, Biffani S, Bozzi R. Genetic diversity and population history of eight Italian beef cattle breeds using measures of autozygosity. PLoS One 2021; 16:e0248087. [PMID: 34695128 PMCID: PMC8544844 DOI: 10.1371/journal.pone.0248087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
In the present study, GeneSeek GGP-LDv4 33k single nucleotide polymorphism chip was used to detect runs of homozygosity (ROH) in eight Italian beef cattle breeds, six breeds with distribution limited to Tuscany (Calvana, Mucca Pisana, Pontremolese) or Sardinia (Sarda, Sardo Bruna and Sardo Modicana) and two cosmopolitan breeds (Charolais and Limousine). ROH detection analyses were used to estimate autozygosity and inbreeding and to identify genomic regions with high frequency of ROH, which might reflect selection signatures. Comparative analysis among breeds revealed differences in length and distribution of ROH and inbreeding levels. The Charolais, Limousine, Sarda, and Sardo Bruna breeds were found to have a high frequency of short ROH (~ 15.000); Calvana and Mucca Pisana presented also runs longer than 16 Mbp. The highest level of average genomic inbreeding was observed in Tuscan breeds, around 0.3, while Sardinian and cosmopolitan breeds showed values around 0.2. The population structure and genetic distances were analyzed through principal component and multidimensional scaling analyses, and resulted in a clear separation among the breeds, with clusters related to productive purposes. The frequency of ROH occurrence revealed eight breed-specific genomic regions where genes of potential selective and conservative interest are located (e.g. MYOG, CHI3L1, CHIT1 (BTA16), TIMELESS, APOF, OR10P1, OR6C4, OR2AP1, OR6C2, OR6C68, CACNG2 (BTA5), COL5A2 and COL3A1 (BTA2)). In all breeds, we found the largest proportion of homozygous by descent segments to be those that represent inbreeding events that occurred around 32 generations ago, with Tuscan breeds also having a significant proportion of segments relating to more recent inbreeding.
Collapse
Affiliation(s)
- Maria Chiara Fabbri
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
- * E-mail:
| | - Christos Dadousis
- Dipartimento di Scienze Medico‐Veterinarie, Università di Parma, Parma, Italy
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States of America
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States of America
| | - Emmanuel Lozada-Soto
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States of America
| | - Stefano Biffani
- Institute of Agricultural Biology and Biotechnology (CNR), Milano, Italy
| | - Riccardo Bozzi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
| |
Collapse
|
39
|
Genomic characterization of the nucleus for conservation of the Chino Santandereano breed using SNP markers. Trop Anim Health Prod 2021; 53:492. [PMID: 34596804 DOI: 10.1007/s11250-021-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The Chino Santandereano (CHS) creole cattle breed has undergone an adaptation process of more than 500 years to the Colombian mountainous tropics. Despite its advantages, the breed has been replaced by specialized cattle that put it at risk of extinction. The aim of this work was to estimate the genomic diversity and population structure of the nucleus of conservation of the CHS breed. Thirty-seven CHS and 20 Brahman animals were genotyped due to the possible introgression of genes with the GGP Bovine LD v3 chip. Quality control was performed, and linkage disequilibrium (LD), effective population size (Ne), ROH segments, homozygosity, and genomic inbreeding in the breed were estimated. Subsequently, 50 K genomic information of the Holstein (n = 30) and Romosinuano (n = 8) breeds were included to estimate the minor allele frequency (MAF) with common markers and constructing the graphs of the principal component analysis (PCA). Pairwise FSTs were estimated and a neighbor-joining tree was constructed using the IBS matrix. Admixture was used with k = 2 to 10 for the racial composition. LD (r2) was found up to a distance of 0.13 Mb, r2 > 0.3 at a distance of 340.3 kb, and Ne of 32 ± 1. ROH inbreeding was 5.36 ± 0.86%, with a higher contribution from recent inbreeding (4.55%). The PCA showed that the creole breeds were closer together, and the Brahman was more distant. The admixture analysis suggested k = 5 possible ancestral groups and shows that within the CHS breed, there seem to be two different groups with little Holstein and Brahman introgression. The genetic diversity parameters obtained in this work show minimal diversity in this breed and reinforce the need to protect this resource and the conservation banks.
Collapse
|
40
|
Hajihosseinlo A, Nejati-Javaremi A, Miraei-Ashtiani SR. Genetic structure analysis in several populations of cattle using SNP genotypes. Anim Biotechnol 2021; 34:288-300. [PMID: 34591729 DOI: 10.1080/10495398.2021.1960360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Parameters such as effective population size (Ne), runs of homozygosity (ROH), and inbreeding based on ROH (FROH) can give new insight into the level of genetic diversity for the population under selection. This research aimed to measure the extent of linkage disequilibrium (LD), effective population size (Ne), Haplotype Block Structure, and runs of homozygosity (ROHs) in several populations of cattle using SNP genotypes. In this study, that the average r2 decreased with the increasing distance of SNP pairs. A general decrease in Ne can be seen for all four populations, indicating a loss of genetic diversity. The Iranian Holstein had the lowest level of genomic inbreeding at an ROH of 1, 5, 10 Mb, while the French Holstein had the highest. The maximum number of ROH is seen at a distance of less than 1 Mb, and the lowest number of ROH is seen at a distance of 10 Mb. The number of ROH decreases with increasing distance due to the increased recombination rate. This is a concern as an increase in inbreeding leads to a reduction in the effective population size, which was also evident in the study populations.
Collapse
Affiliation(s)
- Abbas Hajihosseinlo
- Department of Animal Science, University of Tehran Aras International Campus, Jolfa, Iran
| | | | | |
Collapse
|
41
|
Xu Z, Mei S, Zhou J, Zhang Y, Qiao M, Sun H, Li Z, Li L, Dong B, Oyelami FO, Wu J, Peng X. Genome-Wide Assessment of Runs of Homozygosity and Estimates of Genomic Inbreeding in a Chinese Composite Pig Breed. Front Genet 2021; 12:720081. [PMID: 34539748 PMCID: PMC8440853 DOI: 10.3389/fgene.2021.720081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/06/2021] [Indexed: 01/31/2023] Open
Abstract
The primary purpose of the current study was to assess the genetic diversity, runs of homozygosity (ROH) and ROH islands in a Chinese composite pig and explore hotspot regions for traces of selection. First, we estimated the length, number, and frequency of ROH in 262 Xidu black pigs using the Porcine SNP50 BeadChip and compared the estimates of inbreeding coefficients, which were calculated based on ROHs (FROH) and homozygosity (FHOM). Our result shows that a total of 7,248 ROH exceeding 1Mb were detected in 262 pigs. In addition, Sus scrofa chromosome (SSC) 8 and SSC10, respectively, has the highest and lowest chromosome coverage by ROH. These results suggest that inbreeding estimation based on total ROH may be a useful method, especially for crossbreed or composite populations. We also calculated an inbreeding coefficient of 0.077 from the total ROH. Eight ROH islands were found in this study. These ROH islands harbored genes associated with fat deposition, muscular development, reproduction, ear shape, and adaptation, such as TRAF7, IGFBP7, XPO1, SLC26A8, PPARD, and OR1F1. These findings may help to understand the effects of environmental and artificial selection on the genome structure of composite pigs. Our results provide a basis for subsequent genomic selection (GS), and provides a reference for the hybrid utilization of other pig breeds.
Collapse
Affiliation(s)
- Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Lianghua Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Binke Dong
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Favour Oluwapelumi Oyelami
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
42
|
Investigating inbreeding in the turkey (Meleagris gallopavo) genome. Poult Sci 2021; 100:101366. [PMID: 34525446 PMCID: PMC8445901 DOI: 10.1016/j.psj.2021.101366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
The detrimental effects of increased homozygosity due to inbreeding have prompted the development of methods to reduce inbreeding. The detection of runs of homozygosity (ROH), or contiguous stretches of homozygous marker genotypes, can be used to describe and quantify the level of inbreeding in an individual. The estimation of inbreeding coefficients can be calculated based on pedigree information, ROH, or the genomic relationship matrix. The aim of this study was to detect and describe ROH in the turkey genome and compare estimates of pedigree-based inbreeding coefficients (FPED) with genomic-based inbreeding coefficients estimated from ROH (FROH) and the genomic relationship matrix (FGRM). A total of 2,616,890 pedigree records were available. Of these records, 6,371 genotyped animals from three purebred turkey (Meleagris gallopavo) lines between 2013 and 2019 were available, and these were obtained using a dense single nucleotide polymorphism array (56,452 SNPs). The overall mean length of detected ROH was 2.87 ± 0.29 Mb with a mean number of 84.87 ± 8.79 ROH per animal. Short ROH with lengths of 1 to 2 Mb long were the most abundant throughout the genome. Mean ROH coverage differed greatly between chromosomes and lines. Considering inbreeding coefficient means across all lines, genomic derived inbreeding coefficients (FROH = 0.27; FGRM = 0.32) were higher than coefficients estimated from pedigree records (FPED = 0.14). Correlations between FROH and FPED, FROH and FGRM, and FPED and FGRM ranged between 0.19 to 0.31, 0.68 to 0.73, and 0.17 to 0.30, respectively. Additionally, correlations between FROH from different lengths and FPED substantially increased with ROH length from -0.06 to 0.33. Results of the current research, including the distribution of ROH throughout the genome and ROH-derived inbreeding estimates, can provide a more comprehensive description of inbreeding in the turkey genome. This knowledge can be used to evaluate genetic diversity, a requirement for genetic improvement, and develop methods to minimize inbreeding in turkey breeding programs.
Collapse
|
43
|
Liu J, Shi L, Li Y, Chen L, Garrick D, Wang L, Zhao F. Estimates of genomic inbreeding and identification of candidate regions that differ between Chinese indigenous sheep breeds. J Anim Sci Biotechnol 2021; 12:95. [PMID: 34348773 PMCID: PMC8340518 DOI: 10.1186/s40104-021-00608-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A run of homozygosity (ROH) is a consecutive tract of homozygous genotypes in an individual that indicates it has inherited the same ancestral haplotype from both parents. Genomic inbreeding can be quantified based on ROH. Genomic regions enriched with ROH may be indicative of selection sweeps and are known as ROH islands. We carried out ROH analyses in five Chinese indigenous sheep breeds; Altay sheep (n = 50 individuals), Large-tailed Han sheep (n = 50), Hulun Buir sheep (n = 150), Short-tailed grassland sheep (n = 150), and Tibetan sheep (n = 50), using genotypes from an Ovine Infinium HD SNP BeadChip. RESULTS A total of 18,288 ROH were identified. The average number of ROH per individual across the five sheep breeds ranged from 39 (Hulun Buir sheep) to 78 (Large-tailed Han sheep) and the average length of ROH ranged from 0.929 Mb (Hulun Buir sheep) to 2.544 Mb (Large-tailed Han sheep). The effective population size (Ne) of Altay sheep, Large-tailed Han sheep, Hulun Buir sheep, Short-tailed grassland sheep and Tibetan sheep were estimated to be 81, 78, 253, 238 and 70 five generations ago. The highest ROH-based inbreeding estimate (FROH) was 0.0808 in Large-tailed Han sheep, whereas the lowest FROH was 0.0148 in Hulun Buir sheep. Furthermore, the highest proportion of long ROH fragments (> 5 Mb) was observed in the Large-tailed Han sheep breed which indicated recent inbreeding. In total, 49 ROH islands (the top 0.1% of the SNPs most commonly observed in ROH) were identified in the five sheep breeds. Three ROH islands were common to all the five sheep breeds, and were located on OAR2: 12.2-12.3 Mb, OAR12: 78.4-79.1 Mb and OAR13: 53.0-53.6 Mb. Three breed-specific ROH islands were observed in Altay sheep (OAR15: 3.4-3.8 Mb), Large-tailed Han sheep (ORA17: 53.5-53.8 Mb) and Tibetan sheep (ORA5:19.8-20.2 Mb). Collectively, the ROH islands harbored 78 unique genes, including 19 genes that have been documented as having associations with tail types, adaptation, growth, body size, reproduction or immune response. CONCLUSION Different ROH patterns were observed in five Chinese indigenous sheep breeds, which reflected their different population histories. Large-tailed Han sheep had the highest genomic inbreeding coefficients and the highest proportion of long ROH fragments indicating recent inbreeding. Candidate genes in ROH islands could be used to illustrate the genetic characteristics of these five sheep breeds. Our findings contribute to the understanding of genetic diversity and population demography, and help design and implement breeding and conservation strategies for Chinese sheep.
Collapse
Affiliation(s)
- Jiaxin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liang Chen
- The Affiliated High School of Peking University, Beijing, 100192 China
| | - Dorian Garrick
- A.L. Rae Centre of Genetics and Breeding, Massey University, Hamilton, 3240 New Zealand
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
44
|
Sumreddee P, Hay EH, Toghiani S, Roberts A, Aggrey SE, Rekaya R. Grid search approach to discriminate between old and recent inbreeding using phenotypic, pedigree and genomic information. BMC Genomics 2021; 22:538. [PMID: 34256689 PMCID: PMC8278650 DOI: 10.1186/s12864-021-07872-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background Although inbreeding caused by the mating of animals related through a recent common ancestor is expected to have more harmful effects on phenotypes than ancient inbreeding (old inbreeding), estimating these effects requires a clear definition of recent (new) and ancient (old) inbreeding. Several methods have been proposed to classify inbreeding using pedigree and genomic data. Unfortunately, these methods are largely based on heuristic criteria such as the number of generations from a common ancestor or length of runs of homozygosity (ROH) segments. To mitigate these deficiencies, this study aimed to develop a method to classify pedigree and genomic inbreeding into recent and ancient classes based on a grid search algorithm driven by the assumption that new inbreeding tends to have a more pronounced detrimental effect on traits. The proposed method was tested using a cattle population characterized by a deep pedigree. Results Effects of recent and ancient inbreeding were assessed on four growth traits (birth, weaning and yearling weights and average daily gain). Thresholds to classify inbreeding into recent and ancient classes were trait-specific and varied across traits and sources of information. Using pedigree information, inbreeding generated in the last 10 to 11 generations was considered as recent. When genomic information (ROH) was used, thresholds ranged between four to seven generations, indicating, in part, the ability of ROH segments to characterize the harmful effects of inbreeding in shorter periods of time. Nevertheless, using the proposed classification method, the discrimination between new and old inbreeding was less robust when ROH segments were used compared to pedigree. Using several model comparison criteria, the proposed approach was generally better than existing methods. Recent inbreeding appeared to be more harmful across the growth traits analyzed. However, both new and old inbreeding were found to be associated with decreased yearling weight and average daily gain. Conclusions The proposed method provided a more objective quantitative approach for the classification of inbreeding. The proposed method detected a clear divergence in the effects of old and recent inbreeding using pedigree data and it was superior to existing methods for all analyzed traits. Using ROH data, the discrimination between old and recent inbreeding was less clear and the proposed method was superior to existing approaches for two out of the four analyzed traits. Deleterious effects of recent inbreeding were detected sooner (fewer generations) using genomic information than pedigree. Difference in the results using genomic and pedigree information could be due to the dissimilarity in the number of generations to a common ancestor. Additionally, the uncertainty associated with the identification of ROH segments and associated inbreeding could have an effect on the results. Potential biases in the estimation of inbreeding effects may occur when new and old inbreeding are discriminated based on arbitrary thresholds. To minimize the impact of inbreeding, mating designs should take the different inbreeding origins into consideration. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07872-z.
Collapse
Affiliation(s)
- Pattarapol Sumreddee
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA, 30602, USA
| | - El Hamidi Hay
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT, 59301, USA.
| | - Sajjad Toghiani
- USDA Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Andrew Roberts
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT, 59301, USA
| | - Samuel E Aggrey
- Department of Poultry Science, The University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, The University of Georgia, Athens, GA, 30602, USA
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, The University of Georgia, Athens, GA, 30602, USA.,Department of Statistics, The University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
45
|
Tarekegn GM, Khayatzadeh N, Liu B, Osama S, Haile A, Rischkowsky B, Zhang W, Tesfaye K, Dessie T, Mwai OA, Djikeng A, Mwacharo JM. Ethiopian indigenous goats offer insights into past and recent demographic dynamics and local adaptation in sub-Saharan African goats. Evol Appl 2021; 14:1716-1731. [PMID: 34295359 PMCID: PMC8287980 DOI: 10.1111/eva.13118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge on how adaptive evolution and human socio-cultural and economic interests shaped livestock genomes particularly in sub-Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio-climatic conditions. Using 52K genome-wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation. Although runs of homozygosity (ROH) were ubiquitous genome-wide, there were clear differences in patterns of ROH length and abundance and in effective population sizes illustrating differences in genome homozygosity, evolutionary history, and management. Phylogenetic analysis incorporating patterns of genetic differentiation and gene flow with ancestry modelling highlighted past and recent intermixing and possible two deep ancient genetic ancestries that could have been brought by humans with the first introduction of goats in Africa. We observed four strong selection signatures that were specific to Arsi-Bale and Nubian goats. These signatures overlapped genomic regions with genes associated with morphological, adaptation, reproduction and production traits due possibly to selection under environmental constraints and/or human preferences. The regions also overlapped uncharacterized genes, calling for a comprehensive annotation of the goat genome. Our results provide insights into mechanisms leading to genome variation and differentiation in sub-Saharan Africa indigenous goats.
Collapse
Affiliation(s)
- Getinet M. Tarekegn
- Department of Animal Production and TechnologySchool of Animal Sciences and Veterinary MedicineBahir Dar UniversityBahir DarEthiopia
- Department of Animal Breeding and GeneticsSwedish University of Agricultural Sciences (SLU)UppsalaSweden
| | - Negar Khayatzadeh
- Department of Sustainable Agricultural SystemsDivision of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bin Liu
- Inner Mongolia Agricultural UniversityHohhotChina
| | - Sarah Osama
- The University of QueenslandSaint LuciaQLDAustralia
| | - Aynalem Haile
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | - Barbara Rischkowsky
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | | | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular BiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI)Addis AbabaEthiopia
| | - Okeyo A. Mwai
- International Livestock Research Institute (ILRI)NairobiKenya
| | - Appolinaire Djikeng
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| | - Joram M. Mwacharo
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| |
Collapse
|
46
|
Bovo S, Schiavo G, Kazemi H, Moscatelli G, Ribani A, Ballan M, Bonacini M, Prandi M, Dall'Olio S, Fontanesi L. Exploiting within-breed variability in the autochthonous Reggiana breed identified several candidate genes affecting pigmentation-related traits, stature and udder defects in cattle. Anim Genet 2021; 52:579-597. [PMID: 34182594 PMCID: PMC8519023 DOI: 10.1111/age.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 01/13/2023]
Abstract
Autochthonous cattle breeds constitute important reservoirs of genetic diversity. Reggiana is an Italian local cattle breed reared in the north of Italy for the production of a mono‐breed Parmigiano–Reggiano cheese. Reggiana cattle usually have a classical solid red coat colour and pale muzzle. As part of the strategies designed for the sustainable conservation of this genetic resource, we investigated at the genome‐wise level the within‐breed detected variability of three pigmentation‐related traits (intensity of red coat colour, based on three classes – light/diluted, normal and dark; spotted patterns/piebaldism that sometime emerge in the breed; muzzle colour – pink/pale, grey and black), stature, presence/absence and number of supernumerary teats and teat length. A total of 1776 Reggiana cattle (about two‐thirds of the extant breed population) were genotyped with the GeneSeek GGP Bovine 150k SNP array and single‐marker and haplotype‐based GWASs were carried out. The results indicated that two main groups of genetic factors affect the intensity of red coat colour: darkening genes (including EDN3 and a few other genes) and diluting genes (including PMEL and a few other genes). Muzzle colour was mainly determined by MC1R gene markers. Piebaldism was mainly associated with KIT gene markers. Stature was associated with BTA6 markers upstream of the NCAPG–LCORL genes. Teat defects were associated with TBX3/TBX5, MCC and LGR5 genes. Overall, the identified genomic regions not only can be directly used in selection plans in the Reggiana breed, but also contribute to clarifying the genetic mechanisms involved in determining exterior traits in cattle.
Collapse
Affiliation(s)
- S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Science, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Science, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - H Kazemi
- Division of Animal Sciences, Department of Agricultural and Food Science, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - G Moscatelli
- Division of Animal Sciences, Department of Agricultural and Food Science, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - A Ribani
- Division of Animal Sciences, Department of Agricultural and Food Science, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - M Ballan
- Division of Animal Sciences, Department of Agricultural and Food Science, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - M Bonacini
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Via Masaccio 11, Reggio Emilia, 42124, Italy
| | - M Prandi
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Via Masaccio 11, Reggio Emilia, 42124, Italy
| | - S Dall'Olio
- Division of Animal Sciences, Department of Agricultural and Food Science, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Science, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
47
|
Herold J, Brügemann K, König S. Herd clustering strategies and corresponding genetic evaluations based on social-ecological characteristics for a local endangered cattle breed. Arch Anim Breed 2021; 64:187-198. [PMID: 34109268 PMCID: PMC8182665 DOI: 10.5194/aab-64-187-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
The accuracy of breeding values strongly depends on the
population and herd structure, i.e., the number of animals considered in
genetic evaluations and the size of contemporary groups (CGs). Local breeds
are usually kept in small-sized family farms under alternative husbandry
conditions. For such herd structure, consideration of classical herd or
herd-test-day effects in CG modeling approaches implies only a few records
per effect level. In consequence, the present study aimed on methodological
evaluations of different herd clustering strategies, considering
social–ecological and herd characteristics. In this regard, we considered 19 herds keeping cows from the small local population of German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind; DSN), 10 herds
keeping Holstein Friesian (HF) cows and one mixed herd with HF and DSN
cows. Herds were characterized for 106 variables, reflecting farm
conditions, husbandry practices, feeding regime, herd management, herd
fertility status, herd health status and breeding strategies as well as
social–ecological descriptors. The variables were input data for different
clustering approaches including agglomerative hierarchical clustering (AHC),
partition around medoids (PAM), fuzzy clustering (FZC) and a clustering of
variables combined with agglomerative hierarchical clustering (CoVAHC). The
evaluation criterion was the average silhouette width (ASW), suggesting a
CoVAHC application and consideration of four herd clusters (HCs) for herd
allocation (ASW of 0.510). HC1 comprised the larger, half organic and half
conventional DSN family farms, which generate their main income from milk
production. HC2 consisted of small organic DSN family farms where cows are
kept in tie stables. HC3 included the DSN sub-population from former East
Germany, reflecting the large-scale farm types. The specialized HF herds
were well separated and allocated to HC4. Generalized linear mixed models
with appropriate link functions were applied to compare test-day and female
fertility traits of 5538 cows (2341 DSN and 3197 HF) from the first three
lactations among the four HCs. Least squares means for milk, fat and protein
yield (Mkg, Fkg and Pkg) significantly differed between HC. The significant
differences among the four HCs clearly indicate the influence of varying herd
conditions on cow traits. The similarities of herds within HC suggested the
application of HCs in statistical models for genetic evaluations for DSN. In
this regard, we found an increase of accuracies of estimated breeding values
of cows and sires and of heritabilities for milk yield when applying models
with herd-cluster-test-day or herd-cluster-test-month effects compared to
classical herd-test-day models. The identified increase for the number of
cows and cow records in CG due to HC effects may be the major explanation
for the identified superiority.
Collapse
Affiliation(s)
- Jonas Herold
- Institute of Animal Breeding and Genetics, University of Giessen, 35390 Giessen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, University of Giessen, 35390 Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, University of Giessen, 35390 Giessen, Germany
| |
Collapse
|
48
|
Genome-Wide Patterns of Homozygosity Reveal the Conservation Status in Five Italian Goat Populations. Animals (Basel) 2021; 11:ani11061510. [PMID: 34071004 PMCID: PMC8224610 DOI: 10.3390/ani11061510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In the local populations, the increase in inbreeding is a relevant problem for the reduction in production, reproduction, and adaptive traits. The application of genomic technologies has facilitated the assessment of inbreeding in these populations. The current study aims to investigate the patterns of homozygosity in five Italian local goat populations. The results showed the different selection histories and breeding schemes of these goat populations. The analysis also indicated the importance of this information to avoid future loss of diversity and to produce information for designing optimal breeding and conservation programs. Abstract The application of genomic technologies has facilitated the assessment of genomic inbreeding based on single nucleotide polymorphisms (SNPs). In this study, we computed several runs of homozygosity (ROH) parameters to investigate the patterns of homozygosity using Illumina Goat SNP50 in five Italian local populations: Argentata dell’Etna (N = 48), Derivata di Siria (N = 32), Girgentana (N = 59), Maltese (N = 16) and Messinese (N = 22). The ROH results showed well-defined differences among the populations. A total of 3687 ROH segments >2 Mb were detected in the whole sample. The Argentata dell’Etna and Messinese were the populations with the lowest mean number of ROH and inbreeding coefficient values, which reflect admixture and gene flow. In the Girgentana, we identified an ROH pattern related with recent inbreeding that can endanger the viability of the breed due to reduced population size. The genomes of Derivata di Siria and Maltese breeds showed the presence of long ROH (>16 Mb) that could seriously impact the overall biological fitness of these breeds. Moreover, the results confirmed that ROH parameters are in agreement with the known demography of these populations and highlighted the different selection histories and breeding schemes of these goat populations. In the analysis of ROH islands, we detected harbored genes involved with important traits, such as for milk yield, reproduction, and immune response, and are consistent with the phenotypic traits of the studied goat populations. Finally, the results of this study can be used for implementing conservation programs for these local populations in order to avoid further loss of genetic diversity and to preserve the production and fitness traits. In view of this, the availability of genomic data is a fundamental resource.
Collapse
|
49
|
Villanueva B, Fernández A, Saura M, Caballero A, Fernández J, Morales-González E, Toro MA, Pong-Wong R. The value of genomic relationship matrices to estimate levels of inbreeding. Genet Sel Evol 2021; 53:42. [PMID: 33933002 PMCID: PMC8088726 DOI: 10.1186/s12711-021-00635-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genomic relationship matrices are used to obtain genomic inbreeding coefficients. However, there are several methodologies to compute these matrices and there is still an unresolved debate on which one provides the best estimate of inbreeding. In this study, we investigated measures of inbreeding obtained from five genomic matrices, including the Nejati-Javaremi allelic relationship matrix (FNEJ), the Li and Horvitz matrix based on excess of homozygosity (FL&H), and the VanRaden (methods 1, FVR1, and 2, FVR2) and Yang (FYAN) genomic relationship matrices. We derived expectations for each inbreeding coefficient, assuming a single locus model, and used these expectations to explain the patterns of the coefficients that were computed from thousands of single nucleotide polymorphism genotypes in a population of Iberian pigs. RESULTS Except for FNEJ, the evaluated measures of inbreeding do not match with the original definitions of inbreeding coefficient of Wright (correlation) or Malécot (probability). When inbreeding coefficients are interpreted as indicators of variability (heterozygosity) that was gained or lost relative to a base population, both FNEJ and FL&H led to sensible results but this was not the case for FVR1, FVR2 and FYAN. When variability has increased relative to the base, FVR1, FVR2 and FYAN can indicate that it decreased. In fact, based on FYAN, variability is not expected to increase. When variability has decreased, FVR1 and FVR2 can indicate that it has increased. Finally, these three coefficients can indicate that more variability than that present in the base population can be lost, which is also unreasonable. The patterns for these coefficients observed in the pig population were very different, following the derived expectations. As a consequence, the rate of inbreeding depression estimated based on these inbreeding coefficients differed not only in magnitude but also in sign. CONCLUSIONS Genomic inbreeding coefficients obtained from the diagonal elements of genomic matrices can lead to inconsistent results in terms of gain and loss of genetic variability and inbreeding depression estimates, and thus to misleading interpretations. Although these matrices have proven to be very efficient in increasing the accuracy of genomic predictions, they do not always provide a useful measure of inbreeding.
Collapse
Affiliation(s)
- Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | - Armando Caballero
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Bioquímica, Genética E Inmunología, Campus de Vigo, 36310 Vigo, Spain
| | - Jesús Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | | | - Miguel A. Toro
- Departamento de Producción Agraria, ETSI Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ricardo Pong-Wong
- Genetics and Genomics, The Roslin Institute and the R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| |
Collapse
|
50
|
Caivio-Nasner S, López-Herrera A, González-Herrera LG, Rincón JC. Diversity analysis, runs of homozygosity and genomic inbreeding reveal recent selection in Blanco Orejinegro cattle. J Anim Breed Genet 2021; 138:613-627. [PMID: 33783906 DOI: 10.1111/jbg.12549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023]
Abstract
Blanco Orejinegro (BON) cattle have 500 years of adaptation to the Colombian tropic, but little is known about their genetic history. Our aim was to estimate levels of linkage disequilibrium (LD), effective population size (Ne), genomic inbreeding for runs of homozygosity (FROH ), genomic relation matrix (FGRM ), excess of homozygotes (FHOM ) and pedigree information (FPEDCOMP ) and to characterize the runs of homozygosity (ROH), searching for selection signatures. A total of 419 BON animals were genotyped, 70 with a 150K chip and 349 with a 50K chip. Next, an imputation to 50K was performed, and, after editing, databases of 40K were obtained. The PLINK v1.90 and R programs were used to estimate LD, ROH, FROH and FHOM . The SNeP v1.1 program was used to obtain Ne, and PreGSf90 was used to elaborate the scaled G matrix. The MTDFNRM program was used to estimate FPEDCOMP . The LD mean as r2 at 1 Mb was 0.21 (r2 > 0.30 at a distance of 96.72kb), and Ne was 123 ± 1. A total of 7,652 homozygous segments were obtained, with a mean of 18.35 ± 0.55 ROH/animal. Most of the genome was covered by long ROHs (ROH>8 Mb = 4.86%), indicating significant recent inbreeding. The average inbreeding coefficient for FPEDCOM , FGRM , FHOM and FROH was 4.41%, 4.18%, 5.58% and 6.78%, respectively. The highest correlation was observed between FHOM and FROH (0.95). ROH hotspots/islands were defined using the extreme values of a box plot that was generated, and correspond to QTLs related to milk yield (55.11%), external appearance (13.47%), production (13.30%), reproduction (8.15%), health (5.24%) and meat carcass (4.74%).
Collapse
Affiliation(s)
- Sindy Caivio-Nasner
- Grupo de Investigación Biomolecular y Pecuaria (BIOPEC), Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Albeiro López-Herrera
- Universidad Nacional de Colombia sede Medellín, Medellín, Colombia.,Grupo de investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luis G González-Herrera
- Universidad Nacional de Colombia sede Medellín, Medellín, Colombia.,Grupo de investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan C Rincón
- Grupo de investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, Bogotá, Colombia.,Universidad Nacional de Colombia sede Palmira, Palmira, Colombia
| |
Collapse
|