1
|
Yin C, Bi Q, Chen W, Wang C, Castiglioni B, Li Y, Sun W, Pi Y, Bontempo V, Li X, Jiang X. Fucoidan Supplementation Improves Antioxidant Capacity via Regulating the Keap1/Nrf2 Signaling Pathway and Mitochondrial Function in Low-Weaning Weight Piglets. Antioxidants (Basel) 2024; 13:407. [PMID: 38671855 PMCID: PMC11047378 DOI: 10.3390/antiox13040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Fucoidan (FC) is known for its antioxidant properties, but it has unclear effects and mechanisms on weaned piglets. Two experiments were conducted to determine the optimal FC dosage in piglet diets and its protective effect against lipopolysaccharide (LPS)-induced oxidative stress. In experiment one, 24 low weight weaned piglets were randomly assigned to four dietary treatments: a basal diet (FC 0), or a diet supplemented with 150 (FC 150), 300 (FC 300), or 600 mg/kg FC (FC 600). In experiment two, 72 low-weaning weight piglets were randomly allocated into four treatments: a basal diet (CON), or 300 mg/kg of fucoidan added to a basal diet challenged with LPS (100 µg LPS/kg body weight) or not. The results showed that FC treatments increased the G:F ratio, and dietary FC 300 reduced the diarrhea incidence and increased the plasma IGF-1 concentrations. In addition, FC 300 and FC 600 supplementation increased the plasma SOD activity and reduced the plasma MDA concentration. LPS challenge triggered a strong systemic redox imbalance and mitochondrial dysfunction. However, dietary FC (300 mg/kg) supplementation increased the activity of antioxidant enzymes, including SOD, decreased the MDA concentration in the plasma and liver, down-regulated Keap1 gene expression, and up-regulated Nrf2, CAT, MFN2, SDHA, and UQCRB gene expression in the liver. These results indicated that dietary fucoidan (300 mg/kg) supplementation improved the growth performance and antioxidant capacity of low-weaning weight piglets, which might be attributed to the modulation of the Keap1/Nrf2 signaling pathway and the mitochondrial function in the liver.
Collapse
Affiliation(s)
- Chenggang Yin
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Q.B.); (W.C.); (Y.L.); (W.S.); (X.L.)
| | - Qingyue Bi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Q.B.); (W.C.); (Y.L.); (W.S.); (X.L.)
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Wenning Chen
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Q.B.); (W.C.); (Y.L.); (W.S.); (X.L.)
| | - Chengwei Wang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA-CNR), Via Einstein, 26900 Lodi, Italy;
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Q.B.); (W.C.); (Y.L.); (W.S.); (X.L.)
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Q.B.); (W.C.); (Y.L.); (W.S.); (X.L.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Q.B.); (W.C.); (Y.L.); (W.S.); (X.L.)
| | - Valentino Bontempo
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, 26900 Lodi, Italy;
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Q.B.); (W.C.); (Y.L.); (W.S.); (X.L.)
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Q.B.); (W.C.); (Y.L.); (W.S.); (X.L.)
| |
Collapse
|
2
|
Van Kerschaver C, Turpin D, Michiels J, Pluske J. Reducing Weaning Stress in Piglets by Pre-Weaning Socialization and Gradual Separation from the Sow: A Review. Animals (Basel) 2023; 13:ani13101644. [PMID: 37238074 DOI: 10.3390/ani13101644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The weaning of pigs in most commercial pork production systems is an abrupt event performed at a fairly young age, i.e., mostly between 2.5 and 5 weeks of age. This practice induces a stress response, and its impact on behavior, performance and the gastrointestinal tract has been well described. Historically, there has been a focus on pre- and post-weaning nutritional strategies and post-weaning housing conditions and medication to improve production and reduce mortality after weaning. However, alternative pre-weaning housing and management systems that promote the development of natural social behaviors of piglets before weaning have recently received more attention. Co-mingling of non-littermates before weaning is a strategy that aims to initiate social interactions prior to weaning. The separation of the litter from the sow in the period leading up to weaning, termed intermittent suckling, aims to enhance the gradual separation from the sow. In addition, these practices encourage the young pig to learn explorative nutrient sourcing. Altogether, they may reduce weaning-associated stress. In this review, these strategies are defined, and their effects on behavior, performance, mortality, gastrointestinal function and immunocompetence are described. Though these strategies may be adapted to a commercial setting, it also becomes clear that many factors can contribute to the success of these strategies.
Collapse
Affiliation(s)
- Céline Van Kerschaver
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Diana Turpin
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth 6151, Australia
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - John Pluske
- Australasian Pork Research Institute Limited, Willaston 5118, Australia
- Faculty of Science, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
3
|
Luo L, van der Zande LE, van Marwijk MA, Knol EF, Rodenburg TB, Bolhuis JE, Parois SP. Impact of Enrichment and Repeated Mixing on Resilience in Pigs. Front Vet Sci 2022; 9:829060. [PMID: 35400108 PMCID: PMC8988148 DOI: 10.3389/fvets.2022.829060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
Resilience, the capacity of animals to be minimally affected by a disturbance or to rapidly bounce back to the state before the challenge, may be improved by enrichment, but negatively impacted by a high allostatic load from stressful management procedures in pigs. We investigated the combined effects of diverging environmental conditions from weaning and repeated mixing to create high allostatic load on resilience of pigs. Pigs were either exposed to barren housing conditions (B) from weaning onwards or provided with sawdust, extra toys, regular access to a “play arena” and daily positive human contact (E). Half of the pigs were exposed to repeated mixing (RM) and the other half to one mixing only at weaning (minimal mixing, MM). To assess their resilience, the response to and recovery from a lipopolysaccharide (LPS) sickness challenge and a Frustration challenge were studied. In addition, potential long-term resilience indicators, i.e. natural antibodies, hair cortisol and growth were measured. Some indications of more favorable responses to the challenges in E pigs were found, such as lower serum reactive oxygen metabolite (dROM) concentrations and a smaller area under the curve of dROM after LPS injection. In the Frustration challenge, E pigs showed less standing alert, escape behaviors and other negative behaviors, a tendency for a smaller area under the curve of salivary cortisol and a lower plasma cortisol level at 1 h after the challenge. Aggression did not decrease over mixings in RM pigs and was higher in B pigs than in E pigs. Repeated mixing did not seem to reduce resilience. Contrary to expectations, RM pigs showed a higher relative growth than MM pigs during the experiment, especially in the week of the challenges. Barren RM pigs showed a lower plasma cortisol concentration than barren MM pigs after the LPS challenge, which may suggest that those RM pigs responded less detrimentally than MM pigs. Enriched RM pigs showed a higher level of IgM antibodies binding keyhole limpet hemocyanin (KLH) than enriched MM and barren RM pigs, and RM pigs showed a sharper decline in IgG antibodies binding Bovine Serum Albumin (PC-BSA) over time than MM pigs. Hair cortisol concentrations were not affected by enrichment or mixing. To conclude, enrichment did not enhance the speed of recovery from challenges in pigs, although there were indications of reduced stress. Repeated as opposed to single mixing did not seem to aggravate the negative effects of barren housing on resilience and for some parameters even seemed to reduce the negative effects of barren housing.
Collapse
Affiliation(s)
- Lu Luo
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Lisette E. van der Zande
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Manon A. van Marwijk
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | - T. Bas Rodenburg
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: J. Elizabeth Bolhuis
| | - Severine P. Parois
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- PEGASE, INRAE, Institut Agro, Saint-Gilles, France
- Epidemiology Health and Welfare Research Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, France
| |
Collapse
|
4
|
Van Kerschaver C, Vandaele M, Degroote J, Van Tichelen K, Fremaut D, Van Ginneken C, Michiels J. Effect of starting time of co-mingling non-littermates during lactation on performance and skin lesions of sows and piglets. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Gresse R, Chaucheyras-Durand F, Denis S, Beaumont M, Van de Wiele T, Forano E, Blanquet-Diot S. Weaning-associated feed deprivation stress causes microbiota disruptions in a novel mucin-containing in vitro model of the piglet colon (MPigut-IVM). J Anim Sci Biotechnol 2021; 12:75. [PMID: 34078434 PMCID: PMC8170946 DOI: 10.1186/s40104-021-00584-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Risk factors for the etiology of post-weaning diarrhea, a major problem in swine industry associated with enormous economic losses, remain to be fully elucidated. In concordance with the ethical concerns raised by animal experiments, we developed a new in vitro model of the weaning piglet colon (MPigut-IVM) including a mucin bead compartment to reproduce the mucus surface from the gut to which gut microbes can adhere. RESULTS Our results indicated that the MPigut-IVM is able to establish a representative piglet archaeal and bacterial colon microbiota in terms of taxonomic composition and function. The MPigut-IVM was consequently used to investigate the potential effects of feed deprivation, a common consequence of weaning in piglets, on the microbiota. The lack of nutrients in the MPigut-IVM led to an increased abundance of Prevotellaceae and Escherichia-Shigella and a decrease in Bacteroidiaceae and confirms previous in vivo findings. On top of a strong increase in redox potential, the feed deprivation stress induced modifications of microbial metabolite production such as a decrease in acetate and an increase in proportional valerate, isovalerate and isobutyrate production. CONCLUSIONS The MPigut-IVM is able to simulate luminal and mucosal piglet microbiota and represent an innovative tool for comparative studies to investigate the impact of weaning stressors on piglet microbiota. Besides, weaning-associated feed deprivation in piglets provokes disruptions of MPigut-IVM microbiota composition and functionality and could be implicated in the onset of post-weaning dysbiosis in piglets.
Collapse
Affiliation(s)
- Raphaële Gresse
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
- Lallemand SAS, F-31702 Blagnac, Cedex France
| | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
- Lallemand SAS, F-31702 Blagnac, Cedex France
| | - Sylvain Denis
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| | - Tom Van de Wiele
- Ghent University, Center for Microbial Ecology and Technology, B-9000 Ghent, Belgium
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|