1
|
Wang X, Li J, Bai J, Chen M, Wang L, Fan H, Zeng F, Lu X, He Y. Exploring the Impact of Insertion/Deletion in FTO and PLIN1 Genes on Morphometric Traits in Sheep. Animals (Basel) 2023; 13:3032. [PMID: 37835645 PMCID: PMC10571888 DOI: 10.3390/ani13193032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to identify InDels from the FTO and PLIN1 genes and to analyze their association with morphometric traits in Hu sheep (HS), Dupor sheep (DS), and Small Tail Han sheep (STHS). The FTO and PLIN1 genes were genotyped using the insertion/deletion (InDel) method. A one-way ANOVA with SPSS 26.0 software (IBM Corp, Armonk, NY, USA) was used to assess the effect of the InDel FTO and PLIN1 genes on morphometric traits. The results revealed significant associations between certain InDels and the morphometric traits in different breeds of sheep. Specifically, FTO-2 was significantly associated with cannon circumference (CaC) in HS rams and body height (BoH) in HS ewes (p < 0.05). FTO-2 was also significantly associated with chest width (ChW), CaC, head length (HeL), and coccyx length (CoL) in the STHS breed (p < 0.05). FTO-3 showed significant associations with BoH in HS rams and BoH, back height (BaH), ChW, and chest depth (ChD) in HS ewes (p < 0.05). FTO-3 was also significantly associated with ChW in the DS and STHS breeds (p < 0.05). FTO-5 was significantly associated with body weight (BoW) in the DS breed and BoH in the STHS breed (p < 0.05). Furthermore, PLIN1 was significantly related to BoW in the DS breed and was significantly associated with CoL and forehead width (FoW) in the STHS breed (p < 0.05). In conclusion, the study suggested that InDels in the FTO and PLIN1 genes could provide practical information to improve morphometric traits in sheep breeding.
Collapse
Affiliation(s)
| | | | - Junyan Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.W.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Li Y, Yang M, Lou A, Yun J, Ren C, Li X, Xia G, Nam K, Yoon D, Jin H, Seo K, Jin X. Integrated analysis of expression profiles with meat quality traits in cattle. Sci Rep 2022; 12:5926. [PMID: 35396568 PMCID: PMC8993808 DOI: 10.1038/s41598-022-09998-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in improving meat quality by binding to messenger RNAs (mRNAs). We performed an integrated analysis of miRNA and mRNA expression profiling between bulls and steers based on the differences in meat quality traits. Fat and fatty acids are the major phenotypic indices of meat quality traits to estimate between-group variance. In the present study, 90 differentially expressed mRNAs (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Eighty-three potential DEG targets and 18 DEMs were used to structure a negative interaction network, and 75 matching target genes were shown in this network. Twenty-six target genes were designated as intersection genes, screened from 18 DEMs, and overlapped with the DEGs. Seventeen of these genes enriched to 19 terms involved in lipid metabolism. Subsequently, 13 DEGs and nine DEMs were validated using quantitative real-time PCR, and seven critical genes were selected to explore the influence of fat and fatty acids through hub genes and predict functional association. A dual-luciferase reporter and Western blot assays confirmed a predicted miRNA target (bta-miR-409a and PLIN5). These findings provide substantial evidence for molecular genetic controls and interaction among genes in cattle.
Collapse
Affiliation(s)
- Yunxiao Li
- College of Life Science, Shandong University, Qingdao, China
| | - Miaosen Yang
- Department of Chemistry, Northeast Electric Power University, Jilin, China
| | - Angang Lou
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunyu Ren
- Animal Husbandry Bureau of Yanbian Autonomous Prefecture, Yanji, China
| | - Xiangchun Li
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Guangjun Xia
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Kichang Nam
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungpook National University, Taegu, South Korea
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Kangseok Seo
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea.
| | - Xin Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science and Technology Innovation, Ministry of Education, Yanbian University, Yanji, China.
| |
Collapse
|
3
|
Plin5 Bidirectionally Regulates Lipid Metabolism in Oxidative Tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4594956. [PMID: 35401929 PMCID: PMC8989587 DOI: 10.1155/2022/4594956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022]
Abstract
Cytoplasmic lipid droplets (LDs) can store neutral lipids as an energy source when needed and also regulate the key metabolic processes of intracellular lipid accumulation, which is associated with several metabolic diseases. The perilipins (Plins) are a family of proteins that associate with the surface of LDs. As a member of Plins superfamily, perilipin 5 (Plin5) coats LDs in cardiomyocytes, which is significantly related to reactive oxygen species (ROS) production originated from mitochondria in the heart, consequently determining the progression of diabetic cardiomyopathy. Plin5 may play a bidirectional function in lipid metabolism which is in a state of dynamic balance. In the basic state, Plin5 inhibited the binding of comparative gene identification-58 (CGI-58) to adipose triglyceride lipase (ATGL) by binding CGI-58, thus inhibiting lipolysis. However, when the body is under stress (such as cold, fasting, exercise, and other stimuli), protein kinase A (PKA) phosphorylates and activates Plin5, which then causes Plin5 to release the binding site of CGI-58 and ATGL, prompting CGI-58 to bind to ATGL and activate ATGL activity, thus accelerating the lipolysis process, revealing the indispensable role of Plin5 in lipid turnover. Here, the purpose of this review is to summarize the present understanding of the bidirectional regulation role of Plin5 in oxidative tissues and to reveal its potential role in diabetic cardiomyopathy protection.
Collapse
|
4
|
Gozalo-Marcilla M, Buntjer J, Johnsson M, Batista L, Diez F, Werner CR, Chen CY, Gorjanc G, Mellanby RJ, Hickey JM, Ros-Freixedes R. Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds. Genet Sel Evol 2021; 53:76. [PMID: 34551713 PMCID: PMC8459476 DOI: 10.1186/s12711-021-00671-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
Background Backfat thickness is an important carcass composition trait for pork production and is commonly included in swine breeding programmes. In this paper, we report the results of a large genome-wide association study for backfat thickness using data from eight lines of diverse genetic backgrounds. Methods Data comprised 275,590 pigs from eight lines with diverse genetic backgrounds (breeds included Large White, Landrace, Pietrain, Hampshire, Duroc, and synthetic lines) genotyped and imputed for 71,324 single-nucleotide polymorphisms (SNPs). For each line, we estimated SNP associations using a univariate linear mixed model that accounted for genomic relationships. SNPs with significant associations were identified using a threshold of p < 10–6 and used to define genomic regions of interest. The proportion of genetic variance explained by a genomic region was estimated using a ridge regression model. Results We found significant associations with backfat thickness for 264 SNPs across 27 genomic regions. Six genomic regions were detected in three or more lines. The average estimate of the SNP-based heritability was 0.48, with estimates by line ranging from 0.30 to 0.58. The genomic regions jointly explained from 3.2 to 19.5% of the additive genetic variance of backfat thickness within a line. Individual genomic regions explained up to 8.0% of the additive genetic variance of backfat thickness within a line. Some of these 27 genomic regions also explained up to 1.6% of the additive genetic variance in lines for which the genomic region was not statistically significant. We identified 64 candidate genes with annotated functions that can be related to fat metabolism, including well-studied genes such as MC4R, IGF2, and LEPR, and more novel candidate genes such as DHCR7, FGF23, MEDAG, DGKI, and PTN. Conclusions Our results confirm the polygenic architecture of backfat thickness and the role of genes involved in energy homeostasis, adipogenesis, fatty acid metabolism, and insulin signalling pathways for fat deposition in pigs. The results also suggest that several less well-understood metabolic pathways contribute to backfat development, such as those of phosphate, calcium, and vitamin D homeostasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00671-w.
Collapse
Affiliation(s)
- Miguel Gozalo-Marcilla
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.,The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Jaap Buntjer
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Martin Johnsson
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lorena Batista
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Federico Diez
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.,The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | | | - Ching-Yi Chen
- The Pig Improvement Company, Genus plc, Hendersonville, TN, USA
| | - Gregor Gorjanc
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - John M Hickey
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Roger Ros-Freixedes
- The Roslin Institute, The University of Edinburgh, Midlothian, UK. .,Departament de Ciència Animal, Universitat de Lleida - Agrotecnio-CERCA Center, Lleida, Spain.
| |
Collapse
|
5
|
Wang Q, Li D, Guo A, Li M, Li L, Zhou J, Mishra SK, Li G, Duan Y, Li Q. Whole-genome resequencing of Dulong Chicken reveal signatures of selection. Br Poult Sci 2020; 61:624-631. [PMID: 32627575 DOI: 10.1080/00071668.2020.1792832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. Dulong Chickens (DLCs) live at high altitude (~3000 m) and humidity (~90%), are endemic to the Yunnan province, and have gradually developed unique physiological characteristics, but their genetic basis is still unclear. Using the fixation index (FST ) approach, based on whole-genome resequencing, DLCs were analysed to uncover the genomic architecture of the population and candidate genes involved in selection during domestication. 2. A total of 469 candidate genes were obtained to be putatively under selection in DLCs. Further investigations revealed the genic footprint for local adaptation (high-altitude and high-humidity) as the genic signatures that are involved in economic traits (related to egg production). 3. Candidate genes were identified that may be associated with disease resistance, aggressiveness, small body size and positive selection of vision in DLCs. 4. These data revealed loci of selective signals that operate during selection for production at high altitude and humidity.
Collapse
Affiliation(s)
- Q Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China
| | - D Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, China
| | - A Guo
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China
| | - M Li
- School of Mathematics and Computer Science, Yunnan Nationalities University , Kunming, China
| | - L Li
- Life Science College, Southwest Forestry University , Kunming, China
| | - J Zhou
- Life Science College, Southwest Forestry University , Kunming, China
| | - S K Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, China
| | - G Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China
| | - Y Duan
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd ., Kunming, China
| | - Q Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China.,Kunming Xianghao Technology Co. Ltd ., Kunming, China
| |
Collapse
|
6
|
Cao H, Wen Y, Xu X, Liu K, Liu H, Tan Y, Zhou W, Mao H, Dong X, Xu N, Yin Z. Investigation of the CEBPA gene expression pattern and association analysis of its polymorphisms with meat quality traits in chickens. Anim Biotechnol 2020; 33:448-456. [PMID: 32776801 DOI: 10.1080/10495398.2020.1803343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Meat quality is closely related to the fat deposition which is regulated by a cascade of transcription factors. As a transcription factor, the CCAAT/enhancer binding protein alpha (CEBPA) is considered as one of the key molecules regulating adipogenesis. Therefore, the objective of this study was to detect the expression pattern of the CEBPA gene and evaluate whether its single nucleotide polymorphisms (SNPs) were associated with the meat quality traits in Wuliang Mountain Black-bone (WLMB) chickens. The results showed that the chicken CEBPA mRNA was widely expressed in the 11 tissues, and the expression pattern of it might be tissue- and time-specific different. The locus of g.74C > G was not significantly associated with chicken meat quality. For the locus of g.552G > A, chickens with the GG genotype showed higher pH (p < 0.01), lower drip loss (p < 0.01) and higher intramuscular fat (p < 0.05) than those with other genotypes. It suggested that polymorphisms of the CEBPA gene were significantly associated with the meat quality traits of WLMB chickens. The results of this study contribute to the functional research of the CEBPA gene and lay the foundation for improving meat quality based on the marker-assisted selection in chickens.
Collapse
Affiliation(s)
- Haiyue Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaya Wen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - XiuLi Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ke Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Honghua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuge Tan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiguang Mao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyang Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ningying Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaozheng Yin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Pena RN, Noguera JL, García-Santana MJ, González E, Tejeda JF, Ros-Freixedes R, Ibáñez-Escriche N. Five genomic regions have a major impact on fat composition in Iberian pigs. Sci Rep 2019; 9:2031. [PMID: 30765794 PMCID: PMC6375979 DOI: 10.1038/s41598-019-38622-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
The adipogenic nature of the Iberian pig defines many quality attributes of its fresh meat and dry-cured products. The distinct varieties of Iberian pig exhibit great variability in the genetic parameters for fat deposition and composition in muscle. The aim of this work is to identify common and distinct genomic regions related to fatty acid composition in Retinto, Torbiscal, and Entrepelado Iberian varieties and their reciprocal crosses through a diallelic experiment. In this study, we performed GWAS using a high density SNP array on 382 pigs with the multimarker regression Bayes B method implemented in GenSel. A number of genomic regions showed strong associations with the percentage of saturated and unsaturated fatty acid in intramuscular fat. In particular, five regions with Bayes Factor >100 (SSC2 and SSC7) or >50 (SSC2 and SSC12) explained an important fraction of the genetic variance for miristic, palmitoleic, monounsaturated (>14%), oleic (>10%) and polyunsaturated (>5%) fatty acids. Six genes (RXRB, PSMB8, CHGA, ACACA, PLIN4, PLIN5) located in these regions have been investigated in relation to intramuscular composition variability in Iberian pigs, with two SNPs at the RXRB gene giving the most consistent results on oleic and monounsaturated fatty acid content.
Collapse
Affiliation(s)
- R N Pena
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - J L Noguera
- IRTA, Genètica i Millora Animal, 25198, Lleida, Spain
| | | | - E González
- Tecnología de los alimentos, Universidad de Extremadura, 06006, Badajoz, Spain
| | - J F Tejeda
- Tecnología de los alimentos, Universidad de Extremadura, 06006, Badajoz, Spain
| | - R Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain.,The Roslin Institute, Edinburgh University, Easter Bush, EH25 9RG, UK
| | - N Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|