1
|
Rueda García AM, Fracassi P, Scherf BD, Hamon M, Iannotti L. Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock Systems. Nutrients 2024; 16:3346. [PMID: 39408313 PMCID: PMC11478523 DOI: 10.3390/nu16193346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background. It is well-established that a range of macronutrients, micronutrients and bioactive compounds found in animal-source foods play unique and important roles in human health as part of a healthy diet. Methods. This narrative review focuses on terrestrial animal source foods (TASFs). It particularly analyzes five groups: poultry eggs, milk, unprocessed meat, foods from hunting and wildlife farming, and insects. The objectives were as follows: (1) examine the nutrient composition of TASFs within and across livestock species, drawing on the country and regional food composition databases; (2) analyze the influence of intrinsic animal characteristics and production practices on TASF nutritional quality. Results. TASFs are rich in high-quality proteins and fats, as well as micronutrients such as vitamin B12, iron or zinc. This study found differences in the nutritional quality of TASFs by livestock species and animal products, as well as by characteristics of livestock production systems. Our findings suggest that there may be public health opportunities by diversifying TASF consumption across species and improving certain aspects of the production systems to provide products that are both more sustainable and of higher quality. Conclusions. Future research should adopt a more holistic approach to examining the food matrix and the dietary patterns that influence TASF digestibility. It is necessary to include meat from hunting and wildlife farming and insects in global food composition databases, as limited literature was found. In addition, scarce research focuses on low- and middle-income countries, highlighting the need for further exploration of TASF food composition analysis and how intrinsic animal characteristics and livestock production system characteristics impact their nutritional value.
Collapse
Affiliation(s)
| | - Patrizia Fracassi
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - Beate D Scherf
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - Manon Hamon
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - Lora Iannotti
- E3 Nutrition Lab, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Xiong L, Pei J, Bao P, Wang X, Guo S, Cao M, Kang Y, Yan P, Guo X. The Effect of the Feeding System on Fat Deposition in Yak Subcutaneous Fat. Int J Mol Sci 2023; 24:ijms24087381. [PMID: 37108542 PMCID: PMC10138426 DOI: 10.3390/ijms24087381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Fat deposition is very important to the growth and reproduction of yaks. In this study, the effect of the feeding system on fat deposition in yaks was explored by transcriptomics and lipidomics. The thickness of the subcutaneous fat in yaks under stall (SF) and graze feeding (GF) was evaluated. The transcriptomes and lipidomes of the subcutaneous fat in yaks under different feeding systems were detected by RNA-sequencing (RNA-Seq) and non-targeted lipidomics based on ultrahigh-phase liquid chromatography tandem mass spectrometry (UHPLC-MS), respectively. The differences in lipid metabolism were explored, and the function of differentially expressed genes (DEGs) was evaluated by gene ontology (GO) and Kyoto encyclopedia of genes and genome (KEGG) analysis. Compared with GF yaks, SF yaks possessed stronger fat deposition capacity. The abundance of 12 triglycerides (TGs), 3 phosphatidylethanolamines (PEs), 3 diglycerides (DGs), 2 sphingomyelins (SMs) and 1 phosphatidylcholine (PC) in the subcutaneous fat of SF and GF yaks was significantly different. Under the mediation of the cGMP-PKG signaling pathway, the blood volume of SF and GF yaks may be different, which resulted in the different concentrations of precursors for fat deposition, including non-esterified fatty acid (NEFA), glucose (GLU), TG and cholesterol (CH). The metabolism of C16:0, C16:1, C17:0, C18:0, C18:1, C18:2 and C18:3 in yak subcutaneous fat was mainly realized under the regulation of the INSIG1, ACACA, FASN, ELOVL6 and SCD genes, and TG synthesis was regulated by the AGPAT2 and DGAT2 genes. This study will provide a theoretical basis for yak genetic breeding and healthy feeding.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Yandong Kang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| |
Collapse
|
3
|
Kearns M, Jacquier JC, Harrison SM, Cama-Moncunill R, Boland TM, Sheridan H, Kelly AK, Grasso S, Monahan FJ. Effect of different botanically-diverse diets on the fatty acid profile, tocopherol content and oxidative stability of beef. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37058580 DOI: 10.1002/jsfa.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/04/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Beef from pasture-fed animals is viewed as a healthier and more welfare-friendly alternative to concentrate-fed beef. Botanically-diverse pastures consisting of numerous plant species may alter the fatty acid (FA) profile and the tocopherol content of beef, as well as the oxidative stability of the meat. In the present study, steers were assigned to one of three botanically-diverse diets: perennial ryegrass (PRG), perennial ryegrass + white clover (PRG + WC) or multi-species (MS), all with a finishing diet of the respective botanically-diverse silages plus a cereal-based concentrate, consistent with production systems in Ireland. The FA profile, tocopherol content, oxidative stability and colour of meat during storage were measured. RESULTS Compared to the other diets, the MS diet resulted in higher proportions of linolenic acid (C18:3n-3c), linoleic acid (C18:2n-6c) and total polyunsaturated fatty acids (PUFA), with higher PUFA:saturated fatty acid and n-6:n-3 ratios in the meat. α-Tocopherol concentrations were lowest in the meat of animals from the MS diet. In uncooked meat, lipid oxidation and colour values were affected by storage time across all diets, whereas the MS diet led to higher hue values only on day 14 of storage. When cooked, meat from animals on PRG + WC and MS diets had higher lipid oxidation on days 1 and 2 of storage than meat from animals on the PRG diet. CONCLUSION Feeding steers on a botanically-diverse diet consisting of six plant species can improve the n-3 FA and PUFA concentration of beef, affecting the susceptibility of cooked, but not uncooked, beef to oxidation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Michelle Kearns
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - Tommy M Boland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Helen Sheridan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Simona Grasso
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Kearns M, Ponnampalam EN, Jacquier JC, Grasso S, Boland TM, Sheridan H, Monahan FJ. Can botanically-diverse pastures positively impact the nutritional and antioxidant composition of ruminant meat? - Invited review. Meat Sci 2023; 197:109055. [PMID: 36512854 DOI: 10.1016/j.meatsci.2022.109055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022]
Abstract
A desire for more sustainable pasture-based ruminant feeding systems has led to growing interest in utilising botanically-diverse pastures (BDP) over monoculture pastures. Research suggests that, from a human consumption viewpoint, grass-based ruminant feeding leads to more nutritionally desirable fatty acid (FA) and antioxidant concentrations in meat compared with concentrate feeding, which can affect meat quality. The FA, antioxidant and secondary metabolite content of plants differ, depending on species, maturity and seasonality, offering the potential through targeted feeding of BDP to produce meat with superior nutritional and antioxidant profiles. This review explores the effect, if any, that grazing ruminants on BDP has on the FA profile, fat-soluble vitamin, and antioxidant content of meat. The input-output relationship between forage and red meat constituents is complex and is likely affected by species diversity, forage consumption patterns and modulation of rumen fermentation processes. Further investigation is required to fully understand the effect that BDP may have on the composition and quality of ruminant meat.
Collapse
Affiliation(s)
- Michelle Kearns
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| | | | - Simona Grasso
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tommy M Boland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen Sheridan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Preliminary Investigation of Mixed Orchard Hays on the Meat Quality, Fatty Acid Profile, and Gastrointestinal Microbiota in Goat Kids. Animals (Basel) 2022; 12:ani12060780. [PMID: 35327177 PMCID: PMC8944599 DOI: 10.3390/ani12060780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
This preliminary investigation was designed to study the effects of different mixed orchard hays on meat quality, fatty acids, amino acids, rumen intestinal microflora, and the relationship between rumen bacteria and fatty acids in the longissimus dorsi muscle of Saanen dairy goats. In this preliminary investigation, goats were separately fed crop straws (corn and wheat straws) and alfalfa (Medicago sativa L.) (CK group), alfalfa + oats (Avena sativa L.) (group I), alfalfa + perennial ryegrass (Lolium perenne L.) (group II), and hairy vetch (Vicia villosa Roth.) + perennial ryegrass (group III). There were differences in shear force and cooking loss between treatments. The contents of saturated fatty acids (SFAs) C14:0, C16:0, and C18:0 in the CK group were significantly higher than those in other three groups (p < 0.001). The 16S rDNA sequencing results showed that the relative abundance of Proteobacteria in group II were higher than those in other three groups (p < 0.05). Association analysis showed that Prevotella_1 was negatively correlated with C18:0 and significantly positively correlated with C16:1, while Clostridium and Romboutsia showed a positive correlation with monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Therefore, feeding mixed hays can increase beneficial fatty acids and the percentages of associated bacteria in rumen and intestines.
Collapse
|
6
|
Xiong L, Pei J, Kalwar Q, Wu X, Yan P, Guo X. Fat deposition in yak during different phenological seasons. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Pavan E, Ye Y, Eyres GT, Guerrero L, G. Reis M, Silcock P, Johnson PL, Realini CE. Relationships among Consumer Liking, Lipid and Volatile Compounds from New Zealand Commercial Lamb Loins. Foods 2021; 10:foods10051143. [PMID: 34065362 PMCID: PMC8161400 DOI: 10.3390/foods10051143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Loin sections (m. Longissimus lumborum) were collected at slaughter from forty-eight lamb carcasses to evaluate consumer-liking scores of six types of typical New Zealand commercial lamb and to understand the possible underlying reasons for those ratings. A consumer panel (n = 160) evaluated tenderness, juiciness, flavor liking, and overall liking of the different types of lamb loins. Consumer scores differed among the types of lamb meat for all the evaluated attributes (p < 0.05). Further segmentation based on overall liking scores showed two consumer clusters with distinct ratings. Correlation and external preference map analyses indicated that one consumer cluster (n = 75) liked lamb types that had lower total lipid content, a lower proportion of branched-chain fatty acids, oleic and heptadecanoic acids; and a higher proportion of polyunsaturated fatty acids and volatile compounds (green and fruity descriptors). Consumer liking of the other segment (n = 85) was less influenced by fatty acids and volatiles, except hexanoic, heptanoic and octanoic acids (rancid, fatty, and sweaty descriptors). Thus, the fatty acid profile and the volatile compounds derived from their oxidation upon cooking seem to be a stronger driver of consumer liking of lamb for some consumers than others.
Collapse
Affiliation(s)
- Enrique Pavan
- AgResearch Limited, Te Ohu Rangahau Kai, Massey University Campus, Palmerston North 4442, New Zealand; (E.P.); (Y.Y.); (M.G.R.)
- Departamento de Producción Animal, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, c.c. 276, Balcarce 7620, Argentina
| | - Yangfan Ye
- AgResearch Limited, Te Ohu Rangahau Kai, Massey University Campus, Palmerston North 4442, New Zealand; (E.P.); (Y.Y.); (M.G.R.)
- Animal Science, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Graham T. Eyres
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (G.T.E.); (P.S.)
| | - Luis Guerrero
- IRTA-Monells, Finca Camps i Armet, 17121 Monells, Spain;
| | - Mariza G. Reis
- AgResearch Limited, Te Ohu Rangahau Kai, Massey University Campus, Palmerston North 4442, New Zealand; (E.P.); (Y.Y.); (M.G.R.)
| | - Patrick Silcock
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (G.T.E.); (P.S.)
| | | | - Carolina E. Realini
- AgResearch Limited, Te Ohu Rangahau Kai, Massey University Campus, Palmerston North 4442, New Zealand; (E.P.); (Y.Y.); (M.G.R.)
- Correspondence:
| |
Collapse
|
8
|
Rodríguez R, Balocchi O, Alomar D, Morales R. Comparison of a Plantain-Chicory Mixture with a Grass Permanent Sward on the Live Weight Gain and Meat Quality of Lambs. Animals (Basel) 2020; 10:E2275. [PMID: 33276554 PMCID: PMC7761527 DOI: 10.3390/ani10122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Under the predicted conditions of climate change, the productivity of temperate grasslands may be affected by drought stress, especially in spring and summer. In this scenario, water-deficit-tolerant species such as plantain and chicory are interesting alternatives for use in sheep production systems. In this study, we compared a mixture of plantain and chicory herbage (PCH) with a grass-based permanent sward (GBS) on the weight gain and meat quality of lambs finished on these grasslands. Fifteen weaned lambs (31.3 kg and 4 months of age) were assigned to each treatment for seven weeks in late spring and live weight gain (LWG), carcass and meat quality were evaluated. There was a tendency (p = 0.09) in final weight (40.3 ± 0.8 kg) and live weight gain (173 ± 10 g/d) to be higher in PCH compared to GBS. Carcass weight, dressing percentage and meat quality in terms of pH, color and tenderness did not differ (p > 0.05) and were considered to be of good quality. We concluded that both swards result in comparable lamb performance and good meat quality.
Collapse
Affiliation(s)
- Romina Rodríguez
- Escuela de Graduados, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile;
- Instituto Producción Animal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile; (O.B.); (D.A.)
| | - Oscar Balocchi
- Instituto Producción Animal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile; (O.B.); (D.A.)
| | - Daniel Alomar
- Instituto Producción Animal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile; (O.B.); (D.A.)
| | - Rodrigo Morales
- Instituto de Investigaciones Agropecuarias, INIA Remehue, Ruta 5 Norte km 8, P.O. Box 24–0, Osorno 5290000, Chile
| |
Collapse
|