1
|
Zhao W, Hu J, Li L, Xue L, Tian J, Zhang T, Yang L, Gu Y, Zhang J. Integrating lipidomics and metabolomics to reveal biomarkers of fat deposition in chicken meat. Food Chem 2025; 464:141732. [PMID: 39461315 DOI: 10.1016/j.foodchem.2024.141732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Local chicken breeds in China are highly regarded for their superior meat flavor. This study utilized lipidomics and non-targeted metabolomics to identify biomarkers influencing intramuscular fat (IMF) deposition in the breast muscle of 42- and 180-day-old Jingyuan chickens. Results revealed that IMF content was higher in the breast muscle of 180-day-old Jingyuan chickens compared to 42-day-old chickens (P < 0.01). We identified 248 differentially expressed lipids (DELs) and 1042 differentially expressed metabolites (DEMs). The breast muscle of 180-day-old chickens contained higher levels of TG, fatty acid (FA) and cholesteryl ester (CE), with C16:1 and C18:1 being particularly abundant. Integration of non-targeted metabolomic analyses emphasized glycerolipid metabolism and vitamin digestion and absorption as the main pathways distinguishing between 42- and 180-day-old chickens. Additionally, the differential metabolites LysoPS 18:1, LysoPC 20:3, LysoPC 18:2, LysoPI 20:3, and Pantothenic acid contributed to enhanced meat flavor in Jingyuan chickens.
Collapse
Affiliation(s)
- Wei Zhao
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiahuan Hu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lanlan Li
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lin Xue
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinli Tian
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Tong Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lijuan Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
de Moraes Vilar CSM, Malheiros JM, da Silva PF, Martins EH, Dos Santos Correia LEC, de Oliveira MHV, Colnago LA, de Vasconcelos Silva JAI, Mercadante MEZ. Muscle growth affects the metabolome of the pectoralis major muscle in red-winged tinamou (Rhynchotus rufescens). Poult Sci 2023; 102:103104. [PMID: 37837680 PMCID: PMC10589898 DOI: 10.1016/j.psj.2023.103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 10/16/2023] Open
Abstract
The aim of the present study was to identify and quantify the metabolites (metabolome analysis) of the pectoralis major muscle in male red-winged tinamou (Rhynchotus rufescens) selected for growth traits. A selection index was developed for females [body weight (BW), chest circumference (CC), and thigh circumference (TC)] and males [BW, CC, TC, semen volume, and sperm concentration] in order to divide the animals into 2 experimental groups: selection group with a higher index (TinamouS) and commercial group with a lower index (TinamouC). Twenty male offspring of the 2 groups (TinamouS, n = 10; TinamouC, n = 10) were confined for 350 d. The birds were slaughtered and pectoralis major muscle samples were collected, subjected to polar and apolar metabolites extractions and analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy. Analysis of the polar metabolomic profile identified 65 metabolites; 29 of them were differentially expressed between the experimental groups (P < 0.05). The TinamouS groups exhibited significantly higher concentrations (P < 0.05) of 25 metabolites, including anserine, aspartate, betaine, carnosine, creatine, glutamate, threonine, 3-methylhistidine, NAD+, pyruvate, and taurine. Significantly higher concentrations of cysteine, beta-alanine, lactose, and choline were observed in the TinamouC group (P < 0.05). The metabolites identified in the muscle provided information about the main metabolic pathways (higher impact value and P < 0.05), for example, phenylalanine, tyrosine and tryptophan biosynthesis; alanine, aspartate and glutamate metabolism; D-glutamine and D-glutamate metabolism; β-alanine metabolism; glycine, serine and threonine metabolism; taurine and hypotaurine metabolism; histidine metabolism; phenylalanine metabolism. The NMR spectra of apolar fraction showed 8 classes of chemical compounds. The metabolome analysis shows that the selection index resulted in the upregulation of polyunsaturated fatty acids, unsaturated fatty acids, phosphocholines, phosphoethanolamines, triacylglycerols, and glycerophospholipids. The present study suggests that, despite few generations, the selection based on muscle growth traits promoted changes in metabolite concentrations in red-winged tinamou.
Collapse
Affiliation(s)
| | | | | | - Eduardo Henrique Martins
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Zavistanaviciute P, Klementaviciute J, Klupsaite D, Zokaityte E, Ruzauskas M, Buckiuniene V, Viskelis P, Bartkiene E. Effects of Marinades Prepared from Food Industry By-Products on Quality and Biosafety Parameters of Lamb Meat. Foods 2023; 12:foods12071391. [PMID: 37048209 PMCID: PMC10093910 DOI: 10.3390/foods12071391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
This study aimed to develop marinade formulas based on by-products from the dairy, berry, and fruit industries and apply them to lamb meat (LM) treatments to improve the safety and quality characteristics of the meat. To fulfil this aim, six marinade (M) formulations were created based on acid whey (AW) fermented with Lacticaseibacillus casei (Lc) and Liquorilactobacillus uvarum (Lu), either alone or combined with freeze-dried apple (AP) or blackcurrant (BC) pomace. The most appropriate fermentation times for the marinades were selected according to the lower pH values and higher viable LAB counts in the samples. Additionally, the antimicrobial activity of the selected marinades against pathogenic and opportunistic bacterial strains was tested. The characteristics of the LM were analysed after 24 and 48 h of treatment, including physicochemical, technological, and microbiological parameters, as well as overall acceptability. It was established that, after 48 h of fermentation, all of the tested marinades, except M-AWLuBC, had lactic acid bacterial counts > 8.0 log10 CFU·mL−1 and pH values < 3.74. The broadest spectra of pathogen inhibition were observed in the M-AWLuAP and M-AWLuBC marinades. The latter formulations improved the water holding capacity (WHC) and overall acceptability of the LM, while, in the LM-AWLcAP samples, histamine, cadaverine, putrescine, tryptamine, and phenylethylamine were not formed. Lastly, LM treatment with the M-AWLcAP and M-AWLuAP formulas for 48 h achieved the highest overall acceptability (9.04 and 9.43), tenderness (1.53 and 1.47 kg·cm−2) and WHC (2.95% and 3.5%) compared to the control samples.
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-655-06461
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Vilija Buckiuniene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
4
|
Muroya S. An insight into farm animal skeletal muscle metabolism based on a metabolomics approach. Meat Sci 2022; 195:108995. [DOI: 10.1016/j.meatsci.2022.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
|
5
|
Beauclercq S, Mignon-Grasteau S, Petit A, Berger Q, Lefèvre A, Métayer-Coustard S, Tesseraud S, Emond P, Berri C, Le Bihan-Duval E. A Divergent Selection on Breast Meat Ultimate pH, a Key Factor for Chicken Meat Quality, is Associated With Different Circulating Lipid Profiles. Front Physiol 2022; 13:935868. [PMID: 35812337 PMCID: PMC9257005 DOI: 10.3389/fphys.2022.935868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Chicken meat has become a major source of protein for human consumption. However, the quality of the meat is not yet under control, especially since pH values that are too low or too high are often observed. In an attempt to get a better understanding of the genetic and biochemical determinants of the ultimate pH, two genetic lines of broilers were divergently selected for low (pHu−) or high (pHu+) breast meat pHu. In this study, the serum lipidome of 17-day-old broilers from both lines was screened for pHu markers using liquid-chromatography coupled with mass spectrometry (LC-HRMS). Results: A total of 185 lipids belonging to 4 groups (glycerolipids, glycerophospholipids, sterols, sphingolipids) were identified in the sera of 268 broilers from the pHu lines by targeted lipidomics. The glycerolipids, which are involved in energy storage, were in higher concentration in the blood of pHu− birds. The glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines) with long and polyunsaturated acyl chains were more abundant in pHu+ than in pHu− while the lysophosphatidylcholines and lysophosphatidylethanolamines, known to be associated with starch, were observed in higher quantity in the serum of the pHu− line. Finally, the concentration of the sterols and the ceramides, belonging to the sphingolipids class, were higher in the pHu+ and pHu−, respectively. Furthermore, orthogonal partial least-squares analyses highlighted a set of 68 lipids explaining 77% of the differences between the two broilers lines (R2Y = 0.77, Q2 = 0.67). Among these lipids, a subset of 40 predictors of the pHu value was identified with a Root Mean Squared Error of Estimation of 0.18 pH unit (R2Y = 0.69 and Q2 = 0.62). The predictive model of the pHu value was externally validated on 68 birds with a Root Mean Squared Error of Prediction of 0.25 pH unit. Conclusion: The sets of molecules identified will be useful for a better understanding of relationship between serum lipid profile and meat quality, and will contribute to define easily accessible pHu biomarkers on live birds that could be useful in genetic selection.
Collapse
Affiliation(s)
- Stéphane Beauclercq
- INRAE, Université de Tours, BOA, Tours, France
- *Correspondence: Stéphane Beauclercq,
| | | | | | | | - Antoine Lefèvre
- Université de Tours, PST Analyse des Systèmes Biologiques, Tours, France
| | | | | | - Patrick Emond
- Université de Tours, PST Analyse des Systèmes Biologiques, Tours, France
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire In Vitro, Tours, France
| | | | | |
Collapse
|
6
|
Zhang X, Deng Y, Ma J, Hu S, Hu J, Hu B, Liu H, Li L, He H, Wang J. Effects of different breeds/strains on fatty acid composition and lipid metabolism-related genes expression in breast muscle of ducks. Poult Sci 2022; 101:101813. [PMID: 35358925 PMCID: PMC8966148 DOI: 10.1016/j.psj.2022.101813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Fatty acid composition contributes greatly to the nutritional value of meat, and breeds/strains are important factors affecting the composition of fatty acid. Recently, few studies have focused on the fatty acid composition in breast muscle of different duck breeds. Therefore, the objective of the present study was to compare the fatty acid composition and lipid metabolism-related genes expression in breast muscle of Jianchang duck (J), Cherry Verry duck (CV) and 3 crossbred strains (BH1, BH2 and MC♂ × (BGF2♂ × GF2♀)♀ (MBG)). Our results showed that the breast muscle of J had the highest contents of C22:1(n−9) but the lowest ratios of Ʃ-omega 6 (Ʃn−6)/Ʃ-omega 3 (Ʃn−3), Ʃ-mono-unsaturated fatty acid (ƩMUFA)/Ʃ-saturated fatty acid (ƩSFA) and Ʃ-polyunsaturated fatty acid (ƩPUFA)/ƩSFA. The ƩPUFA/ƩSFA ratio was higher in breast muscle of MBG than in that of BH2 and CV, and the contents of C22:1(n-9), ƩMUFA and ƩPUFA were higher in BH1 than in BH2 and CV. Furthermore, the mRNA levels of SCD1, FADS2, ELOVL2, and ELOVL5 were significantly higher in MBG (P < 0.05), while those of FASD1 and ACACA were significantly higher in BH1 than in BH2 and CV (P < 0.05). Principal component analysis showed that fatty acids variation exhibited extensive positive loading on principal components (PCs). Correlation analysis showed that PC1 and PC3 of BH1, as well as PC1 of MBG were correlated with the mRNA levels of ACACA and FABP3, respectively. Thus, it could be concluded that the breast muscles of MBG and BH1 have better fatty acid composition, which was closely related to the increased expression levels of SCD1, FADS2, ELOVL2, and ELOVL5 genes in MBG but FADS1 and ACACA in BH1. Moreover, these results also showed that crossbreeding could optimize the composition of fatty acid in breast muscle of ducks.
Collapse
|
7
|
Yamamoto S, Kato S, Senoo N, Miyoshi N, Morita A, Miura S. Differences in phosphatidylcholine profiles and identification of characteristic phosphatidylcholine molecules in meat animal species and meat cut locations. Biosci Biotechnol Biochem 2021; 85:1205-1214. [PMID: 33686423 DOI: 10.1093/bbb/zbab010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/12/2021] [Indexed: 11/14/2022]
Abstract
Phosphatidylcholine (PC) is an essential component of the plasma membrane. Its profile varies with species and tissues. However, the PC profiles in meat have not been explored in depth. This study aimed to investigate the differences in PC profiles between various meat animal species and meat cut sites, along with the identification of characteristic PC molecules. The results demonstrated that the PC profiles of chicken meat differed from those of other species. Significant differences were also observed between the PC profiles of pork meat and the meat obtained from other species. The amount of PCs containing ether bonds was high in pork meat. PCs containing an odd number of carbon atoms were characteristic of beef and lamb meats. Furthermore, PC profiles differed based on the muscle location in chicken and pork. These results suggest that the PC profiles of skeletal muscles are indicators of animal species and muscle location.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.,Research and Development Department, Prima Meat Packers, Ltd., Tsuchiura, Japan
| | - Shigeki Kato
- Research and Development Department, Prima Meat Packers, Ltd., Tsuchiura, Japan
| | - Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akihito Morita
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
8
|
Han F, Zhou L, Zhao L, Wang L, Liu L, Li H, Qiu J, He J, Liu N. Identification of miRNA in Sheep Intramuscular Fat and the Role of miR-193a-5p in Proliferation and Differentiation of 3T3-L1. Front Genet 2021; 12:633295. [PMID: 33936163 PMCID: PMC8083875 DOI: 10.3389/fgene.2021.633295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Intramuscular fat (IMF) is one of the most critical parameters affecting meat quality and mainly affected by genetic factors. MicroRNA as an important regulatory factor, which is still a lack of research in the development of sheep IMF deposition. We used RNA sequencing (RNA-seq) and cell-level validation to explore the role of miRNA in IMF deposition. As for this purpose, longissimus thoracis et lumborum (LTL) samples of 2 month-old (Mth-2) and 12 months-old (Mth-12) Aohan fine-wool sheep (AFWS) were used to identified miRNAs expression. We found 59 differentially expressed miRNAs (DE-miRNA) between these age groups and predicted their 1,796 target genes. KEGG functional enrichment analysis revealed eight pathways involved in lipid metabolism-related processes, including fatty acid elongation and the AMPK signaling pathway. A highly expressed DE-miRNA, miR-193a-5p, was found to serve a function in 3T3-L1 preadipocyte differentiation. Luciferase assay demonstrated that miR-193a-5p directly binds to the 3′-UTR region of ACAA2. By constructing mimics and inhibitor vector transfecting into 3T3-L1 cells to explore the effect of miR-193a-5p on cell proliferation and differentiation, we demonstrated that overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte proliferation, as evidenced by decreased mRNA and protein expression of CDK4 and CyclinB. CCK-8 assay showed that miR-193a-5p significantly inhibited cell proliferation. Similarly, the overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte differentiation and adipocyte-specific molecular markers’ expression, leading to a decrease in PPARγ and C/EBPα and ACAA2. Inhibition of miR-193a-5p had the opposite effects. Our study lists the miRNAs associated with intramuscular lipid deposition in sheep and their potential targets, striving to improve sheep meat quality.
Collapse
Affiliation(s)
- Fuhui Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lisheng Zhou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Le Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Haijuan Li
- Aohan Fine Wool Sheep Stud Farm, Chifeng, China
| | - Jixian Qiu
- Runlin Animal Industry Co., Ltd., Linqing, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Bu Y, Wang H, Ma X, Han C, Jia X, Zhang J, Liu Y, Peng Y, Yang M, Yu K, Wang C. Untargeted Metabolomic Profiling of the Correlation Between Prognosis Differences and PD-1 Expression in Sepsis: A Preliminary Study. Front Immunol 2021; 12:594270. [PMID: 33868224 PMCID: PMC8046931 DOI: 10.3389/fimmu.2021.594270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives: The mortality rate of sepsis remains very high. Metabolomic techniques are playing increasingly important roles in diagnosis and treatment in critical care medicine. The purpose of our research was to use untargeted metabolomics to identify and analyze the common differential metabolites among patients with sepsis with differences in their 7-day prognosis and blood PD-1 expression and analyze their correlations with environmental factors. Methods: Plasma samples from 18 patients with sepsis were analyzed by untargeted LC-MS metabolomics. Based on the 7-day prognoses of the sepsis patients or their levels of PD-1 expression on the surface of CD4+ T cells in the blood, we divided the patients into two groups. We used a combination of multidimensional and monodimensional methods for statistical analysis. At the same time, the Spearman correlation analysis method was used to analyze the correlation between the differential metabolites and inflammatory factors. Results: In the positive and negative ionization modes, 16 and 8 differential metabolites were obtained between the 7-day death and survival groups, respectively; 5 and 8 differential metabolites were obtained between the high PD-1 and low PD-1 groups, respectively. We identified three common differential metabolites from the two groups, namely, PC (P-18:0/14:0), 2-ethyl-2-hydroxybutyric acid and glyceraldehyde. Then, we analyzed the correlations between environmental factors and the common differences in metabolites. Among the identified metabolites, 2-ethyl-2-hydroxybutyric acid was positively correlated with the levels of IL-2 and lactic acid (Lac) (P < 0.01 and P < 0.05, respectively). Conclusions: These three metabolites were identified as common differential metabolites between the 7-day prognosis groups and the PD-1 expression level groups of sepsis patients. They may be involved in regulating the expression of PD-1 on the surface of CD4+ T cells through the action of related environmental factors such as IL-2 or Lac, which in turn affects the 7-day prognosis of sepsis patients.
Collapse
Affiliation(s)
- Y Bu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - H Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - C Han
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X Jia
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - J Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Y Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Y Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - M Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - K Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - C Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
10
|
Tang Z, Song B, Zheng C, Zheng J, Yin Y, Chen J. Dietary Beta-Hydroxy-Beta-Methyl Butyrate Supplementation Affects Growth, Carcass Characteristics, Meat Quality, and Serum Metabolomics Profile in Broiler Chickens. Front Physiol 2021; 12:633964. [PMID: 33643073 PMCID: PMC7902712 DOI: 10.3389/fphys.2021.633964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to explore the effects of beta-hydroxy-beta-methyl butyrate (HMB) on serum metabolic profiles and meat quality of muscles in Wenshi broiler chickens. Birds were fed a basal diet with an additional 0, 0.05, 0.10, or 0.15% HMB, respectively. Results showed that dietary HMB quadratically increased the average daily gain (P = 0.058) and decreased feed:gain (P < 0.05) mainly in the starter phase. At 51 days of age, birds receiving 0.10% HMB diet exhibited less abdominal fat and more breast yield than the control (P < 0.05). Moreover, dietary HMB quadratically decreased the L∗ value and drip loss in selected muscles (P < 0.05) and increased the a∗ value in breast muscle (P < 0.05). Serum metabolome profiling showed that the most differentially abundant metabolites are lipids and lipid-like molecules, including phosphatidylcholines. It was concluded that HMB improved growth performance and meat quality of muscle in broilers.
Collapse
Affiliation(s)
- Zhiyi Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bo Song
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Changbing Zheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jie Zheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|