1
|
Li M, Hassan FU, Lin Q, Arshad MA, Akhtar MU, Peng L, Yang C, Liang X, Huang J. In Vitro Evaluation of Ruminal Digestibility, Fermentation Characteristics, and Bacterial Diversity of Kenaf Crop at Various Cutting Heights. Vet Sci 2025; 12:50. [PMID: 39852925 PMCID: PMC11769016 DOI: 10.3390/vetsci12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
The current study investigated the in vitro degradability, in vitro gas production, methane (CH4) production, and ruminal bacterial community of kenaf plants cut at different heights (130, 160, 190, 220, and 250 cm). These samples were subjected to an in vitro batch culture system using buffalo rumen fluid to measure gas and CH4 production at 3, 6, 9, 12, 24, 36, 48, and 72 h of incubation. Results reveal that crude protein (CP) concentration was the highest at the 220 cm height compared with the other heights. With the increase in height, gas and CH4 production decreased. However, the CH4 production at 190 cm was higher compared with the other plant heights. Dry matter degradation was higher at 190 cm and 220 cm, while ammonia-N and microbial CP were higher at the 220 cm height compared with the other heights. However, neutral detergent fiber degradation was the highest at the 130 cm height. Total volatile fatty acids, acetic acid, acetic acid/propane ratio, and pH value did not differ among the treatments, except for propionic acid, which was higher at the 130 cm and 160 cm heights. Overall, harvesting kenaf at plant heights of up to 220 cm was better in terms of its promising nutritional quality, improved dry matter degradation, and microbial CP contents.
Collapse
Affiliation(s)
- Mengwei Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning 530001, China; (M.L.); (L.P.); (C.Y.); (X.L.)
| | - Faiz-ul Hassan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan; (F.-u.H.); (M.U.A.)
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China;
| | - Muhammad Adeel Arshad
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China;
| | - Muhammad Uzair Akhtar
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan; (F.-u.H.); (M.U.A.)
| | - Lijuan Peng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning 530001, China; (M.L.); (L.P.); (C.Y.); (X.L.)
| | - Chengjian Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning 530001, China; (M.L.); (L.P.); (C.Y.); (X.L.)
| | - Xin Liang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning 530001, China; (M.L.); (L.P.); (C.Y.); (X.L.)
| | - Jiaxiang Huang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning 530001, China; (M.L.); (L.P.); (C.Y.); (X.L.)
| |
Collapse
|
2
|
Martinez-Fernandez G, Kinley RD, Smith WJM, Simington J, Joseph S, Tahery S, Durmic Z, Vercoe P. Effect of fit-for-purpose biochars on rumen fermentation, microbial communities, and methane production in cattle. Front Microbiol 2024; 15:1463817. [PMID: 39629207 PMCID: PMC11611548 DOI: 10.3389/fmicb.2024.1463817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Biochar has gained significant attention as a possible anti-methanogenic supplement for ruminants due to its potential to reduce methane (CH₄) emissions from enteric fermentation. However, its effects on rumen methanogenesis have been inconsistent and, in some cases, contradictory. These variations are likely influenced by factors such as the type of biochar used, its source material, and how it is administered, including the form in which it is provided and the dosage needed to achieve desired outcomes. This study aimed to examine the effects of two fit-for-purpose biochars on rumen fermentation, CH4 emissions, and the rumen microbiome of cattle-fed roughage-based diets. Two experiments were conducted to assess the potential of biochar in mitigating CH4 emissions. Experiment 1 This was a controlled pen trial conducted over 56 days, involving 12 steers that were fed Rhodes grass hay ad libitum. The animals were assigned to one of four treatment groups: control (no biochar, only molasses), low dose (50 g biochar/animal/day), mid dose (100 g biochar/animal/day), or high dose (200 g biochar/animal/day). Two types of biochar, Biochar 1 and Biochar 2, were administered with molasses (200 mL per animal/day). Methane emissions were measured using open-circuit respiration chambers, and rumen fluid samples were collected for analysis of the rumen microbial community and fermentation metabolite. Experiment 2 In this trial, 45 heifers were selected and grazed together in a single paddock for 60 days to assess the effects of biochar on productivity and CH4 emissions under grazing conditions. The animals were allocated to one of three treatment groups (15 animals per group): control (no biochar, only molasses), Biochar 1, or Biochar 2. Each group was administered biochar at an estimated single dose of 100 g per animal/day mixed with molasses. Methane emissions were measured using GreenFeed systems in the field to monitor CH₄ production from individual animals. Results In the controlled pen trial (Experiment 1), biochar supplementation resulted in a reduction of CH₄ emissions by 8.8-12.9% without any negative effects on rumen fermentation or dry matter intake (DMI). Minor changes were observed in the rumen bacterial community, particularly in the Christensenellaceae and Prevotellaceae families. However, in the grazing trial (Experiment 2), no significant differences in CH₄ emissions or productivity were detected with biochar supplementation. Conclusion While the results from controlled feeding conditions suggest that biochar has the potential to reduce enteric CH₄ emissions, the lack of significant findings under grazing conditions highlights the need for further research. Future studies should focus on identifying biochar types, doses, and delivery methods that are effective in reducing CH₄ emissions in grazing systems without compromising cattle productivity.
Collapse
Affiliation(s)
| | - Robert D. Kinley
- Agriculture and Food, CSIRO, Townsville, QLD, Australia
- FutureFeed Pty Ltd, Townsville, QLD, Australia
| | | | | | - Stephen Joseph
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Sara Tahery
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Zoey Durmic
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Phil Vercoe
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Oré L, Romero G, Souza de Abreu MH, Velarde-Guillén J, Arango J, Ku-Vera JC, Gómez C. Use of CLEANED to Assess the Productive, Environmental, and Economic Impact of Dairy Farms in the Peruvian Amazon. Animals (Basel) 2024; 14:3224. [PMID: 39595277 PMCID: PMC11591202 DOI: 10.3390/ani14223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Dairy farms in developing countries are key to fighting hunger and poverty. However, their environmental and economic impact in the tropical region of Peru has been scarcely studied. The CLEANED tool, developed by the Alliance of Bioversity International and the International Center for Tropical Agriculture, allows us to assess the productive situation and the environmental and economic impact of different dairy systems. The objective of the study was to use the CLEANED tool to evaluate the production, environmental, and economic impacts of extensive and semi-intensive dairy systems in the tropical region of Peru. Data from twelve dairy farms (six extensive and six semi-intensive systems), in two seasons (rainy and dry) were recorded using semi-structured surveys. The required area (ha/year), production (L milk/ha/year), environmental impact (water use in m3/product), and methane (CH4) and nitrous oxide (N2O) emissions in kg CO2eq/kg fat- and protein-corrected milk (FPCM) were estimated, and the economic analysis was performed for each livestock system. Results showed that the required area was of 28.9 and 32.6 ha, milk yield was 382 and 1254 L/ha/year, water use was 0.59 and 0.29 m3/kg FPCM, CH4 emissions were 1.7 and 1.0 kg CO2eq/kg FPCM, and N2O emissions were 0.22 and 0.17 kg CO2eq/kg FPCM, for the extensive and semi-intensive systems, respectively. The study revealed significant positive differences in semi-intensive livestock systems, including increased productivity, the reduced intensity of CH4 and N2O emissions, and greater profitability.
Collapse
Affiliation(s)
- Linda Oré
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima 15024, Peru; (L.O.); (G.R.); (M.H.S.d.A.); (J.V.-G.)
| | - Gelver Romero
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima 15024, Peru; (L.O.); (G.R.); (M.H.S.d.A.); (J.V.-G.)
| | - Maria H. Souza de Abreu
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima 15024, Peru; (L.O.); (G.R.); (M.H.S.d.A.); (J.V.-G.)
| | - José Velarde-Guillén
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima 15024, Peru; (L.O.); (G.R.); (M.H.S.d.A.); (J.V.-G.)
| | - Jacobo Arango
- Tropical Forages Program, International Center for Tropical Agriculture (CIAT), km 17, Palmira 763022, Valle del Cauca, Colombia;
| | - Juan Carlos Ku-Vera
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida 97315, Yucatán, Mexico;
| | - Carlos Gómez
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima 15024, Peru; (L.O.); (G.R.); (M.H.S.d.A.); (J.V.-G.)
| |
Collapse
|
4
|
Cuervo W, Gómez C, Tarnonsky F, Fernandez-Marenchino I, Maderal A, Podversich F, Vargas JDJ, DiLorenzo N. Effect of Cashew Nutshell Extract, Saponins and Tannins Addition on Methane Emissions, Nutrient Digestibility and Feeding Behavior of Beef Steers Receiving a Backgrounding Diet. Animals (Basel) 2024; 14:3126. [PMID: 39518849 PMCID: PMC11545760 DOI: 10.3390/ani14213126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The beef industry contributes to greenhouse gas emissions through enteric methane emissions, exacerbating climate change. Anacardic acid in cashew nutshell extract (CNSE), saponins and tannins (ST) are plant secondary metabolites that show promise in methane mitigation via antimicrobial effects, potentially exerting changes in ruminal fermentation patterns. This study examined the impact of CNSE, ST, and their combination on methane emissions, digestibility, intake, and performance of sixteen Angus crossbred steers (347 ± 30 kg) receiving a backgrounding diet (70:30 corn silage: cottonseed burrs). The study used a 4 × 4 Latin square design (4 steers, 4 treatments, 4 periods) with a 2 × 2 factorial arrangement, including the main effects of additive (CNSE or ST) fed individually or combined. Thus, steers received the following treatments: (1) no additive, (2) CNSE only, (3) ST only, or (4) both (CNSEST). Non-supplemented steers registered eight more feedbunk visits/d than ST-steers and spent an extra 10 min/d on the feedbunk. The addition of ST tended to increase dry matter, organic matter, and neutral detergent fiber intake. Additives fed individually reduced CP digestibility. Intake of the carrier containing CNSE only was lesser and coincided with a greater methane yield in that treatment. Digestibility and methane mitigation were improved after CNSEST compared with individual inclusion, suggesting synergistic reactions enhanced methane mitigation effects in fibrous diets without affecting the digestibility of nutrients nor animal growth performance.
Collapse
Affiliation(s)
- Wilmer Cuervo
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA; (C.G.); (F.T.); (I.F.-M.); (A.M.); (F.P.); (J.d.J.V.)
| | | | | | | | | | | | | | - Nicolas DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA; (C.G.); (F.T.); (I.F.-M.); (A.M.); (F.P.); (J.d.J.V.)
| |
Collapse
|
5
|
Sandoval DF, Junca Paredes JJ, Enciso Valencia KJ, Díaz Baca MF, Bravo Parra AM, Burkart S. Long-term relationships of beef and dairy cattle and greenhouse gas emissions: Application of co-integrated panel models for Latin America. Heliyon 2024; 10:e23364. [PMID: 38169786 PMCID: PMC10758816 DOI: 10.1016/j.heliyon.2023.e23364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
The cattle sector plays a pivotal role in the economies of numerous Latin American and Caribbean countries. However, it also exerts a significant impact on environmental degradation, including substantial contributions to greenhouse gas emissions (accounting for 23.5 % of global livestock emissions) and deforestation (70 % attributed to livestock in South America). This article aims to investigate the complex, long-term, and short-term relationships between population growth, pastureland expansion, deforestation, and the cattle sector in 15 countries across the region, focusing on their effects on greenhouse gas emissions as well as beef and dairy production. Utilizing data from FAOSTAT spanning the period from 1990 to 2019, a cointegrated panel model was developed using the Pooled Mean Group technique, resulting in the estimation of six models. The aggregate-level results for the region reveal the presence of relatively stable long-term relationships. This implies that over time, the influence of population growth, pastureland expansion, and deforestation on greenhouse gas emissions from cattle production tends to diminish in significance. This long-term behavior may be particularly pronounced in countries with more developed cattle sectors, where efforts to mitigate the environmental impacts of cattle production, such as promoting improved forage technologies, silvo-pastoral systems, grazing management practices, and the implementation of policies, regulatory frameworks, and incentives, have gained traction. These progressive countries can serve as regional benchmarks, and the lessons they have learned hold valuable insights for the sustainable intensification of cattle production in countries with less-developed cattle sectors.
Collapse
Affiliation(s)
- Danny Fernando Sandoval
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - John Jairo Junca Paredes
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Karen Johanna Enciso Valencia
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Manuel Francisco Díaz Baca
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Aura María Bravo Parra
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Stefan Burkart
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| |
Collapse
|
6
|
Molina-Botero IC, Gaviria-Uribe X, Rios-Betancur JP, Medina-Campuzano M, Toro-Trujillo M, González-Quintero R, Ospina B, Arango J. Methane Emission, Carbon Footprint and Productivity of Specialized Dairy Cows Supplemented with Bitter Cassava ( Manihot esculenta Crantz). Animals (Basel) 2023; 14:19. [PMID: 38200749 PMCID: PMC10778060 DOI: 10.3390/ani14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this research was to determine the effect of cassava (Manihot esculenta Crantz) supplementation on enteric methane (CH4) emissions, carbon footprint, and production parameters in dairy cows. Daily concentrate supply for Jersey and Jersey * Holstein breeds was evaluated in four treatments (T): T1: 100% commercial concentrate; T2: 70% concentrate + 30% cassava leaves; T3: 70% concentrate + 30% cassava roots; and T4: 70% concentrate + 15% cassava leaves + 15% cassava root chips. Measurements of CH4 emissions were performed using the polytunnel technique. Average daily dry matter intake ranged from 7.8 to 8.5 kg dry matter (DM). Cassava leaves were characterized by a high crude protein (CP) content (171 g CP/kg DM), with 5 times more neutral detergent fiber (NDF) content than cassava root (587 vs. 108 g NDF/kg DM). Average enteric CH4 emissions per animal ranged from 194 to 234 g/d (p > 0.05). The carbon footprint was reduced by replacing 30% of the concentrate with cassava leaves and/or roots. Energy-corrected milk production was 1.15 times higher in Jersey * Holstein animals than Jersey cows (47 vs. 55 kg). Therefore, supplementation with cassava leaves and/or roots is a nutritionally and environmentally sustainable strategy.
Collapse
Affiliation(s)
- Isabel Cristina Molina-Botero
- Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia; (I.C.M.-B.); (X.G.-U.); (R.G.-Q.)
| | - Xiomara Gaviria-Uribe
- Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia; (I.C.M.-B.); (X.G.-U.); (R.G.-Q.)
| | - Juan Pablo Rios-Betancur
- Colanta, Calle 74# 64ª-51, Medellín 050044, Antioquia, Colombia; (J.P.R.-B.) ; (M.M.-C.); (M.T.-T.)
| | - Manuela Medina-Campuzano
- Colanta, Calle 74# 64ª-51, Medellín 050044, Antioquia, Colombia; (J.P.R.-B.) ; (M.M.-C.); (M.T.-T.)
| | - Mercedes Toro-Trujillo
- Colanta, Calle 74# 64ª-51, Medellín 050044, Antioquia, Colombia; (J.P.R.-B.) ; (M.M.-C.); (M.T.-T.)
| | - Ricardo González-Quintero
- Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia; (I.C.M.-B.); (X.G.-U.); (R.G.-Q.)
| | - Bernardo Ospina
- Corporacion Clayuca, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia;
| | - Jacobo Arango
- Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia; (I.C.M.-B.); (X.G.-U.); (R.G.-Q.)
| |
Collapse
|
7
|
Araiza Ponce KA, Gurrola Reyes JN, Martínez Estrada SC, Salas Pacheco JM, Palacios Torres J, Murillo Ortiz M. Fermentation Patterns, Methane Production and Microbial Population under In Vitro Conditions from Two Unconventional Feed Resources Incorporated in Ruminant Diets. Animals (Basel) 2023; 13:2940. [PMID: 37760339 PMCID: PMC10525595 DOI: 10.3390/ani13182940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, four experimental treatments were evaluated: (T1) alfalfa hay + concentrate, (50:50%, DM); (T2) alfalfa hay + Leucaena leucocephala + concentrate, (30:20:50%, DM); (T3) alfalfa hay + prickly pear + concentrate, (30:20:50%, DM); and (T4) alfalfa hay + Leucaena leucocephala + prickly pear + concentrate, (30:10:10:50%, DM). NH3-N concentrations in T2 and T4 decreased when replaced with alfalfa hay in 20 and 10%, respectively. Treatments did not affect the concentration of total volatile fatty acids (TVFA) between T3 and T4 (p > 0.05), while the concentrations among T1 and T2 were different (p < 0.05). T2 showed a reduction of 25.5% in the methane production when compared to T1 (p < 0.05). The lowest concentrations of protozoa were observed in T2 and T4, which contained Leucaena leucocephala (T2) and Leucaena leucocephala + prickly pear (T4) (p < 0.05). The highest concentration of total methanogens was recorded in T1 and was different in T2, T3, and T4 (p < 0.05). Leucaena leucocephala, at an inclusion percentage of 20%, decreased the methane when compared to T1, whereas prickly pear increased methane production in relation to T1.
Collapse
Affiliation(s)
- Karina A. Araiza Ponce
- Faculty of Veterinary Medicine and Animal Science, Juarez University of the State of Durango, Durango 34126, Mexico; (K.A.A.P.); (J.P.T.)
| | - J. Natividad Gurrola Reyes
- Interdisciplinary Research Center for Integral Regional Development, National Polytechnic Institute, Durango Unit, Durango 34126, Mexico; (J.N.G.R.); (S.C.M.E.)
| | - Sandra C. Martínez Estrada
- Interdisciplinary Research Center for Integral Regional Development, National Polytechnic Institute, Durango Unit, Durango 34126, Mexico; (J.N.G.R.); (S.C.M.E.)
| | - José M. Salas Pacheco
- Scientific Research Institute, Juarez University of the State of Durango, Durango 34126, Mexico;
| | - Javier Palacios Torres
- Faculty of Veterinary Medicine and Animal Science, Juarez University of the State of Durango, Durango 34126, Mexico; (K.A.A.P.); (J.P.T.)
| | - Manuel Murillo Ortiz
- Faculty of Veterinary Medicine and Animal Science, Juarez University of the State of Durango, Durango 34126, Mexico; (K.A.A.P.); (J.P.T.)
| |
Collapse
|
8
|
Sandoval DF, Florez JF, Enciso Valencia KJ, Sotelo Cabrera ME, Stefan B. Economic-environmental assessment of silvo-pastoral systems in Colombia: An ecosystem service perspective. Heliyon 2023; 9:e19082. [PMID: 37636404 PMCID: PMC10448473 DOI: 10.1016/j.heliyon.2023.e19082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Cattle production in Colombia has an important social and economic role but causes considerable environmental impacts, such as deforestation and greenhouse gas emissions by ruminants, particularly methane. Thus, technological innovations aimed at reducing these impacts must focus on both economic and environmental sustainability. Silvo-pastoral systems (SPS) offer productivity increases while generating environmental benefits and ecosystem services and are therefore at the center of debate around sustainable production alternatives. The objective of this article is to evaluate the economic-environmental performance of two proposed SPS for a cattle fattening system for the Colombian context: (i) Urochloa brizantha cv. Toledo and (ii) Urochloa hybrid cv. Cayman, both in association with Leucaena leucocephala trees for browsing and shade provision. They are compared with the respective base scenarios of only using the grasses in monocultures. The study consists of a financial analysis, which estimates potential profitability increases in beef production in the SPS, and an environmental evaluation, which estimates the monetary values of microclimatic regulation and reduction of methane emissions. The value of methane emission reductions is then integrated into a combined economic-environmental evaluation. Results show that both SPS improve the profitability indicators of the production system and reduce the probability of economic loss. Likewise, the reduction of methane emissions in the SPS is estimated at US$6.12 per cattle, and the economic value of microclimatic regulation at US$2,026 per hectare.
Collapse
Affiliation(s)
- Danny Fernando Sandoval
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Jesús Fernando Florez
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Karen Johanna Enciso Valencia
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Mauricio Efren Sotelo Cabrera
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Burkart Stefan
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| |
Collapse
|
9
|
Belay Mekonnen G. Technology for Carbon Neutral Animal Breeding. Vet Med Sci 2023. [DOI: 10.5772/intechopen.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Animal breeding techniques are to genetically select highly productive animals with less GHG emission intensity, thereby reducing the number of animals required to produce the same amount of food. Shotgun metagenomics provides a platform to identify rumen microbial communities and genetic markers associated with CH4 emissions, allowing the selection of cattle with less CH4 emissions. Moreover, breeding is a viable option to make real progress towards carbon neutrality with a very high rate of return on investment and a very modest cost per tonne of CO2 equivalents saved regardless of the accounting method. Other high technologies include the use of cloned livestock animals and the manipulation of traits by controlling target genes with improved productivity.
Collapse
|
10
|
Rivera JE, Villegas G, Chará J, Durango SG, Romero MA, Verchot L. Effect of Tithonia diversifolia (Hemsl.) A. Gray intake on in vivo methane (CH 4) emission and milk production in dual-purpose cows in the Colombian Amazonian piedmont. Transl Anim Sci 2022; 6:txac139. [PMID: 36568900 PMCID: PMC9769118 DOI: 10.1093/tas/txac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
The inclusion of Tithonia diversifolia in pasture-based diets is a promising alternative to increase bovine productivity, due to its chemical composition and wide adaptation, but there are few in vivo studies to determine its effect on methane yield and animal production in grazing systems. The objective of this study was to determine the effects of the T. diversifolia inclusion in a basal diet of Brachiaria humidicola on methane (CH4) emissions by enteric fermentation, and on milk yield and quality in dual-purpose cows. The polytunnel technique was used for the determination of methane yield and two diets were evaluated (Diet 1: Brachiaria humidicola 100%; Diet 2: T. diversifolia 15% + B. humidicola 85% dry matter basis) in the moderate rainy and rainy seasons using a cross-over experimental design; milk production was measured by daily milk weighing, and milk quality was determined using a LACTOSCAN analyzer. The inclusion of T. diversifolia did not increase the dry matter intake (P = 0.369), but increased the intake of crude protein and minerals, and reduced fiber intake, resulting in the increased yield of milk and its components in the moderate rainy season (P = 0.012). The inclusion of T. diversifolia reduced the absolute CH4 emissions (P = 0.016), Ym and emission intensity (per unit of fat, protein and kilogram fat and protein corrected milk yields) both in the moderate rainy and rainy seasons (P < 0.05). We conclude that the inclusion of T. diversifolia in the forage feed base in the humid tropics such as the Amazon piedmont can be used as a tool to both mitigate enteric CH4 emissions and to increase animal productivity and hence reduce emissions intensity, and thus reduce pressure on the agricultural frontier in critical areas such as the Amazon.
Collapse
Affiliation(s)
- Julián Esteban Rivera
- Centro Para la Investigación en Sistemas Sostenibles de Producción Agropecuaria, CIPAV, Cali, Valle de Cauca, 760002, Colombia
| | - Gonzalo Villegas
- Centro Para la Investigación en Sistemas Sostenibles de Producción Agropecuaria, CIPAV, Cali, Valle de Cauca, 760002, Colombia
| | - Julian Chará
- Centro Para la Investigación en Sistemas Sostenibles de Producción Agropecuaria, CIPAV, Cali, Valle de Cauca, 760002, Colombia
| | - Sandra G Durango
- Alliance Bioversity International, International Center for Tropical Agriculture, Km 17 recta Cali-Palmira, Cali, Valle de Cauca, 763537, Colombia
| | - Miguel A Romero
- Alliance Bioversity International, International Center for Tropical Agriculture, Km 17 recta Cali-Palmira, Cali, Valle de Cauca, 763537, Colombia
| | - Louis Verchot
- Alliance Bioversity International, International Center for Tropical Agriculture, Km 17 recta Cali-Palmira, Cali, Valle de Cauca, 763537, Colombia
| |
Collapse
|
11
|
Foliage of Tropical Trees and Shrubs and Their Secondary Metabolites Modify In Vitro Ruminal Fermentation, Methane and Gas Production without a Tight Correlation with the Microbiota. Animals (Basel) 2022; 12:ani12192628. [PMID: 36230369 PMCID: PMC9559637 DOI: 10.3390/ani12192628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ruminants, mainly cattle, contribute to greenhouse gases (GHG) emissions as methane (CH4) is produced by ruminal fermentation. Hence, various anti-methanogenic feed strategies have been studied, including the use of plants with secondary metabolites. This study evaluated in vitro ruminal fermentation metrics, microbial composition by digital droplet PCR (ddPCR) and the CH4 production of the foliage of several tropical trees and shrubs: Leucaena leucocephala, Moringa oleifera, Albizia lebbeck, Enterolobium cyclocarpum, Piscidia piscipula, Brosimum alicastrum, Lysiloma latisiliquum, Guazuma ulmifolia, Cnidoscolus aconitifolius, Gliricidia sepium and Bursera simaruba, using Cynodon plectostachyus grass as control. The results showed a wide variation in the chemical composition of the foliage, as well as in the ruminal microbiota. The crude protein (CP) content ranged from 11 to 25%, whereas the content of condensed tannins (CT) and saponins (S) was from 0.02 to 7%, and 3.2 to 6.6%, respectively. The greatest dry matter degradability (DMD) after 72 h was 69% and the least 35%, the latter coinciding with the least gas production (GP). A negative correlation was found between the CT and CH4 production, also between protozoa and fungi with the SGMT group of archaea. We concluded that the foliage of some tropical trees and shrubs has a high nutritional value and the potential to decrease CH4 production due to its CT content.
Collapse
|
12
|
Milk Yield and Milk Fatty Acids from Crossbred F1 Dairy Cows Fed on Tropical Grasses and Supplemented with Different Levels of Concentrate. Animals (Basel) 2022; 12:ani12192570. [PMID: 36230310 PMCID: PMC9559261 DOI: 10.3390/ani12192570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The objective of this study was to determine milk fatty acids (FA) from crossbred F1 dairy cows fed on tropical grasses and supplemented with different levels of concentrate. Milk yield and milk composition were not affected while very mild effects were found in milk fatty acids. Overall, this study shows that adding up to 450 g/kg of concentrate to crossbred F1 dairy cows fed on tropical grasses does not have negative effects on milk yield and milk quality. Therefore, under these production conditions, farmers can avoid the use of concentrate, rely on tropical grasses, and reduce feeding costs. Abstract The objective of this study was to determine milk fatty acids from crossbred F1 dairy cows fed on tropical grasses and supplemented with different levels of concentrate. Twelve dairy cows (50% Holstein × 50% Brahman) with 60 days of lactation grazing tropical grasses were assigned to a Switchback design, with three periods of 15 days with different concentrate levels: 0, 150, 300 and 450 g /kg. Milk samples were obtained on the last five days of each experimental period. Milk yield and milk composition were not affected. Cows fed with 300 g/kg of concentrate had higher contents of C15:0 (p = 0.004), C22:0 (p = 0.031), and C24:0 (p = 0.013). C17:1 cis9 was higher (p = 0.039) with 150 g/kg and lowest with 450 g/kg. C18:1 cis9 was higher (p = 0.042) with 150 g/kg. C18:2n6trans was higher (p = 0.05) with 300 g/kg and lower (p = 0.018) with 450 g/kg. This study shows that adding up to 450 g/kg of concentrate to crossbred F1 dairy cows fed on tropical grasses does not have negative effects on milk yield and milk quality. Therefore, under these production conditions, farmers can rely on tropical grasses and reduce feeding costs.
Collapse
|
13
|
Jiménez-Ocampo R, Montoya-Flores MD, Pamanes-Carrasco G, Herrera-Torres E, Arango J, Estarrón-Espinosa M, Aguilar-Pérez CF, Araiza-Rosales EE, Guerrero-Cervantes M, Ku-Vera JC. Impact of orange essential oil on enteric methane emissions of heifers fed bermudagrass hay. Front Vet Sci 2022; 9:863910. [PMID: 36051539 PMCID: PMC9424680 DOI: 10.3389/fvets.2022.863910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the effects of orange essential oil (OEO) on the rumen fermentation, nutrient utilization, and methane (CH4) emissions of beef heifers fed a diet of bermudagrass (Cynodon dactylon) were examined. In addition, in vitro and in situ experiments were conducted. The in vitro experiment consisted of three treatments: control (CTL, no OEO), OEO1 (0.25% OEO), and OEO2 (0.5% OEO). The forage to concentrate ratio was 70:30 (dry matter [DM] basis) in all treatments. No changes in pH, proportions of volatile fatty acids, and the acetate:propionate ratio were observed (P > 0.05). The addition of 0.25% OEO resulted in a reduction in CH4 production (mL/g) relative to the control (P < 0.05). In the in situ experiment, 5 g of total mixed ration (CTL, OEO1, and OEO2) were incubated for 6, 12, 24, 48, and 72 h. Potential and effective degradability were not affected by OEO supplementation (P > 0.05). In the in vivo study, six crossbred beef heifers (Bos indicus × Bos taurus), fitted with rumen cannulas, were assigned to three different treatments: no additive (CTL), 0.25% OEO (OEO1), and 0.5% OEO (OEO2) in a replicated 3 × 3 Latin square (21-day periods). Heifers were fed at 2.8% body weight. In vivo CH4 production was measured in open-circuit respiration chambers. Reductions in gross energy consumption, apparent total tract digestibility, and rumen valerate concentration were observed for OEO2 compared to the control (P < 0.05). Additionally, decreases in CH4 emissions (g/day; P < 0.05) and CH4 (MJ gross energy intake/day; P < 0.05) were observed in response to supplementation of 0.5% OEO as compared to the CTL treatment. Thus, supplementation of 0.5% OEO reduced CH4 emissions (g/day) by 12% without impacting the DM intake of heifers fed bermudagrass hay as a basal ration.
Collapse
Affiliation(s)
- Rafael Jiménez-Ocampo
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Yucatan, Mexico
- National Institute of Research in Forestry, Agriculture and Livestock-INIFAP, Experimental Field Valle del Guadiana, Durango, Mexico
- *Correspondence: Rafael Jiménez-Ocampo
| | - María D. Montoya-Flores
- National Center for Disciplinary Research in Physiology and Animal Breeding, National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Queretaro, Mexico
| | - Gerardo Pamanes-Carrasco
- Institute of Silviculture and Wood Industry, National Council of Science and Technology—Durango State Juarez University, Durango, Mexico
| | | | - Jacobo Arango
- Tropical Forage Program—International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Mirna Estarrón-Espinosa
- Food Technology Unit, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Jalisco, Mexico
| | - Carlos F. Aguilar-Pérez
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Yucatan, Mexico
| | - Elia E. Araiza-Rosales
- Department of Animal Nutrition, National Council of Science and Technology—Durango State Juarez University, Durango, Mexico
| | - Maribel Guerrero-Cervantes
- Department of Small Ruminant Nutrition, Faculty of Veterinary Medicine and Animal Science, Durango State Juarez University, Durango, Mexico
| | - Juan C. Ku-Vera
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Yucatan, Mexico
- Juan C. Ku-Vera
| |
Collapse
|
14
|
Ahmed Soltan Y, Kumar Patra A. Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants. Vet Med Sci 2022. [DOI: 10.5772/intechopen.101582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The rumen is an integrated dynamic microbial ecosystem composed of enormous populations of bacteria, protozoa, fungi, archaea, and bacteriophages. These microbes ferment feed organic matter consumed by ruminants to produce beneficial products such as microbial biomass and short-chain fatty acids, which form the major metabolic fuels for ruminants. The fermentation process also involves inefficient end product formation for both host animals and the environment, such as ammonia, methane, and carbon dioxide production. In typical conditions of ruminal fermentation, microbiota does not produce an optimal mixture of enzymes to maximize plant cell wall degradation or synthesize maximum microbial protein. Well-functioning rumen can be achieved through microbial manipulation by alteration of rumen microbiome composition to enhance specific beneficial fermentation pathways while minimizing or altering inefficient fermentation pathways. Therefore, manipulating ruminal fermentation is useful to improve feed conversion efficiency, animal productivity, and product quality. Understanding rumen microbial diversity and dynamics is crucial to maximize animal production efficiency and mitigate the emission of greenhouse gases from ruminants. This chapter discusses genetic and nongenetic rumen manipulation methods to achieve better rumen microbial fermentation including improvement of fibrolytic activity, inhibition of methanogenesis, prevention of acidosis, and balancing rumen ammonia concentration for optimal microbial protein synthesis.
Collapse
|
15
|
Fouts JQ, Honan MC, Roque BM, Tricarico JM, Kebreab E. Board Invited Review: Enteric methane mitigation interventions. Transl Anim Sci 2022; 6:txac041. [PMID: 35529040 PMCID: PMC9071062 DOI: 10.1093/tas/txac041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mitigation of enteric methane (CH4) presents a feasible approach to curbing agriculture’s contribution to climate change. One intervention for reduction is dietary reformulation, which manipulates the composition of feedstuffs in ruminant diets to redirect fermentation processes toward low CH4 emissions. Examples include reducing the relative proportion of forages to concentrates, determining the rate of digestibility and passage rate from the rumen, and dietary lipid inclusion. Feed additives present another intervention for CH4 abatement and are classified based on their mode of action. Through inhibition of key enzymes, 3-nitrooxypropanol (3-NOP) and halogenated compounds directly target the methanogenesis pathway. Rumen environment modifiers, including nitrates, essential oils, and tannins, act on the conditions that affect methanogens and remove the accessibility of fermentation products needed for CH4 formation. Low CH4-emitting animals can also be directly or indirectly selected through breeding interventions, and genome-wide association studies are expected to provide efficient selection decisions. Overall, dietary reformulation and feed additive inclusion provide immediate and reversible effects, while selective breeding produces lasting, cumulative CH4 emission reductions.
Collapse
Affiliation(s)
- Julia Q Fouts
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| | - Mallory C Honan
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| | - Breanna M Roque
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
- FutureFeed Pty Ltd Townsville, QLD, Australia
| | | | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
16
|
Min BR, Lee S, Jung H, Miller DN, Chen R. Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions. Animals (Basel) 2022; 12:948. [PMID: 35454195 PMCID: PMC9030782 DOI: 10.3390/ani12080948] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Enteric methane (CH4) emissions produced by microbial fermentation in the rumen resulting in the emission of greenhouse gases (GHG) into the atmosphere. The GHG emissions reduction from the livestock industry can be attained by increasing production efficiency and improving feed efficiency, by lowering the emission intensity of production, or by combining the two. In this work, information was compiled from peer-reviewed studies to analyze CH4 emissions calculated per unit of milk production, energy-corrected milk (ECM), average daily gain (ADG), dry matter intake (DMI), and gross energy intake (GEI), and related emissions to rumen fermentation profiles (volatile fatty acids [VFA], hydrogen [H2]) and microflora activities in the rumen of beef and dairy cattle. For dairy cattle, there was a positive correlation (p < 0.001) between CH4 emissions and DMI (R2 = 0.44), milk production (R2 = 0.37; p < 0.001), ECM (R2 = 0.46), GEI (R2 = 0.50), and acetate/propionate (A/P) ratio (R2 = 0.45). For beef cattle, CH4 emissions were positively correlated (p < 0.05−0.001) with DMI (R2 = 0.37) and GEI (R2 = 0.74). Additionally, the ADG (R2 = 0.19; p < 0.01) and A/P ratio (R2 = 0.15; p < 0.05) were significantly associated with CH4 emission in beef steers. This information may lead to cost-effective methods to reduce enteric CH4 production from cattle. We conclude that enteric CH4 emissions per unit of ECM, GEI, and ADG, as well as rumen fermentation profiles, show great potential for estimating enteric CH4 emissions.
Collapse
Affiliation(s)
- Byeng-Ryel Min
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Seul Lee
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea; (S.L.); (H.J.)
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea; (S.L.); (H.J.)
| | - Daniel N. Miller
- Agroecosystem Management Research Unit, USDA/ARS, 354 Filly Hall, Lincoln, NE 68583, USA;
| | - Rui Chen
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| |
Collapse
|
17
|
Altermann E, Reilly K, Young W, Ronimus RS, Muetzel S. Tailored Nanoparticles With the Potential to Reduce Ruminant Methane Emissions. Front Microbiol 2022; 13:816695. [PMID: 35359731 PMCID: PMC8963448 DOI: 10.3389/fmicb.2022.816695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Agricultural methane produced by archaea in the forestomach of ruminants is a key contributor to rising levels of greenhouse gases leading to climate change. Functionalized biological polyhydroxybutyrate (PHB) nanoparticles offer a new concept for the reduction of enteric methane emissions by inhibiting rumen methanogens. Nanoparticles were functionalized in vivo with an archaeal virus lytic enzyme, PeiR, active against a range of rumen Methanobrevibacter species. The impact of functionalized nanoparticles against rumen methanogens was demonstrated in pure cultures, in rumen batch and continuous flow rumen models yielding methane reduction of up to 15% over 11 days in the most complex system. We further present evidence of biological nanoparticle fermentation in a rumen environment. Elevated levels of short-chain fatty acids essential to ruminant nutrition were recorded, giving rise to a promising new strategy combining methane mitigation with a possible increase in animal productivity.
Collapse
Affiliation(s)
- Eric Altermann
- AgResearch Ltd., Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- *Correspondence: Eric Altermann,
| | | | - Wayne Young
- AgResearch Ltd., Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
18
|
Sheida EV, Miroshnikov SA, Duskaev GK, Atlanderova K, Grechkina V. Strategies for Reducing Ruminant Methane Emissions. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224201014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The paper studies the effect of additional administration of ultrafine particles on the cattle rumen microbiome composition. The in vitro method was used using the ANKOM Daisy II incubator according to a specialized method. Microflora analysis was performed using MiSeq (Illumina, USA) by a new generation sequencing method with a MiSeq reagent kit. After a detailed analysis of the structure and composition of the microbial community in the contents of the rumen sampled for different diets, it was found that no significant differences were observed in the bacterial communities, with the exception of a slight shift in the Bacteroidetes/Firmicutes ratio. However, we observed numerical differences in the abundance of some representatives, namely, with additional inclusion of Fe and Cr2O3, decrease in the abundance of the methane-forming species Methanobrevibacter, Methanobacterium, Methanosphaera, and Methnaomicrobium was noted regarding the control.
Collapse
|
19
|
Cardoso-Gutierrez E, Aranda-Aguirre E, Robles-Jimenez LE, Castelán-Ortega OA, Chay-Canul AJ, Foggi G, Angeles-Hernandez JC, Vargas-Bello-Pérez E, González-Ronquillo M. Effect of tannins from tropical plants on methane production from ruminants: A systematic review. Vet Anim Sci 2021; 14:100214. [PMID: 34841126 PMCID: PMC8606516 DOI: 10.1016/j.vas.2021.100214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/17/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
A negative relationship was observed between the level of tannin inclusion and CH4 emission. The effect of CH4 mitigation is increasing as the level of tannin inclusion is higher. Sub-group analysis revealed differences of tannins supplementation response according to CH4 emission measurements techniques.
Methane (CH4) is a greenhouse gas generated during the feed fermentation processes in the rumen. However, numerous studies have been conducted to determine the capacity of plant secondary metabolites to enhance ruminal fermentation and decrease CH4 production, especially those plants rich in tannins. This review conducted a descriptive analysis and meta-analysis of the use of tannin-rich plants in tropical regions to mitigate CH4 production from livestock. The aim of this study was to analyse the effect of tannins supplementation in tropical plants on CH4 production in ruminants using a meta-analytic approach and the effect on microbial population. Sources of heterogeneity were explored using a meta-regression analysis. Final database was integrated by a total of 14 trials. The ‘meta’ package in R statistical software was used to conduct the meta-analyses. The covariates defined a priori in the current meta-regression were inclusion level, species (sheep, beef cattle, dairy cattle, and cross-bred heifers) and plant. Results showed that supplementation with tropical plants with tannin contents have the greatest effects on CH4 mitigation . A negative relationship was observed between the level of inclusion and CH4 emission (−0.09), which means that the effect of CH4 mitigation is increasing as the level of tannin inclusion is higher. Therefore, less CH4 production will be obtained when supplementing tropical plants in the diet with a high dose of tannins.
Collapse
Affiliation(s)
- E Cardoso-Gutierrez
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote. Toluca, Estado de México, 50000, Mexico
| | - E Aranda-Aguirre
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote. Toluca, Estado de México, 50000, Mexico
| | - L E Robles-Jimenez
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote. Toluca, Estado de México, 50000, Mexico
| | - O A Castelán-Ortega
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote. Toluca, Estado de México, 50000, Mexico
| | - A J Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa, km 25, R/A, la Huasteca 2ª Sección, CP 86280, Villahermosa, Tabasco, Mexico
| | - G Foggi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - J C Angeles-Hernandez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km. 1, Tulancingo de Bravo, Hidalgo México, 43600 Mexico
| | - E Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - M González-Ronquillo
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote. Toluca, Estado de México, 50000, Mexico
| |
Collapse
|
20
|
Nisbet EG, Dlugokencky EJ, Fisher RE, France JL, Lowry D, Manning MR, Michel SE, Warwick NJ. Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200457. [PMID: 34565227 PMCID: PMC8473950 DOI: 10.1098/rsta.2020.0457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The causes of methane's renewed rise since 2007, accelerated growth from 2014 and record rise in 2020, concurrent with an isotopic shift to values more depleted in 13C, remain poorly understood. This rise is the dominant departure from greenhouse gas scenarios that limit global heating to less than 2°C. Thus a comprehensive understanding of methane sources and sinks, their trends and inter-annual variations are becoming more urgent. Efforts to quantify both sources and sinks and understand latitudinal and seasonal variations will improve our understanding of the methane cycle and its anthropogenic component. Nationally declared emissions inventories under the UN Framework Convention on Climate Change (UNFCCC) and promised contributions to emissions reductions under the UNFCCC Paris Agreement need to be verified independently by top-down observation. Furthermore, indirect effects on natural emissions, such as changes in aquatic ecosystems, also need to be quantified. Nitrous oxide is even more poorly understood. Despite this, options for mitigating methane and nitrous oxide emissions are improving rapidly, both in cutting emissions from gas, oil and coal extraction and use, and also from agricultural and waste sources. Reductions in methane and nitrous oxide emission are arguably among the most attractive immediate options for climate action. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Collapse
Affiliation(s)
- Euan G. Nisbet
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
- NCAS, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Edward J. Dlugokencky
- US National Oceanic and Atmospheric Administration, Global Monitoring Laboratory, 325 Broadway, Boulder, CO 80305, USA
| | - Rebecca E. Fisher
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - James L. France
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - David Lowry
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Martin R. Manning
- New Zealand Climate Change Research Institute, School of Geography Environment and Earth Studies, Victoria University of Wellington, Wellington, New Zealand
| | - Sylvia E. Michel
- Institute of Arctic and Antarctic Research, Univ. of Colorado, Boulder, CO 80309-0450, USA
| | - Nicola J. Warwick
- NCAS, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
21
|
Díaz-Céspedes M, Hernández-Guevara JE, Gómez C. Enteric methane emissions by young Brahman bulls grazing tropical pastures at different rainfall seasons in the Peruvian jungle. Trop Anim Health Prod 2021; 53:421. [PMID: 34331133 DOI: 10.1007/s11250-021-02871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
The aim of this research was to measure enteric methane (CH4) emissions by young Brahman bulls grazing tropical pastures at different rainfall seasons in the Peruvian jungle. Fourteen 1.5-year-old, young bulls (280 kg ± 18 kg BW) were grazed on tropical grasses and legumes dominated by German grass [Echinochloa polystachya (Kunth) Hitch.] and minor proportion of Torourco grass [Paspalum conjugatum (P.J. Bergius) Roxb] and Leguminous Calopo (Calopogonium mucunoides Desv.) and Kudzú [Pueraria phaseoloides (Roxb.) Benth]. Enteric CH4 emission was measured by the sulfur hexafluoride (SF6) tracer-gas technique. Organic matter intake (OMI) was determined from organic matter digestibility (OMD) using a fecal protein crude index and fecal output estimated by the dosage of external markers. There was a difference in OMD between seasons (68 and 66% for the dry and rainy seasons, respectively; P < 0.0001). The OMI (6.7 and 7.4 kg/day) and CH4 (178.7 and 298 g/day) were higher (P < 0.05) in the dry season than in the rainy season, respectively. The yield of CH4 was lower (P < 0.0001) during rainy season (7.1%) than at the dry season (10.6%). The CH4 emission (g/day) was correlated with OMD (%) (r = 0.74, P < 0.0001). Enteric CH4 emissions of young bulls grazing mixtures of tropical pastures were significantly lower in animals grazing on the rainy-season, expressed either through unit of absolute emission, intake or as percentage of the GEI. Likewise, OMD of consumed pasture was the most important factor determining CH4 emission.
Collapse
Affiliation(s)
- Medardo Díaz-Céspedes
- Universidad Nacional Agraria de La Selva, Carretera Central km. 1.21, Tingo María, Rupa Rupa, Leoncio Prado, Huánuco, 10131, Perú.,Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima, 15024, Perú
| | - José Eduard Hernández-Guevara
- Universidad Nacional Agraria de La Selva, Carretera Central km. 1.21, Tingo María, Rupa Rupa, Leoncio Prado, Huánuco, 10131, Perú
| | - Carlos Gómez
- Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima, 15024, Perú.
| |
Collapse
|
22
|
Nitrate supplementation at two forage levels in dairy cows feeding: milk production and composition, fatty acid profiles, blood metabolites, ruminal fermentation, and hydrogen sink. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Nitrate may reduce the ruminal methane emission by competing methanogenesis to achieve more hydrogen. For this purpose, twenty Holstein lactating cows were examined using a 2×2 factorial design in 4 groups for 60 days with two forage levels (40% and 60%) and supplemental nitrate 0% (F40 and F60) and 3.5% (F40N and F60N) of diet dry matter (DM). Then, the effect of nitrate and forage levels on cow performance, ruminal fermentation, methane emission, and metabolic hydrogen sink were evaluated. The nitrate supplementation did not significantly affect milk yield and ECM/DMI while, milk urea nitrogen was increased. Lowest quantity of milk vitamins (A and E) was observed in nitrate groups. The nitrate supplementation increased c9-C18:1, unsaturated fatty acids, and n-6/n-3 contents of the milk. Blood parameters were affected by nitrate supplementation. Blood met-Hb concentration was increased, while blood glucose was decreased in nitrate groups. High forage and nitrate fed animals (F60N) had higher ruminal acetate and lower propionate concentration, and higher acetate+butyrate to propionate ratio than other groups. Nitrite and NH3-N concentrations were higher in the rumen of nitrate fed animals. Nitrate supplementation inhibited gas volume and methane emission without affecting volatile fatty acids at 12 and 24 h of incubation. The H2 balance, H2 production and consumption, and recovery percentage were significantly lower in F60N group. In conclusion, nitrate supplementation can be employed as an alternative strategy for improving ruminal fermentation, milk quality and methane inhibition.
Collapse
|
23
|
Quintero-Anzueta S, Molina-Botero IC, Ramirez-Navas JS, Rao I, Chirinda N, Barahona-Rosales R, Moorby J, Arango J. Nutritional Evaluation of Tropical Forage Grass Alone and Grass-Legume Diets to Reduce in vitro Methane Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.663003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Forage grass nutritional quality directly affects animal feed intake, productivity, and enteric methane (CH4) emissions. This study evaluated the nutritional quality, in vitro enteric CH4 emission potential, and optimization of diets based on two widely grown tropical forage grasses either alone or mixed with legumes. The grasses Urochloa hybrid cv. Cayman (UHC) and U. brizantha cv. Toledo (UBT), which typically have low concentrations of crude protein (CP), were incubated in vitro either alone or mixed with the legumes Canavalia brasiliensis (CB) and Leucaena diversifolia (LD), which have higher CP concentrations. Substitution of 30% of the grass dry matter (DM) with CB or LD did not affect gas production or DM degradability. After 96 h of incubation, accumulated CH4 was 87.3 mg CH4 g−1 DM and 107.7 mg CH4 g−1 DM for the grasses alone (UHC and UBT, respectively), and 100.7 mg CH4 g−1 DM and 113.2 mg CH4 g−1 DM for combined diets (70% grass, 15% CB, and 15% LD). Diets that combined legumes (CB or LC) and grass (UHC or UBT) had higher CP contents, gross, and metabolizable energy (GE, ME, respectively) densities, as well as lower concentrations of neutral detergent fiber (NDF) and acid detergent lignin (ADL). The ME and nutritional variables such as NFD, tannins (T), and CP showed a positive correlation with in vitro net gas production, while ruminal digestibility was affected by CP, ADL, T, and GE. Optimal ratios of components for ruminant diets to reduce rumen net gas production and increase protein content were found with mixtures consisting of 60% grass (either UHC or UBT), 30% CB, and 10% LD. However, this ratio did not result in a decrease in CH4 production.
Collapse
|
24
|
Water buffalo production in the Brazilian Amazon Basin: a review. Trop Anim Health Prod 2021; 53:343. [PMID: 34089415 DOI: 10.1007/s11250-021-02744-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
The Brazilian Amazon has witnessed, in the last decades, an increase in the water buffalo (Bubalus bubalis) inventory, with interesting productivity results. As the Brazilian Amazon contains the main water buffalo population in the Americas, the aim of this work is to review its most relevant production systems and some peculiarities about meat and milk production in this territory. The opening section describes the Amazon Basin, the most common water buffalo breeds, a brief history of the local livestock farming beginning in 1644. Also, it presents how water buffaloes gradually replaced bovine herds, especially where the latter had a lower productive performance. The use of extensive or more intensified models is pointed out and the ecosystems in which buffaloes are raised are detailed since native or cultivated pastures can be used in floodplains or drylands. Buffalo raising is favored in the Amazon due to the climate, soil, genetic variability of forages, animal adaptability, and physical space. Thus, it is clear that buffaloes have a high potential for meat and milk production and are an alternative in the use of altered areas of the Amazon; and, in the recent past, the low profitability of buffalo farming in traditional production systems in the Amazon was the reason which made this activity economically unattractive. Most recent technologies as outdoor confinements and silvopastoral systems are pointed out as more suitable regarding land-use policies, and buffalo farming for meat and milk production fits perfectly in this context, with productivity and beneficial socioeconomic.
Collapse
|
25
|
Hassan FU, Arshad MA, Ebeid HM, Rehman MSU, Khan MS, Shahid S, Yang C. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet-Microbe Interaction. Front Vet Sci 2020; 7:575801. [PMID: 33263013 PMCID: PMC7688522 DOI: 10.3389/fvets.2020.575801] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ruminants inhabit the consortia of gut microbes that play a critical functional role in their maintenance and nourishment by enabling them to use cellulosic and non-cellulosic feed material. These gut microbes perform major physiological activities, including digestion and metabolism of dietary components, to derive energy to meet major protein (65-85%) and energy (ca 80%) requirements of the host. Owing to their contribution to digestive physiology, rumen microbes are considered one of the crucial factors affecting feed conversion efficiency in ruminants. Any change in the rumen microbiome has an imperative effect on animal physiology. Ruminal microbes are fundamentally anaerobic and produce various compounds during rumen fermentation, which are directly used by the host or other microbes. Methane (CH4) is produced by methanogens through utilizing metabolic hydrogen during rumen fermentation. Maximizing the flow of metabolic hydrogen in the rumen away from CH4 and toward volatile fatty acids (VFA) would increase the efficiency of ruminant production and decrease its environmental impact. Understanding of microbial diversity and rumen dynamics is not only crucial for the optimization of host efficiency but also required to mediate emission of greenhouse gases (GHGs) from ruminants. There are various strategies to modulate the rumen microbiome, mainly including dietary interventions and the use of different feed additives. Phytogenic feed additives, mainly plant secondary compounds, have been shown to modulate rumen microflora and change rumen fermentation dynamics leading to enhanced animal performance. Many in vitro and in vivo studies aimed to evaluate the use of plant secondary metabolites in ruminants have been conducted using different plants or their extract or essential oils. This review specifically aims to provide insights into dietary interactions of rumen microbes and their subsequent consequences on rumen fermentation. Moreover, a comprehensive overview of the modulation of rumen microbiome by using phytogenic compounds (essential oils, saponins, and tannins) for manipulating rumen dynamics to mediate CH4 emanation from livestock is presented. We have also discussed the pros and cons of each strategy along with future prospective of dietary modulation of rumen microbiome to improve the performance of ruminants while decreasing GHG emissions.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Adeel Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Hossam M. Ebeid
- Dairy Science Department, National Research Centre, Giza, Egypt
| | - Muhammad Saif-ur Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad Khan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Shehryaar Shahid
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
26
|
Hassan FU, Arshad MA, Li M, Rehman MSU, Loor JJ, Huang J. Potential of Mulberry Leaf Biomass and Its Flavonoids to Improve Production and Health in Ruminants: Mechanistic Insights and Prospects. Animals (Basel) 2020; 10:E2076. [PMID: 33182363 PMCID: PMC7695318 DOI: 10.3390/ani10112076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Leaf biomass from the mulberry plant (genus Morus and family Moraceae) is considered a potential resource for livestock feeding. Mulberry leaves (MLs) contain high protein (14.0-34.2%) and metabolizable energy (1130-2240 kcal/kg) with high dry matter (DM) digestibility (75-85%) and palatability. Flavonoid contents of MLs confer unique antioxidant properties and can potentially help alleviate oxidative stress in animals during stressful periods, such as neonatal, weaning, and periparturient periods. In addition, mulberry leaf flavonoids (MLFs) possess antimicrobial properties and can effectively decrease the population of ruminal methanogens and protozoa to reduce enteric methane (CH4) production. Owing to its rich flavonoid content, feeding MLs increases fiber digestion and utilization leading to enhanced milk production in ruminants. Dietary supplementation with MLFs alters ruminal fermentation kinetics by increasing total volatile fatty acids, propionate, and ammonia concentrations. Furthermore, they can substantially increase the population of specific cellulolytic bacteria in the rumen. Owing to their structural homology with steroid hormones, the MLFs can potentially modulate different metabolic pathways particularly those linked with energy homeostasis. This review aims to highlight the potential of ML and its flavonoids to modulate the ruminal microbiome, fermentation, and metabolic status to enhance productive performance and health in ruminants while reducing CH4 emission.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.H.); (M.L.)
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.A.); (M.S.R.)
| | - Muhammad Adeel Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.A.); (M.S.R.)
| | - Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.H.); (M.L.)
| | - Muhammad Saif-ur Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.A.); (M.S.R.)
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Jiaxiang Huang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.H.); (M.L.)
| |
Collapse
|
27
|
Editorial: Greenhouse gases in animal agriculture: science supporting practices. Animal 2020; 14:425-426. [PMID: 32900392 DOI: 10.1017/s1751731120001810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|