1
|
Luo J, Wu X, Chen D, Yu B, He J. Dietary ferulic acid supplementation enhances antioxidant capacity and alleviates hepatocyte pyroptosis in diquat challenged piglets. J Anim Sci Biotechnol 2024; 15:134. [PMID: 39370514 PMCID: PMC11457559 DOI: 10.1186/s40104-024-01086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/04/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Oxidative stress significantly impacts growth performance and liver function in piglets. Ferulic acid (FA) works as an antioxidant, however, the role and mechanism of FA in the regulation of diquat-induced oxidative stress in piglets are less known. This study was designed to investigate the effects of FA on growth performance and antioxidant capacity in piglets with diquat challenge. METHODS Thirty-two healthy DLY (Duroc × Landrace × Yorkshire) piglets (13.24 ± 0.19 kg) were randomly divided into one of two diets including 0 or 4 g/kg FA for 14 d. On d 15, all pigs were intraperitoneally injected diquat or sterile saline. RESULTS Dietary supplementation with ferulic acid (FA) significantly improved the average daily gain (ADG) and decreased feed-gain ratio (F/G) of piglets. Here, dietary FA supplementation reduced serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities in diquat challenged piglets. Furthermore, diquat infusion increased reactive oxygen radicals (ROS) level in liver, decreased the activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC) and increased malondialdehyde (MDA) content in the liver and serum. Supplementation with FA significantly increased T-AOC and T-SOD activities and decreased MDA and ROS levels. FA down-regulated gene and protein expression of Keap1, and up-regulated protein expression of Nrf2 and HO-1 in the liver of piglets with diquat challenge. Importantly, diquat challenge increased the ratio of late apoptosis, increased serum levels of IL-1β, IL-18 and lactate dehydrogenase (LDH), and up-regulated pyroptosis-related genes in the liver. FA supplementation reduced the ratio of late apoptosis and down-regulated mRNA expression of Caspase-1. Accordingly, FA addition reduced concentration of IL-1β, IL-18, and LDH under diquat challenge. CONCLUSIONS Diquat-induced oxidative stress reduced growth performance and impaired liver function in piglets. Dietary FA supplementation enhanced the antioxidant capacity and reduced the degree of hepatocyte pyroptosis, thereby alleviating the oxidative damage in the liver and mitigating the impact of diquat on growth performance of piglets.
Collapse
Affiliation(s)
- Junqiu Luo
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Xiu Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
2
|
Grilo LF, Tocantins C, Diniz MS, Gomes RM, Oliveira PJ, Matafome P, Pereira SP. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur J Clin Invest 2021; 51:e13625. [PMID: 34060076 DOI: 10.1111/eci.13625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Embryonic and foetal development are critical periods of development in which several environmental cues determine health and disease in adulthood. Maternal conditions and an unfavourable intrauterine environment impact foetal development and may programme the offspring for increased predisposition to metabolic diseases and other chronic pathologic conditions throughout adult life. Previously, non-communicable chronic diseases were only associated with genetics and lifestyle. Now the origins of non-communicable chronic diseases are associated with early-life adaptations that produce long-term dysfunction. Early-life environment sets the long-term health and disease risk and can span through multiple generations. Recent research in developmental programming aims at identifying the molecular mechanisms responsible for developmental programming outcomes that impact cellular physiology and trigger adulthood disease. The identification of new therapeutic targets can improve offspring's health management and prevent or overcome adverse consequences of foetal programming. This review summarizes recent biomedical discoveries in the Developmental Origins of Health and Disease (DOHaD) hypothesis and highlight possible developmental programming mechanisms, including prenatal structural defects, metabolic (mitochondrial dysfunction, oxidative stress, protein modification), epigenetic and glucocorticoid signalling-related mechanisms suggesting molecular clues for the causes and consequences of programming of increased susceptibility of offspring to metabolic disease after birth. Identifying mechanisms involved in DOHaD can contribute to early interventions in pregnancy or early childhood, to re-set the metabolic homeostasis and break the chain of subsequent events that could lead to the development of disease.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Oke SL, Lee K, Papp R, Laviolette SR, Hardy DB. In Utero Exposure to Δ9-Tetrahydrocannabinol Leads to Postnatal Catch-Up Growth and Dysmetabolism in the Adult Rat Liver. Int J Mol Sci 2021; 22:ijms22147502. [PMID: 34299119 PMCID: PMC8305322 DOI: 10.3390/ijms22147502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
The rates of gestational cannabis use have increased despite limited evidence for its safety in fetal life. Recent animal studies demonstrate that prenatal exposure to Δ9-tetrahydrocannabinol (Δ9-THC, the psychoactive component of cannabis) promotes intrauterine growth restriction (IUGR), culminating in postnatal metabolic deficits. Given IUGR is associated with impaired hepatic function, we hypothesized that Δ9-THC offspring would exhibit hepatic dyslipidemia. Pregnant Wistar rat dams received daily injections of vehicular control or 3 mg/kg Δ9-THC i.p. from embryonic day (E) 6.5 through E22. Exposure to Δ9-THC decreased the liver to body weight ratio at birth, followed by catch-up growth by three weeks of age. At six months, Δ9-THC-exposed male offspring exhibited increased visceral adiposity and higher hepatic triglycerides. This was instigated by augmented expression of enzymes involved in triglyceride synthesis (ACCα, SCD, FABP1, and DGAT2) at three weeks. Furthermore, the expression of hepatic DGAT1/DGAT2 was sustained at six months, concomitant with mitochondrial dysfunction (i.e., elevated p66shc) and oxidative stress. Interestingly, decreases in miR-203a-3p and miR-29a/b/c, both implicated in dyslipidemia, were also observed in these Δ9-THC-exposed offspring. Collectively, these findings indicate that prenatal Δ9-THC exposure results in long-term dyslipidemia associated with enhanced hepatic lipogenesis. This is attributed by mitochondrial dysfunction and epigenetic mechanisms.
Collapse
Affiliation(s)
- Shelby L. Oke
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Kendrick Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Rosemary Papp
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
| | - Steven R. Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
- Correspondence:
| |
Collapse
|
4
|
Francisco FA, Saavedra LPJ, Junior MDF, Barra C, Matafome P, Mathias PCF, Gomes RM. Early AGEing and metabolic diseases: is perinatal exposure to glycotoxins programming for adult-life metabolic syndrome? Nutr Rev 2021; 79:13-24. [PMID: 32951053 DOI: 10.1093/nutrit/nuaa074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perinatal early nutritional disorders are critical for the developmental origins of health and disease. Glycotoxins, or advanced glycation end-products, and their precursors such as the methylglyoxal, which are formed endogenously and commonly found in processed foods and infant formulas, may be associated with acute and long-term metabolic disorders. Besides general aspects of glycotoxins, such as their endogenous production, exogenous sources, and their role in the development of metabolic syndrome, we discuss in this review the sources of perinatal exposure to glycotoxins and their involvement in metabolic programming mechanisms. The role of perinatal glycotoxin exposure in the onset of insulin resistance, central nervous system development, cardiovascular diseases, and early aging also are discussed, as are possible interventions that may prevent or reduce such effects.
Collapse
Affiliation(s)
- Flávio A Francisco
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Lucas P J Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Marcos D F Junior
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Cátia Barra
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo C F Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Rodrigo M Gomes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
5
|
Imataka G, Yui K, Shiko Y, Kawasaki Y, Sasaki H, Shiroki R, Yoshihara S. Urinary and Plasma Antioxidants in Behavioral Symptoms of Individuals With Autism Spectrum Disorder. Front Psychiatry 2021; 12:684445. [PMID: 34539458 PMCID: PMC8446379 DOI: 10.3389/fpsyt.2021.684445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
The balance between antioxidant capacity and oxidative stress-induced free radicals may be crucial in the pathophysiological development factor of autism spectrum disorder (ASD). We measured the following urinary and plasma biomarker levels of oxidative stress and antioxidants. As urinary biomarkers, (1) hexanoyl-lysine (HEL), which is a new biomarker of oxidative stress, (2) the total antioxidant capacity (TAC), and (3) 8-hydroxy-2'-deoxyguanosine (8-OHdG), as a product of oxidative modifications to DNA; and the plasma levels of (4) the antioxidant protein superoxide dismutase (SOD), which is the crucial defense again oxygen reactive species, and (5) transferrin and (6) ceruloplasmin, which are biomarkers of iron and copper neurotransmission and oxidant-antioxidant systems. We examined the relationship between these urinary and plasma biomarkers and behavioral symptoms in 19 individuals with ASD (mean age, 10.8 ± 5.2 years) and 10 age-matched healthy controls (mean age, 14.2 ± 7.0 years). Behavioral symptoms were estimated using the Aberrant Behavior Checklist (ABC). Urinary TAC levels were significantly lower, whereas urinary HEL levels were significantly increased in the ASD group as compared with the control group. The five ABC subscale and total scores were significantly raised in the autism group than in the control group. The results of a linear regression analysis revealed that plasma SOD levels may be a more accurate predictor of differences in ABC scores between individuals with ASD and control individuals. The present study firstly revealed the important findings that the cooperation between the urinary antioxidant TAC and plasma SOD levels may contribute to the ABC subscale scores of stereotypy. Urinary TAC activity and antioxidant protein SOD may be associated with incomplete mineral body store and antioxidant-related transcription factor and browning reactions. Consequently, a critical imbalance between TAC urinary levels and plasma SOD levels may be an important contributor to autistic behavioral symptoms.
Collapse
Affiliation(s)
- George Imataka
- Department of Pediatrics, Dokkyo Medical University, Mibu, Japan
| | - Kunio Yui
- Department of Urology, Fujita Health University, Toyoake, Japan
| | - Yuki Shiko
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hitomi Sasaki
- Department of Urology, Fujita Health University, Toyoake, Japan
| | - Ryoichi Shiroki
- Department of Urology, Fujita Health University, Toyoake, Japan
| | | |
Collapse
|
6
|
Zhang H, Jin Y, Wang M, Loor JJ, Wang H. N-Carbamylglutamate and l-arginine supplementation improve hepatic antioxidant status in intrauterine growth-retarded suckling lambs. RSC Adv 2020; 10:11173-11181. [PMID: 35495302 PMCID: PMC9050450 DOI: 10.1039/c9ra09316h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
The influence of dietary supplementation of l-arginine (Arg) or N-carbamylglutamate (NCG) on the hepatic antioxidant status in intrauterine-growth-retarded (IUGR) suckling lambs remains unclear. The current work aimed to investigate the regulatory mechanisms whereby dietary Arg or NCG alter hepatic antioxidant status in suckling lambs suffering from IUGR. Forty-eight newborn Hu lambs of normal birth weight (CON) and IUGR were allocated randomly into four groups of 12 animals each: CON (4.25 ± 0.14 kg), IUGR (3.01 ± 0.12 kg), IUGR + 1% Arg (2.99 ± 0.13 kg), or IUGR + 0.1% NCG (3.03 ± 0.11 kg). All lambs were raised for a period of 21 days from 7 to 28 days after birth. Compared with the IUGR suckling animals, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and reduced glutathione (GSH) content were greater (P < 0.05), and protein carbonyl and malondialdehyde (MDA) levels were reduced (P < 0.05) in the livers of both IUGR + 1% Arg and 0.1% NCG suckling animals. Relative to IUGR suckling lambs, supplementing with Arg or NCG markedly reduced (P < 0.05) reactive oxygen species (ROS) levels, apoptosis, and necrosis in liver. Relative to IUGR suckling lambs, protein and mRNA expression of GSH-Px1, SOD2, catalase (CAT), heme oxygenase-1 (HO-1), inducible nitric oxide (NO) synthase (iNOS), and epithelial NO synthase (eNOS) increased in IUGR animals receiving Arg or NCG (P < 0.05). Both Arg and NCG can protect neonates from IUGR-induced hepatic oxidative damage through promoting the expression of antioxidative enzymes (including SOD, CAT, and GSH-Px), phase II metabolizing enzymes, and activation of the NO pathway. The influence of dietary supplementation of l-arginine (Arg) or N-carbamylglutamate (NCG) on the hepatic antioxidant status in intrauterine-growth-retarded (IUGR) suckling lambs remains unclear.![]()
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou 225009
- P. R. China
| | - Yaqian Jin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou 225009
- P. R. China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou 225009
- P. R. China
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences
- University of Illinois
- Urbana
- USA
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou 225009
- P. R. China
| |
Collapse
|
7
|
JANŠÁKOVÁ K, LENGYELOVÁ E, PRIBULOVÁ N, SOMOZA V, CELEC P, ŠEBEKOVÁ K, OSTATNÍKOVÁ D, TÓTHOVÁ Ľ. Metabolic and Renal Effects of Dietary Advanced Glycation end Products in Pregnant Rats – A Pilot Study. Physiol Res 2019; 68:467-479. [DOI: 10.33549/physiolres.934102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thermally processed food contains advanced glycation end products (AGEs) including N-(carboxymethyl)lysine (CML). Higher AGEs or circulating CML were shown to be associated with pregnancy complications such as preeclampsia and gestational diabetes. It is unclear whether this association is causal. The aim of our study was to analyze the effects of dietary CML and CML-containing thermally processed food on metabolism in pregnant rats. Animals were fed with standard or with AGE-rich diet from gestation day 1. Third group received standard diet and CML via gavage. On gestation day 18, blood pressure was measured, urine and blood were collected and the oral glucose tolerance test was performed. Plasma AGEs were slightly higher in pregnant rats fed with the AGE-rich diet (p=0.09). A non-significant trend towards higher CML in plasma was found in the CML group (p=0.06). No significant differences between groups were revealed in glucose metabolism or markers of renal functions like proteinuria and creatinine clearance. In conclusion, this study does not support the hypothesis that dietary AGEs such as CML might induce harmful metabolic changes or contribute to the pathogenesis of pregnancy complications. The short duration of the rodent gestation warrants further studies analyzing long-term effects of AGEs/CML in preconception nutrition.
Collapse
Affiliation(s)
- K. JANŠÁKOVÁ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - E. LENGYELOVÁ
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia,
| | - N. PRIBULOVÁ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - V. SOMOZA
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - P. CELEC
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - K. ŠEBEKOVÁ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - D. OSTATNÍKOVÁ
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ľ. TÓTHOVÁ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|