1
|
Warren CG, Dasgupta PK. Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review. Anal Chim Acta 2024; 1305:342507. [PMID: 38677834 DOI: 10.1016/j.aca.2024.342507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.
Collapse
Affiliation(s)
- Cable G Warren
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States.
| |
Collapse
|
2
|
Kussrow A, Kammer MN, Massion PP, Webster R, Bornhop DJ. Assay Performance of a Label-Free, Solution-Phase CYFRA 21-1 Determination. ACS OMEGA 2022; 7:31916-31923. [PMID: 36120008 PMCID: PMC9476196 DOI: 10.1021/acsomega.2c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CYFRA 21.1, a cytokeratin fragment of epithelial origin, has long been a valuable blood-based biomarker. As with most biomarkers, the clinical diagnostic value of CYFRA 21.1 is dependent on the quantitative performance of the assay. Looking toward translation, it is shown here that a free-solution assay (FSA) coupled with a compensated interferometric reader (CIR) can be used to provide excellent analytical performance in quantifying CYFRA 21.1 in patient serum samples. This report focuses on the analytical performance of the high-sensitivity (hs)-CYFRA 21.1 assay in the context of quantifying the biomarker in two indeterminate pulmonary nodule (IPN) patient cohorts totaling 179 patients. Each of the ten assay calibrations consisted of 6 concentrations, each run as 7 replicates (e.g., 10 × 6 × 7 data points) and were performed on two different instruments by two different operators. Coefficients of variation (CVs) for the hs-CYFRA 21.1 analytical figures of merit, limit of quantification (LOQ) of ca. 60 pg/mL, B max, initial slope, probe-target binding affinity, and reproducibility of quantifying an unknown were found to range from 2.5 to 8.3%. Our results demonstrate the excellent performance of our FSA-CIR hs-CYFRA 21-1 assay and a proof of concept for potentially redefining the performance characteristics of this existing important candidate biomarker.
Collapse
Affiliation(s)
- Amanda
K. Kussrow
- Department
of Chemistry and The Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Michael N. Kammer
- Division
of Allergy, Pulmonary and Critical Care Medicine and Vanderbilt-Ingram
Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Pierre P. Massion
- Division
of Allergy, Pulmonary and Critical Care Medicine and Vanderbilt-Ingram
Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Rebekah Webster
- Department
of Chemistry and The Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Darryl J. Bornhop
- Department
of Chemistry and The Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Mulkerns NMC, Hoffmann WH, Lindsay ID, Gersen H. An Analysis of Semicircular Channel Backscattering Interferometry through Ray Tracing Simulations. SENSORS 2022; 22:s22114301. [PMID: 35684929 PMCID: PMC9185450 DOI: 10.3390/s22114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023]
Abstract
Recent backscattering interferometry studies utilise a single channel microfluidic system, typically approximately semicircular in cross-section. Here, we present a complete ray tracing model for on-chip backscattering interferometry with a semicircular cross-section, including the dependence upon polarisation and angle of incidence. The full model is validated and utilised to calculate the expected fringe patterns and sensitivities observed under both normal and oblique angles of incidence. Comparison with experimental data from approximately semicircular channels using the parameters stated shows that they cannot be explained using a semicircular geometry. The disagreement does not impact on the validity of the experimental data, but highlights that the optical mechanisms behind the various modalities of backscattering interferometry would benefit from clarification. From the analysis presented here, we conclude that for reasons of ease of analysis, data quality, and sensitivity for a given radius, capillary-based backscattering interferometry affords numerous benefits over on-chip backscattering interferometry.
Collapse
Affiliation(s)
- Niall M. C. Mulkerns
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK; (N.M.C.M.); (W.H.H.); (I.D.L.)
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1TL, UK
| | - William H. Hoffmann
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK; (N.M.C.M.); (W.H.H.); (I.D.L.)
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1TL, UK
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Ian D. Lindsay
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK; (N.M.C.M.); (W.H.H.); (I.D.L.)
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1TL, UK
| | - Henkjan Gersen
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK; (N.M.C.M.); (W.H.H.); (I.D.L.)
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1TL, UK
- Correspondence:
| |
Collapse
|
4
|
Kammer MN, Kussrow AK, Webster RL, Chen H, Hoeksema M, Christenson R, Massion PP, Bornhop DJ. Compensated Interferometry Measures of CYFRA 21-1 Improve Diagnosis of Lung Cancer. ACS COMBINATORIAL SCIENCE 2019; 21:465-472. [PMID: 31022347 DOI: 10.1021/acscombsci.9b00022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diagnosis of lung cancer patients with indeterminate pulmonary nodules (IPNs) presents a significant clinical challenge, with morbidity and management costs of $28 billion/year. We show that a quantitative free-solution assay (FSA), coupled with a compensated interferometric reader (CIR), improves the diagnostic performance of CYFRA 21-1 as a lung cancer biomarker. FSA-CIR is a rapid, mix-and-read, isothermal, label- and enzyme-free, matrix-insensitive, and target and probe-agnostic assay. Operating FSA-CIR at ∼40, 0.75 μL samples/day delivered a serum CYFRA 21-1 limit of quantification (LOQ) of 81 pg/mL with intra-assay and interassay CVs of 4.9% and 9.6% for four-day replicate determinations. Blinded analysis of a 225 patient cohort, consisting of 75 nonmalignant nodules, 45 adenocarcinomas, 44 squamous cell carcinomas, and 61 small cell lung cancers, gave a clear separation of cases and controls, not observed in the Cobas ECL analysis. The area under the curve (AUC) for the Mayo model increased from 0.595 to 0.923 when combined with the FSA-CIR CYFRA 21-1 measurements. In a population with nodules between 6 and 30 mm, the AUC increased from 0.567 to 0.943. In this subgroup, the positive predictive value (PPV) for all tumors by the CYFRA 21-1 assay was 98.7%. Our results demonstrate increased performance of the CYFRA 21-1 assay using FSA-CIR and represents a proof of concept for redefining the performance characteristics of this important candidate biomarker.
Collapse
Affiliation(s)
- Michael N. Kammer
- Department of Chemistry and The Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Amanda K. Kussrow
- Department of Chemistry and The Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Rebekah L. Webster
- Department of Chemistry and The Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Megan Hoeksema
- Division of Allergy, Pulmonary and Critical Care Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Robert Christenson
- Department of Pathology, University of Maryland, Baltimore, Maryland 21201, United States
| | - Pierre P. Massion
- Division of Allergy, Pulmonary and Critical Care Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Darryl J. Bornhop
- Department of Chemistry and The Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Dunn RC. Wavelength Modulated Back-Scatter Interferometry for Universal, On-Column Refractive Index Detection in Picoliter Volumes. Anal Chem 2018; 90:6789-6795. [PMID: 29762009 DOI: 10.1021/acs.analchem.8b00771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wavelength-modulated back scatter interferometry (M-BSI) is shown to improve the detection metrics for refractive index (RI) sensing in microseparations. In M-BSI, the output of a tunable diode laser is focused into the detection zone of a separation channel as the excitation wavelength is rapidly modulated. This spatially modulates the observed interference pattern, which is measured in the backscattered direction. Phase-sensitive detection using a split photodiode detector aligned on one fringe of the interference pattern is used to monitor RI changes as analytes are separated. Using sucrose standards, we report a detection limit of 700 μg/L in a 75 μm i.d. capillary at the 3σ level, corresponding to a detection volume of 90 pL. To validate the approach for electrophoretic separations, Na+ and Li+ were separated and detected with M-BSI and indirect-UV absorbance on the same capillary. A 4 mg/L NaCl and LiCl mixture leads to comparable separation efficiencies in the two detection schemes, with better signal-to-noise in the M-BSI detection, but less baseline stability. The latter arises in part from Joule heating, which influences RI measurements through the thermo-optic properties of the run buffer. To reduce this effect, a 25 μm i.d. capillary combined with active temperature control was used to detect the separation of sucrose, glucose, and lactose with M-BSI. The lack of suitable UV chromophores makes these analytes challenging to detect directly in ultrasmall volumes. Using a 55 mM NaOH run buffer, M-BSI is shown to detect the separation of a mixture of 174 mg/L sucrose, 97 mg/L glucose, and 172 mg/L lactose in a 15 pL detection volume. The universal on-column detection in ultrasmall volumes adds new capabilities for microanalysis platforms, while potentially reducing the footprint and costs of these systems.
Collapse
Affiliation(s)
- Robert C Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry , University of Kansas , 2030 Becker Drive , Lawrence , Kansas 66047 , United States
| |
Collapse
|
6
|
Kammer MN, Kussrow AK, Bornhop DJ. Longitudinal pixel averaging for improved compensation in backscattering interferometry. OPTICS LETTERS 2018; 43:482-485. [PMID: 29400820 DOI: 10.1364/ol.43.000482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Longitudinal averaging of the interference pattern in a compensated backscattering interferometer provides improved compensation for temperature induced refractive index perturbations. Fringe pattern likeness between two discrete detection regions of an off-the-shelf microfluidic chip illuminated by an inexpensive diode laser scales with interrogation length. Averaging the intensity distribution along a 2.75 mm length of the channel results in a 750-fold reduction in sensitivity to temperature and a baseline noise level of 3×10-8 refractive index units (RIU). These observations enable nanoliter-volume interferometric measurements at a level of 10-7 RIU in the presence of a 2°C temperature variation without the need for temperature control.
Collapse
|
7
|
Saetear P, Chamieh J, Kammer MN, Manuel TJ, Biron JP, Bornhop DJ, Cottet H. Taylor Dispersion Analysis of Polysaccharides Using Backscattering Interferometry. Anal Chem 2017; 89:6710-6718. [DOI: 10.1021/acs.analchem.7b00946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Joseph Chamieh
- IBMM, Univ. Montpellier,
CNRS, ENSCM, Montpellier, France
| | - Michael N. Kammer
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- The
Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Thomas J. Manuel
- Department
of Agricultural and Biological Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | | | - Darryl J. Bornhop
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- The
Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hervé Cottet
- IBMM, Univ. Montpellier,
CNRS, ENSCM, Montpellier, France
| |
Collapse
|
8
|
Baksh MM, Finn M. An experimental check of backscattering interferometry. SENSORS AND ACTUATORS. B, CHEMICAL 2017; 243:977-981. [PMID: 28529409 PMCID: PMC5433263 DOI: 10.1016/j.snb.2016.12.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Backscattering interferometry (BSI) was used to determine the association constants for four well-known biomolecular interactions: protein A + IgG, trypsin + antitrypsin, trypsin + p-aminobenzamidine, and antithrombin + heparin. Each gave well-defined binding curves and Kd values in close agreement with published findings obtained using other techniques. These results stand in direct contrast to the claims in a 2015 publication in this journal (Discussion of "Back Scattering Interferometry revisited-a theoretical and experimental investigation" Jørgensen, T.M.; Jepsen, S.T.; Sørensen, H.S.; di Gennaro, A.K.; Kristensen, S.R. Sensors and Actuators B 2015, 220, 1328-1337, doi: 10.1016/j.snb.2015.06.121), thus invalidating the claim that BSI is unable to make measurements of this kind. The experimental details are discussed, and several potential sources of error in the previous publication are identified. No comments are made here on the discussion of the theoretical aspects of the BSI technique.
Collapse
|
9
|
Wang M, Kussrow AK, Ocana MF, Chabot JR, Lepsy CS, Bornhop DJ, O'Hara DM. Physiologically relevant binding affinity quantification of monoclonal antibody PF-00547659 to mucosal addressin cell adhesion molecule for in vitro in vivo correlation. Br J Pharmacol 2016; 174:70-81. [PMID: 27760281 PMCID: PMC5221447 DOI: 10.1111/bph.13654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose A monoclonal antibody (PF‐00547659) against mucosal addressin cell adhesion molecule (MAdCAM), expressed as both soluble (sMAdCAM) and trans‐membrane (mMAdCAM) target forms, showed over 30‐fold difference in antibody‐target KD between in vitro (Biacore) and clinically derived (KD,in‐vivo) values. Back‐scattering interferometry (BSI) was applied to acquire physiologically relevant KD values which were used to establish in vitro and in vivo correlation (IVIVC). Experimental Approach BSI was applied to obtain KD values between PF‐00547659 and recombinant human MAdCAM in buffer or CHO cells and endogenous MAdCAM in human serum or colon tissue. CHO cells and tissue were minimally processed to yield homogenate containing membrane vesicles and soluble proteins. A series of binding affinities in serum with various dilution factors was used to estimate both KD,in‐vivo and target concentrations; MAdCAM concentrations were also measured using LC–MS/MS. Key Results BSI measurements revealed low KD values (higher affinity) for sMAdCAM in buffer and serum, yet a 20‐fold higher KD value (lower affinity) for mMAdCAM in CHO, mMAdCAM and sMAdCAM in tissue. BSI predicted KD,in‐vivo in serum was similar to clinically derived KD,in‐vivo, and the BSI‐estimated serum sMAdCAM concentration also matched the measured concentration by LC–MS/MS. Conclusions and Implications Our results successfully demonstrated that BSI measurements of physiologically relevant KD values can be used to establish IVIVC, for PF‐00547659 to MAdCAM despite the lack of correlation when using Biacore measured KD and accurately estimates endogenous target concentrations. The application of BSI would greatly enhance successful basic pharmacological research and drug development.
Collapse
Affiliation(s)
- Mengmeng Wang
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Andover, MA, USA
| | - Amanda K Kussrow
- Department of Chemistry, Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Jeffrey R Chabot
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Andover, MA, USA
| | | | - Darryl J Bornhop
- Department of Chemistry, Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Denise M O'Hara
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Andover, MA, USA
| |
Collapse
|
10
|
Origin and prediction of free-solution interaction studies performed label-free. Proc Natl Acad Sci U S A 2016; 113:E1595-604. [PMID: 26960999 DOI: 10.1073/pnas.1515706113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interaction/reaction assays have led to significant scientific discoveries in the biochemical, medical, and chemical disciplines. Several fundamental driving forces form the basis of intermolecular and intramolecular interactions in chemical and biochemical systems (London dispersion, hydrogen bonding, hydrophobic, and electrostatic), and in the past three decades the sophistication and power of techniques to interrogate these processes has developed at an unprecedented rate. In particular, label-free methods have flourished, such as NMR, mass spectrometry (MS), surface plasmon resonance (SPR), biolayer interferometry (BLI), and backscattering interferometry (BSI), which can facilitate assays without altering the participating components. The shortcoming of most refractive index (RI)-based label-free methods such as BLI and SPR is the requirement to tether one of the interaction entities to a sensor surface. This is not the case for BSI. Here, our hypothesis is that the signal origin for free-solution, label-free determinations can be attributed to conformation and hydration-induced changes in the solution RI. We propose a model for the free-solution response function (FreeSRF) and show that, when quality bound and unbound structural data are available, FreeSRF correlates well with the experiment (R(2)> 0.99, Spearman rank correlation coefficients >0.9) and the model is predictive within ∼15% of the experimental binding signal. It is also demonstrated that a simple mass-weighted dη/dC response function is the incorrect equation to determine that the change in RI is produced by binding or folding event in free solution.
Collapse
|
11
|
Xu Q, Tian W, You Z, Xiao J. Multiple beam interference model for measuring parameters of a capillary. APPLIED OPTICS 2015; 54:6948-6954. [PMID: 26368114 DOI: 10.1364/ao.54.006948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A multiple beam interference model based on the ray tracing method and interference theory is built to analyze the interference patterns of a capillary tube filled with a liquid. The relations between the angular widths of the interference fringes and the parameters of both the capillary and liquid are derived. Based on these relations, an approach is proposed to simultaneously determine four parameters of the capillary, i.e., the inner and outer radii of the capillary, the refractive indices of the liquid, and the wall material.
Collapse
|
12
|
|
13
|
Schreiter KM, Glawdel T, Forrest JA, Ren CL. Robust thin-film fluorescence thermometry for prolonged measurements in microfluidic devices. RSC Adv 2013. [DOI: 10.1039/c3ra41368c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Haddad GL, Young SC, Heindel ND, Bornhop DJ, Flowers RA. Back-Scattering Interferometry: An Ultrasensitive Method for the Unperturbed Detection of Acetylcholinesterase-Inhibitor Interactions. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Haddad GL, Young SC, Heindel ND, Bornhop DJ, Flowers RA. Back-scattering interferometry: an ultrasensitive method for the unperturbed detection of acetylcholinesterase-inhibitor interactions. Angew Chem Int Ed Engl 2012; 51:11126-30. [PMID: 23037915 DOI: 10.1002/anie.201203640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/24/2012] [Indexed: 11/12/2022]
Abstract
A series of inhibitors of acetylcholinesterase (AChE) have been screened by back-scattering interferometry (BSI). Enzyme levels as low as 100 pM (22,000 molecules of AChE) can be detected. This method can be used to screen for mixed AChE inhibitors, agents that have shown high efficacy against Alzheimer's disease, by detecting dual-binding interactions. E = enzyme, I = inhibitor, S = substrate.
Collapse
|
16
|
Kussrow A, Enders CS, Bornhop DJ. Interferometric methods for label-free molecular interaction studies. Anal Chem 2012; 84:779-92. [PMID: 22060037 PMCID: PMC4317347 DOI: 10.1021/ac202812h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amanda Kussrow
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Carolyn S. Enders
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Darryl J. Bornhop
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
17
|
|
18
|
Dai C, Wu XZ. A Simple Transmitted Interference Method for Nanovolume Detection. CHEM LETT 2007. [DOI: 10.1246/cl.2007.1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Coufal P, Pacáková V, Stulík K. An evaluation of the experimental approaches to detection of small ions in CE. Electrophoresis 2007; 28:3379-89. [PMID: 17806126 DOI: 10.1002/elps.200700154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review points out some important trends in the development of the detection techniques for small ions in CE. On the basis of selected literature references it briefly discusses some general requirements on detection techniques in CE. Various optical measurements, mass spectrometric approaches and electrochemical detection techniques are dealt with. Some specific features of microchip CE separation and detection are pointed out and possibilities of dual detection are mentioned. The principal parameters of the above detection techniques are then briefly compared.
Collapse
Affiliation(s)
- Pavel Coufal
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Albertov 2830, CZ-128 40 Prague 2, Czech Republic
| | | | | |
Collapse
|
20
|
Bornhop DJ, Latham JC, Kussrow A, Markov DA, Jones RD, Sørensen HS. Free-Solution, Label-Free Molecular Interactions Studied by Back-Scattering Interferometry. Science 2007; 317:1732-6. [PMID: 17885132 DOI: 10.1126/science.1146559] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules and protein, were determined with high dynamic range dissociation constants (Kd spanning six decades) and unmatched sensitivity (picomolar Kd's and detection limits of 10,000s of molecules). With this technique, equilibrium dissociation constants were quantified for protein A and immunoglobulin G, interleukin-2 with its monoclonal antibody, and calmodulin with calcium ion Ca2+, a small molecule inhibitor, the protein calcineurin, and the M13 peptide. The high sensitivity of back-scattering interferometry and small volumes of microfluidics allowed the entire calmodulin assay to be performed with 200 picomoles of solute.
Collapse
Affiliation(s)
- Darryl J Bornhop
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, VU Station B 351822, Nashville, TN 37235-1822, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Latham JC, Markov DA, Sørensen HS, Bornhop DJ. Photobiotin surface chemistry improves label-free interferometric sensing of biochemical interactions. Angew Chem Int Ed Engl 2007; 45:955-8. [PMID: 16385602 DOI: 10.1002/anie.200502418] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joey C Latham
- Vanderbilt University, Department of Chemistry, 4226 Stevenson Center, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
22
|
Kim DK, Kerman K, Saito M, Sathuluri RR, Endo T, Yamamura S, Kwon YS, Tamiya E. Label-Free DNA Biosensor Based on Localized Surface Plasmon Resonance Coupled with Interferometry. Anal Chem 2007; 79:1855-64. [PMID: 17261024 DOI: 10.1021/ac061909o] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we developed a new optical biosensor in connection with a gold-deposited porous anodic alumina (PAA) layer chip. In our sensor, we observed that the gold deposition onto the chip surface formed a "caplike" layer on the top of the oxide nanostructures in an orderly fashion, so we called this new surface formation a "gold-capped oxide nanostructure". As a result of its interferometric and localized surface plasmon resonance properties, the relative reflected intensity (RRI) at surface of the chip resulted in an optical pattern that was highly sensitive to the changes in the effective thickness of the biomolecular layer. We demonstrated the method on the detection of picomolar quantities of untagged oligonucleotides and the hybridization with synthetic and PCR-amplified DNA samples. The detection limit of our PAA layer chip was determined as 10 pM synthetic target DNA. The capability of observing both RRI increment and wavelength shift upon biomolecular interactions promises to make our chip widely applicable in various analytical tests.
Collapse
Affiliation(s)
- Do-Kyun Kim
- School of Materials Science, Japan Advanced Institute of Science & Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Brivio M, Verboom W, Reinhoudt DN. Miniaturized continuous flow reaction vessels: influence on chemical reactions. LAB ON A CHIP 2006; 6:329-44. [PMID: 16511615 DOI: 10.1039/b510856j] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This review offers an overview of the relatively young research area of continuous flow lab-on-a-chip for synthetic applications. A short introduction on the basic aspects of lab-on-a-chip is given in the first part. Subsequently, the effects of downscaling reaction vessels as well as the advantages of the continuous flow microfluidic approach over conventional chemical laboratory batch methodologies are illustrated by a number of examples of organic reactions carried out in microfluidic devices. The last part deals with a key issue of the lab-on-a-chip approach, viz. the integration of the microreactor with the analytical instrumentation to achieve high-throughput reaction monitoring.
Collapse
Affiliation(s)
- Monica Brivio
- Laboratory of Supramolecular Chemistry and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | | | | |
Collapse
|
24
|
Latham JC, Markov DA, Sørensen HS, Bornhop DJ. Photobiotin Surface Chemistry Improves Label-Free Interferometric Sensing of Biochemical Interactions. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Markov DA, Swinney K, Bornhop DJ. Label-free molecular interaction determinations with nanoscale interferometry. J Am Chem Soc 2005; 126:16659-64. [PMID: 15600372 DOI: 10.1021/ja047820m] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantification of protein-protein and ligand-substrate interactions is central to understanding basic cellular function and for evaluating therapeutics. To mimic biological conditions, such studies are best executed without modifying the proteins or ligands (i.e., label-free). While tools for label-free assays exist, they have limitations making them difficult to fully integrate into microfluidic devices. Furthermore, it has been problematic to reduce detection volumes for on-channel universal analyte quantification without compromising sensitivity, as needed in label-free methods. Here we show how backscattering interferometry in rectangular channels (BIRC) facilitates label-free studies within picoliter volumes. The simple and unique optical train was based on rectangular microfluidic channels molded in poly(dimethylsiloxane) and low-power coherent radiation. Quantification of irreversible streptavidin-biotin binding and reversible protein A-human IgG Fc molecular interactions in a 225 pL detection volume was carried out label-free and noninvasively. Detection limits of 47 x 10(-15) mol of biotin reacted with surface-immobilized streptavidin were achieved. In the case of reversible interactions of protein A and the Fc fragment of human IgG, detection limits were determined to be 2 x 10(-15) mol of IgG Fc. These experiments demonstrate for the first time that (1) high-sensitivity universal solute quantification is possible using interferometry performed within micrometer-sized channels formed in inexpensive PDMS chips, (2) label-free reversible molecular interaction can be studied with femtomoles of solute, and (3) BIRC has the potential to quantify binding affinities in a high-throughput format.
Collapse
Affiliation(s)
- Dmitry A Markov
- Department of Chemistry, Vanderbilt University, VU Station B 351822, Nashville, Tennessee 37235-1822, USA
| | | | | |
Collapse
|
26
|
Lacher NA, Lunte SM, Martin RS. Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device. Anal Chem 2005; 76:2482-91. [PMID: 15117187 DOI: 10.1021/ac030327t] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fabrication and evaluation of a palladium decoupler and working electrode for microchip capillary electrophoresis (CE) with electrochemical detection is described. The use of the Pd decoupler allows the working electrode to be placed directly in the separation channel and eliminates the band-broadening characteristic of the end-channel configuration. The method used for fabrication of the decoupler and working electrode was based on thin-layer deposition of titanium followed by palladium onto a glass substrate. When employed as the cathode in CE, palladium absorbs the hydrogen gas that is generated by the hydrolysis of water. The effect of the decoupler size on the ability to remove hydrogen was evaluated with regard to reproducibility and longevity. Using boric acid and TES buffer systems, 500 microm was determined to be the optimum decoupler size, with effective voltage isolation lasting for approximately 6 h at a constant field strength of 600 V/cm. The effect of distance between the decoupler and working electrode on noise and resolution for the separation of dopamine and epinephrine was also investigated. It was found that 250 microm was the optimum spacing between the decoupler and working electrode. At this spacing, laser-induced fluorescence detection at various points around the decoupler established that the band broadening due to pressure-induced flow that occurs after the decoupler did not significantly affect the separation efficiency of fluorescein. Limits of detection, sensitivity, and linearity for dopamine (500 nM, 3.5 pA/microM, r(2) = 0.9996) and epinephrine (2.1 microM, 2.6 pA/microM, r(2) = 0.9996) were obtained using the palladium decoupler in combination with a Pd working electrode.
Collapse
Affiliation(s)
- Nathan A Lacher
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | |
Collapse
|
27
|
Abstract
This paper describes two types of miniaturized thermal lens optical systems that use optical fibers, SELFOC microlenses and light sources. The first system consists of a compact diode pumped solid-state laser (532 nm) as an excitation light source, a laser diode (635 nm) as a probe light source, an acoustoptic modulator as an excitation light modulator, fiber-based and conventional optics, and a detection system that combines a pinhole, an interference filter, and a photodiode. The second system consists of two laser diodes as the excitation (658 nm) and probe (780 nm) light sources, fiber-based optics, and the same detection system as the first one. The performance of the two systems was evaluated by the limit of detection (LOD) using standard solutions of sunset yellow (SY) and nickel(II) phthalocyaninetetrasulfonic acid tetrasodium salt (NiP). The LODs of the first system for SY and second system for NiP were calculated to be 3.7 x 10(-8) (1.7 x 10(-6) AU) and 7.7 x 10(-9) M (3.4 x10(-6) AU), respectively. These results were consistent with the expected values obtained from photothermal parameters.
Collapse
Affiliation(s)
- Manabu Tokeshi
- Integrated Chemistry Project, Kanagawa Academy of Science and Technology (KAST), KSP East 307, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa 213-0012, Japan
| | | | | | | |
Collapse
|
28
|
Markov DA, Dotson S, Wood S, Bornhop DJ. Noninvasive fluid flow measurements in microfluidic channels with backscatter interferometry. Electrophoresis 2004; 25:3805-9. [PMID: 15565690 DOI: 10.1002/elps.200406139] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability to measure fluid velocity within picoliter volumes or on-chip noninvasively, is important toward fully realizing the potential of microfluidics and micrototal analysis systems, particularly in applications such as micro-high-performance liquid chromatography (HPLC) or in metering mixing where the flow rate must be quantified. Additionally, these measurements need to be performed directly on moving fluids in a noninvasive fashion. We presented here the proof of principle experiments showing nonintrusive fluid flow measurements can be accomplished on-chip using a pump and probe configuration with backscattering interferometry. The on-chip interferometric backscatter detector (OCIBD) is based on a fiber-coupled HeNe laser that illuminates a portion of an isotropically etched 40 microm radius channel and a position sensitive transducer to measure fringe pattern shifts. An infrared laser with a mechanical shutter is used to heat a section of a flowing volume and the resulting refractive index (RI) change is detected with the OCIBD downstream as a time-dependent RI perturbation. Fluid velocity is quantified as changes in the phase difference between the shutter signal and the OCIBD detected signal in the Fourier domain. The experiments are performed in the range of 3-6 microL/h with 3sigma detection limits determined to be 0.127 nL/s. Additionally, the RI response of the system is calibrated using temperature changes as well as glycerol solutions.
Collapse
Affiliation(s)
- Dmitry A Markov
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
29
|
Costin CD, Olund RK, Staggemeier BA, Torgerson AK, Synovec RE. Diffusion coefficient measurement in a microfluidic analyzer using dual-beam microscale-refractive index gradient detection. J Chromatogr A 2003; 1013:77-91. [PMID: 14604110 DOI: 10.1016/s0021-9673(03)01101-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report a microchip-based detection scheme to determine the diffusion coefficient and molecular mass (to the extent correlated to molecular size) of analytes of interest. The device works by simultaneously measuring the refractive index gradient (RIG) between adjacent laminar flows at two different positions along a microchannel. The device, referred to as a microscale molecular mass sensor (micro-MMS), takes advantage of laminar flow conditions where the mixing of two streams occurs essentially by diffusion across the boundary between the two streams. Two flows merge on the microchip, one containing solvent only, referred to as the mobile phase stream and one which contains the analyte(s) of interest in the solvent, i.e. the sample stream. As these two streams merge and flow parallel to each other down the microchannel a RIG is created by the concentration gradient. The RIG is further influenced by analyte diffusion from the sample stream into the mobile phase stream. Measuring the RIG at a position close to the merging point (upstream signal) and simultaneously a selected distance further down the microchannel (downstream signal) provides real-time data related to the extent a given analyte has diffused, which can be readily correlated to analyte molecular mass by taking the ratio of the downstream-to-upstream signals. For the dual-beam RIG measurements, a diode laser output is coupled to a single mode fiber optic splitter with two output fibers. Light from each fiber passes through a graded refractive index (GRIN) lens forming a collimated beam that then passes through the microchannel and then on to a position sensitive detector (PSD). The RIG at both detection positions deflects the two collimated probe beams. The deflection angle of each beam is then measured on two separate PSDs. The micro-MMS was evaluated using polyethylene glycols (PEGs), sugars, and as a detector for size-exclusion chromatography (SEC). Peak purity can be readily identified using the micro-MMS with SEC. The limit of detection was 0.9 ppm (PEG at 11 840 g/mol) at the upstream detection position corresponding to a RI limit of detection (LOD) (3sigma) of 7-10(-8) RI. The pathlength for the RIG measurement was 200 microm and the angular LOD was 0.23 micro(rad) with a detection volume of 8 nl at both positions. The average molecular mass resolution was 9% (relative standard deviation) for a series of PEGs ranging in molecular mass from 106 to 22 800 g/mol. With this excellent mass resolution, small molecules such as monosaccharides, disaccharides, and so on, are readily distinguished. The sensor is demonstrated to readily determine unknown diffusion coefficients.
Collapse
Affiliation(s)
- Colin D Costin
- Center for Process Analytical Chemistry (CPAC), Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Miniaturized instruments have developed very quickly in the last decade. This review is focused on the microchip electrophoresis-based separation of DNA. Fundamentals, including the chip format, substrates and fabrication technologies, fluid control, as well as various detection methods, are summarized. Array electrophoresis microchip and the on-chip integration of electrophoresis with other systems are introduced as well. In addition, the application of microchip electrophoresis in DNA sizing, genetic analysis and DNA sequencing are also presented in this paper.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, CREST, Japan Science and Technology Corporation (JST), Shomachi, Tokushima 770-8505, Japan.
| | | | | |
Collapse
|
31
|
Abstract
The interest in microfluidic devices has increased considerably over the past decade due to the numerous advantages of working within a miniature, microfabricated format. This review focuses on recent advances in coupling amperometric detection with microchip capillary electrophoresis (CE). Advances in electrochemical cell design, isolation of the detector from the separation field, and integration of both pre- and postseparation reaction chambers are discussed. The use of microchip CE with amperometric detection for enzyme/immunoassays, clinical and environmental assays, and the determination of neurotransmitters is described.
Collapse
Affiliation(s)
- Walter R Vandaveer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
32
|
McReynolds JA, Edirisinghe P, Shippy SA. Shah and sine convolution Fourier transform detection for microchannel electrophoresis with a charge coupled device. Anal Chem 2002; 74:5063-70. [PMID: 12380831 DOI: 10.1021/ac025847n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes an improved format for Shah convolution Fourier transform (SCOFT) detection that utilizes the spatial resolution of a charge-coupled device (CCD) rather than a fixed optical mask to perform a Shah or sine convolution over a fluorescence signal. The laser-induced fluorescence from a 9-mm section of microfabricated channel is collected with a CCD at 28 Hz. Each image frame is multiplied by a convolution function to modulate the collected signal through space. Each frame is then summed to generate an intensity-versus-time data set for Fourier analysis. The fluorescence signal oscillates at a frequency dependent upon both the convolution function multiplied across each data frame and the velocity of fluorescent microspheres or a plug of fluorescent dye flowing through the channel. This SCOFT technique affords more flexibility over formats that employ a physical mask and provides data that can be optimized for signal-to-noise (S/N) or resolution information. A 1,000-fold improvement in S/N is demonstrated for a plug of fluorescein dye. Detection of fluorescent beads exhibited frequency signals that were dependent upon the bead size distribution, the electric field, and the electrophoresis buffer concentration. Data are presented demonstrating the quantitation of fluorescent microspheres.
Collapse
|
33
|
de Beer T, Velthorst NH, Brinkman UAT, Gooijer C. Laser-based non-fluorescence detection techniques for liquid separation systems. J Chromatogr A 2002; 971:1-35. [PMID: 12350105 DOI: 10.1016/s0021-9673(02)01038-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Over the last two decades, the possibility to use lasers for detection purposes in column liquid chromatography (LC) and capillary electrophoresis (CE) received much attention in the analytical chemistry literature. Most attention has been devoted to laser-induced fluorescence. The present review covers developments on non-fluorescence techniques for LC and CE. The techniques considered are thermal lens spectrometry, photoacoustic detection, refractive index detection including refractive index backscattering, Raman spectroscopy and degenerate four-wave mixing (a special mode of transientholographic spectroscopy). The paper starts with an outline of the characteristics of lasers; it ends with an overall evaluation and a discussion of the perspectives of the techniques dealt with.
Collapse
Affiliation(s)
- T de Beer
- Department of Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Costin CD, Synovec RE. A microscale-molecular weight sensor: probing molecular diffusion between adjacent laminar flows by refractive index gradient detection. Anal Chem 2002; 74:4558-65. [PMID: 12236369 DOI: 10.1021/ac020143z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detection scheme that measures the refractive index gradient (RIG) between adjacent laminar flows in a microfluidic device has been used to develop a microscale-molecular weight sensor. The behavior of low Reynolds number flows has been well documented and shows that molecular transport (mixing) between adjacent laminar flows occurs by molecular diffusion between flow boundaries. A diode laser beam, incident upon and illuminating the entire width of a microchannel, measured the transverse concentration gradient at two different positions along a microchannel. The concentration gradient is impacted by the transverse diffusion from a flow with analyte into a flow initially without analyte. The RIG that forms as analyte diffuses from one adjacent flow to the other causes the laser beam, impinging orthogonal to the RIG through the microchannel, to be deflected. The angle of deflection is then monitored on a position-sensitive detector (PSD) at two different positions along the axis of flow to provide a measurement of analyte diffusion. The two positions are just after the flow initially without analyte merges with the flow initially containing all of the analyte (upstream) and then after the two streams have had more time to diffuse together (downstream). The ratio of the PSD signals obtained at the two positions along the flow, downstream signal divided by the upstream signal, is readily correlated to the analyte diffusion coefficient and, thus, the analyte molecular weight for a given class of compounds. The device was evaluated as a molecular weight sensor for poly(ethylene glycol) (PEG) solutions over a molar mass range from 106 to 22,800 g/mol. The ratio signal was found to be both independent of PEG concentration and sensitive to molecular weight changes for samples ranging from 960 to 22,800 g/mol. Independence of concentration is important for obtaining a reliable molecular weight measurement. The limit of detection for 11,840 g/mol PEG measured at the upstream detection position was determined to be 56 ppm, equivalent to 4.5 x 10(-6) RI (3sigma). This technique provides a much needed universal detection method, without requiring analyte derivatization chemistry (e.g., fluorescence), for microfluidic analyses that are becoming increasingly useful in monitoring chemical systems such as continuous-flow reactors or batch polymerization processes. Thus, the molecular weight determination capability is potentially applicable to other compound classes, such as DNA or proteins.
Collapse
Affiliation(s)
- Colin D Costin
- Center for Process Analytical Chemistry, Department of Chemistry, University of Washington, Seattle 98195-1700, USA
| | | |
Collapse
|
35
|
Roulet JC, Völkel R, Herzig HP, Verpoorte E, de Rooij NF, Dändliker R. Performance of an integrated microoptical system for fluorescence detection in microfluidic systems. Anal Chem 2002; 74:3400-7. [PMID: 12139046 DOI: 10.1021/ac0112465] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article presents a new integrated microfluidic/microoptic device designed for basic biochemical analysis. The microfluidic network is wet-etched in a Borofloat 33 (Pyrex) glass wafer and sealed by means of a second wafer. Unlike other similar microfluidic systems, elements of the detection system are realized with the help of microfabrication techniques and directly deposited on both sides of the microchemical chip. The detection system is composed of the combination of refractive circular or elliptical microlens arrays and chromium aperture arrays. The microfluidic channels are 60 microm wide and 25 microm deep. The elliptical microlenses have a major axis of 400 microm and a minor axis of 350 microm. The circular microlens diameters range from 280 microm to 350 microm. The apertures deposited on the outer chip surfaces are etched in a 3000-A-thick chromium layer. The overall thickness of this microchemical system is < 1.6 mm. A limit of detection of 3.3 nM for a Cy5 solution in phosphate buffer (pH 7.4) was demonstrated. The cross-talk signal measured between two adjacent microchannels with 1 mm pitch was < 1:5600, meaning that < or = 1.8 x 10(-4)% of the fluorescence light power emitted from one microchannel filled with a 50 microM Cy5 solution reaches the photodetector at the adjacent microchannel. This performance compares very well with that obtainable in microchemical chips using confocal fluorescence systems, taking differences in parameters, such as excitation power into microchannels, data acquisition rates, and signal filtering into account.
Collapse
|
36
|
Martin RS, Ratzlaff KL, Huynh BH, Lunte SM. In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat. Anal Chem 2002; 74:1136-43. [PMID: 11924975 DOI: 10.1021/ac011087p] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new electrode configuration for microchip capillary electrophoresis (CE) with electrochemical (EC) detection is described. This approach makes it possible to place the working electrode directly in the separation channel. The "in-channel" EC detection was accomplished without the use of a decoupler through the utilization of a specially designed, electrically isolated potentiostat. The effect of the working electrode position on the separation performance (in terms of plate height and peak skew) of poly(dimethylsiloxane)-based microchip CEEC devices was evaluated by comparing the more commonly used end-channel configuration with this new in-channel approach. Using catechol as the test analyte, it was found that in-channel EC detection decreased the total plate height by a factor of 4.6 and lowered the peak skew by a factor of 1.3. A similar trend was observed for the small, inorganic ion nitrite. Furthermore, a fluorescent and electrochemically active amino acid derivative was used to directly compare the separation performance of in-channel EC detection to that of a widely used laser-induced fluorescence (LIF) detection scheme. In this case, it was found that the plate height and peak skew for both detection schemes were essentially equal, and the separation performance of in-channel EC detection is comparable to LIF detection.
Collapse
Affiliation(s)
- R Scott Martin
- Department of Pharmaceutical Chemistry and Center for Bioanalytical Research, The University of Kansas, Lawrence 66047, USA
| | | | | | | |
Collapse
|
37
|
Abstract
We present the use of a novel, picoliter volume interferometer to measure, for the first time, the extent of Joule heating in chip-scale capillary electrophoresis (CE). The simple optical configuration for the on-chip interferometric backscatter detector (OCIBD) consists of an unfocused laser, an unaltered silica chip with a half-cylinder channel and a photodetector. Using OCIBD for millidegree-level noninvasive thermometry, temperature changes associated with Joule heating (2.81 degrees C above ambient) in on-chip CE have been observed in 90 microm wide and 40 microm deep separation channels. The temporal response of Joule heating in isotropically etched channels was exponential, with it taking an excess of 2.7 s to reach equilibrium. Buffer viscosity changes have also been derived from empirical on-chip thermometry data, allowing for the determination of diffusion coefficients for solutes when separated in heated buffers. In addition, OCIBD has allowed the reduction in separation efficiency to be estimated in the absence of laminar flow and due to increased molecular diffusion and lower buffer viscosity. A 7% reduction in separation efficiency was determined for a high current drawing buffer such as Tris-boric acid under an applied field of just 400 V/cm. Results indicate that heating effects in on-chip CE have been underestimated and there is a need to readdress the theoretical model.
Collapse
Affiliation(s)
- Kelly Swinney
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | |
Collapse
|
38
|
Vahey PG, Smith SA, Costin CD, Xia Y, Brodsky A, Burgess LW, Synovec RE. Toward a fully integrated positive-pressure driven microfabricated liquid analyzer. Anal Chem 2002; 74:177-84. [PMID: 11795788 DOI: 10.1021/ac010440o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile integrated analyzer with a flow-programmed injection strategy and multiwavelength detection is described with applications toward sampling, flow injection analysis, and capillary separations. Continuous near-real-time sampling is a major benefit of the flow-programmed injection technique. Injection volumes ranging from 250 pL to several microliters were made without electrophoretic flow. Multiwavelength grating light reflection spectroscopy (GLRS) and transmission absorbance spectroscopy were performed simultaneously in a detection volume of 150 pL. The utility of these detection methods for refractive index (RI) and absorbance detection in capillary channels is demonstrated through analysis of salt, indicator, and dyes. GLRS is a unique, selective, and path-length-independent technique for probing RI, absorbance, and other optical properties. A limit of detection (LOD) of 170 microM was achieved for GLRS interferometric detection of FD&C Red #3, which corresponded to 2.6 fmol of analyte in the 150-pL detection volume. A LOD of 2 mM for phosphate buffer, or 3 fmol in the 150-pL detection volume will also be demonstrated. A siloxane coating on the GLRS grating was employed as a sensing layer to probe interactions between the sample and stationary phase. The combined GLRS interferometric response provided insight into both optical and chromatographic properties of samples. Open tubular capillary liquid chromatography with multidimensional multiwavelength detection is demonstrated for the analysis of three food dyes. Separation efficiency, N, of 16,000 was achieved for an unretained dye peak eluting at 12 min. Integration of novel sampling and detection schemes makes this a broadly applicable liquid analyzer.
Collapse
Affiliation(s)
- Paul G Vahey
- Center for Process Analytical Chemistry, Department of Chemistry, University of Washington, Seattle 98195-1700, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Gawron AJ, Martin RS, Lunte SM. Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis. Eur J Pharm Sci 2001; 14:1-12. [PMID: 11457644 DOI: 10.1016/s0928-0987(01)00153-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The application of microchip capillary electrophoresis (CE) systems to biomedical and pharmaceutical analysis is described and reviewed. Fabrication, instrumentation, and operation of the systems are discussed. An overview of applications is presented, covering four main areas: DNA sequencing, genetic analysis, immunoassays, and protein and peptide analysis. These systems have the potential to dramatically change the way that biochemical analyses are performed.
Collapse
Affiliation(s)
- A J Gawron
- Department of Pharmaceutical Chemistry and Center for Bioanalytical Research, University of Kansas, 2095 Constant Avenue, 66047, Lawrence, KS, USA
| | | | | |
Collapse
|
40
|
Abstract
Using the on-chip refractive index (RI) detector based on backscatter interferometry, sensitive, small volume, noninvasive thermometry can be performed. The current optical configuration for the on-chip interferometric backscatter detector (OCIBD) is quite simple and consists of an unfocused laser, an unaltered chip with a hemispherical channel and a photodetector. Alignment is straightforward with the only requirement being that the beam fully fills the channel. The interaction of an unfocused laser beam with the uncoated etched channel with a curvature within the silica plate (chip) produces fringes whose positional changes scale with respect to the refractive index (RI), n, of the fluid in the channel. Due to the inherently high value of dn/dT for most fluids and the high sensitivity of OCIBD to RI changes, the measurement of small temperature variations in sub-nanoliter volumes is possible. Performing OCIBD with a 75 microm diameter laser beam on a silica chip that contains an etched channel with a 40 microm radius facilitates noninvasive thermometry on a N-(2-hydroxyethyl)piperazine-(2-ethanesulfonic acid) (HEPES) solution in a 188 x 10(-12) L probe volume with a temperature resolution of 9.9 x 10(-4) degrees C, at the 99% confidence level.
Collapse
Affiliation(s)
- K Swinney
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, USA
| | | |
Collapse
|
41
|
Abstract
This review is devoted to the rapid developments in the field of microfluidic separation devices in which the flow is electrokinetically driven, and where the separation element forms the heart of the system, in order to give an overview of the trends of the last three years. Examples of microchip layouts that were designed for various application areas are given. Optimization of mixing and injection strategies, designs for the handling of multiple samples, and capillary array systems show the enormous progress made since the first proof-of-concept papers about lab-on-a-chip devices. Examples of functional elements for on-chip preconcentration, filtering, DNA amplification and on-chip detection indicate that the real integration of various analytical tasks on a single microchip is coming into reach. The use of materials other than glass, such as poly(dimethylsiloxane) and polymethylmethacrylate, for chip fabrication and detection methods other than laser-induced fluorescence (LIF) detection, such as mass spectrometry and electrochemical detection, are described. Furthermore, it can be observed that the separation modes known from capillary electrophoresis (CE) in fused-silica capillaries can be easily transferred to the microchip platform. The review concludes with an overview of applications of microchip CE and with a brief outlook.
Collapse
Affiliation(s)
- G J Bruin
- Novartis Pharma AG, Drug Metabolism & Pharmacokinetics, Basel, Switzerland.
| |
Collapse
|