1
|
Yamajala KDB, Banerjee S. Design of 2 nd, 3 rdand 4 thGenerations of Azido & 1,2,3-Triazole Dendritic Esters and their Energetic and Biological Applications. ChemistrySelect 2017. [DOI: 10.1002/slct.201601935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kanaka Durga B. Yamajala
- Organic Synthesis Laboratory, Department of Applied Chemistry; Defence Institute of Advanced Technology (DU); Girinagar, Pune- 411025 India
| | - Shaibal Banerjee
- Organic Synthesis Laboratory, Department of Applied Chemistry; Defence Institute of Advanced Technology (DU); Girinagar, Pune- 411025 India
| |
Collapse
|
2
|
Ellairaja S, Krithiga N, Ponmariappan S, Vasantha VS. Novel Pyrimidine Tagged Silver Nanoparticle Based Fluorescent Immunoassay for the Detection of Pseudomonas aeruginosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1802-1812. [PMID: 28161944 DOI: 10.1021/acs.jafc.6b04790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A simple pyrimidine-based fluorescent probe (R)-4-(anthracen-9-yl)-6- (naphthalen-1-yl)-1,6-dihydropyrimidine-2-amine (ANDPA) was synthesized through the greener one pot reaction and characterized by IR, NMR, and ESI-Mass. Glucose stabilized silver nanoparticles (Glu-AgNPs) were also synthesized and characterized using UV, IR, XRD, SEM, and TEM. When ANDPA was tagged with Glu-AgNPs, the fluorescent intensity of ANDPA decreased drastically. When the monoclonal antibody (Ab) [immunoglobulin G (IgG)] of Pseudomonas aeruginosa (PA) was attached with ANDPA/Glu-AgNPs, the original intensity of the probe was recovered with minimal enhancement at 446 nm. On further attachment of PA with ANDPA/Glu-AgNPs/PA, the fluorescence intensity of the probe was enhanced obviously at 446 nm with red shift. This phenomenon was further supported by SEM and TEM. The linear range of detection is from 8 to 10-1 CFU/mL, and LOD is 1.5 CFU/mL. The immunosensor was successfully demonstrated to detect Pseudomonas aeruginosa in water, soil, and food products like milk, sugar cane, and orange juices.
Collapse
Affiliation(s)
- Sundaram Ellairaja
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University , Madurai-625 021, Tamilnadu, India
| | - Narayanaswamy Krithiga
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University , Madurai-625 021, Tamilnadu, India
| | - Sarkaraisamy Ponmariappan
- Biotechnology Division, Defence Research Development & Establishment , Jhansi Road, Gwalior 474002, Madhya Pradesh, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University , Madurai-625 021, Tamilnadu, India
| |
Collapse
|
3
|
|
4
|
Bogomolny E, Swift S, Vanholsbeeck F. Total viable bacterial count using a real time all-fibre spectroscopic system. Analyst 2013; 138:4112-9. [PMID: 23730684 DOI: 10.1039/c3an00254c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid, accurate and sensitive enumeration of bacterial populations in the natural environment is an essential task for many research fields. Widely used standard methods for counting bacteria such as heterotrophic plate count require 1 to 8 days of incubation time for limited accuracy, while more accurate and rapid techniques are often expensive and may require bulky equipment. In the present study, we have developed a computerized optical prototype for bacterial detection. The goal of this research was to estimate the potential of this optical system for Total Viable Bacterial Count in water. For this purpose, we tested water batches with different microbiological content. Bacterial detection was based on fluorescence enhanced by nucleic acid staining. High sensitivity was achieved by a stable diode pumped solid state laser, sensitive CCD spectrometer and in situ excitation and signal collection. The results have shown that the bacterial count from different water origins using our optical setup along with multivariate analysis presents a higher accuracy and a shorter detection time compared to standard methods. For example, in a case where the fluorescence signal is calibrated to the water batch regression line, the relative standard deviation of the optical system enumeration varies between 21 and 36%, while that of the heterotropic plate count counterpart varies between 41 and 59%. In summary, we conclude that the all-fibre optical system may offer the following advantages over conventional methods: near real time examinations, portability, sensitivity, accuracy and ability to detect 10(2) to 10(8) CFU per ml bacterial concentrations.
Collapse
Affiliation(s)
- E Bogomolny
- Department of Physics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | |
Collapse
|
5
|
Xu X, Chen Y, Wei H, Xia B, Liu F, Li N. Counting Bacteria Using Functionalized Gold Nanoparticles as the Light-Scattering Reporter. Anal Chem 2012; 84:9721-8. [DOI: 10.1021/ac302471c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiao Xu
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
Institute of Analytical Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing,
100871, China
| | - Yang Chen
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
Institute of Analytical Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing,
100871, China
| | - Hejia Wei
- Beijing NMR Center, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Xia
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
Institute of Analytical Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing,
100871, China
- Beijing NMR Center, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Feng Liu
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
Institute of Analytical Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing,
100871, China
| | - Na Li
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
Institute of Analytical Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing,
100871, China
| |
Collapse
|
6
|
Ivanova EP, Truong VK, Gervinskas G, Mitik-Dineva N, Day D, Jones RT, Crawford RJ, Juodkazis S. Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors. Biosens Bioelectron 2012; 35:369-375. [PMID: 22494541 DOI: 10.1016/j.bios.2012.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 11/29/2022]
Abstract
Untreated recycled water, such as sewage and graywater, will almost always contain a wide range of agents that are likely to present risks to human health, including chemicals and pathogenic microorganisms. The microbial hazards, such as large numbers of enteric pathogens that can cause gastroenteric illness if ingested, are the main cause of concern for human health. The presence of the enteropathogenic Escherichia coli (EPEC) serotype is of particular concern, as this group of bacteria is responsible for causing severe infant and travelers' diarrhea, gastroenteritis and hemolytic uremic syndrome. A biosensing system based on an optical Fabry-Pérot (FP) cavity, capable of directly detecting the presence of EPEC within 5 min, has been developed using a simple micro-thin double-sided adhesive tape and two semi-transparent FP mirror plates. The system utilizes a poly(methyl methacrylate) (PMMA) or glass substrates sputtered by 40-nm-thick gold thin films serving as FP mirrors. Mirrors have been activated using 0.1M mercaptopropionic acid, influencing an immobilization density of the translocated intimin receptor (TIR) of 100 ng/cm(2). The specificity of recognition was confirmed by exposing TIR functionalized surfaces to four taxonomically related and/or distantly related bacterial strains. It was found that the TIR-functionalized surfaces did not show any bacterial capture for these other bacterial strains within a 15 min incubation period.
Collapse
Affiliation(s)
- Elena P Ivanova
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Australia.
| | - Vi Khanh Truong
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Australia
| | - Gediminas Gervinskas
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Australia
| | - Natasa Mitik-Dineva
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Australia
| | - Daniel Day
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Australia
| | - Robert T Jones
- Centre for Materials and Surface Science, Department of Physics, La Trobe University, Victoria 3086, Australia
| | - Russell J Crawford
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Australia
| | - Saulius Juodkazis
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Australia; Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria 3168, Australia
| |
Collapse
|
7
|
Peng Z, Soper SA, Pingle MR, Barany F, Davis LM. Ligase detection reaction generation of reverse molecular beacons for near real-time analysis of bacterial pathogens using single-pair fluorescence resonance energy transfer and a cyclic olefin copolymer microfluidic chip. Anal Chem 2010; 82:9727-35. [PMID: 21047095 PMCID: PMC4382962 DOI: 10.1021/ac101843n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detection of pathogenic bacteria and viruses require strategies that can signal the presence of these targets in near real-time due to the potential threats created by rapid dissemination into water and/or food supplies. In this paper, we report an innovative strategy that can rapidly detect bacterial pathogens using reporter sequences found in their genome without requiring polymerase chain reaction (PCR). A pair of strain-specific primers was designed based on the 16S rRNA gene and were end-labeled with a donor (Cy5) or acceptor (Cy5.5) dye. In the presence of the target bacterium, the primers were joined using a ligase detection reaction (LDR) only when the primers were completely complementary to the target sequence to form a reverse molecular beacon (rMB), thus bringing Cy5 (donor) and Cy5.5 (acceptor) into close proximity to allow fluorescence resonance energy transfer (FRET) to occur. These rMBs were subsequently analyzed using single-molecule detection of the FRET pairs (single-pair FRET; spFRET). The LDR was performed using a continuous flow thermal cycling process configured in a cyclic olefin copolymer (COC) microfluidic device using either 2 or 20 thermal cycles. Single-molecule photon bursts from the resulting rMBs were detected on-chip and registered using a simple laser-induced fluorescence (LIF) instrument. The spFRET signatures from the target pathogens were reported in as little as 2.6 min using spFRET.
Collapse
Affiliation(s)
- Zhiyong Peng
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Steven A. Soper
- Departments of Chemistry and Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, United States, and Nano-BioTechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Maneesh R. Pingle
- Department of Microbiology, Weill Medical College of Cornell University, New York, New York, United States
| | - Francis Barany
- Department of Microbiology, Weill Medical College of Cornell University, New York, New York, United States
| | - Lloyd M. Davis
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, Tennessee, United States
| |
Collapse
|
8
|
Ehrhart JC, Bennetau B, Renaud L, Madrange JP, Thomas L, Morisot J, Brosseau A, Allano S, Tauc P, Tran PL. A new immunosensor for breast cancer cell detection using antibody-coated long alkylsilane self-assembled monolayers in a parallel plate flow chamber. Biosens Bioelectron 2008; 24:467-74. [DOI: 10.1016/j.bios.2008.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 11/26/2022]
|
9
|
Chapter 4 Immunochemical and Receptor Technologies: The Role of Immunoassay, Immunoaffinity Chromatography, Immunosensors and Molecularly Imprinted Polymeric Sensors. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-526x(08)00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Liu ZD, Chen SF, Huang CZ, Zhen SJ, Liao QG. Light scattering sensing detection of pathogens based on the molecular recognition of immunoglobulin with cell wall-associated protein A. Anal Chim Acta 2007; 599:279-86. [PMID: 17870291 DOI: 10.1016/j.aca.2007.07.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/25/2007] [Accepted: 07/27/2007] [Indexed: 10/23/2022]
Abstract
In this contribution, we report a rapid optical detection method of pathogens using Staphylococcus aureus (S. aureus) as the model analyte based on the molecular recognition of immunoglobulin with cell wall-associated Protein A (SpA). It was found that the molecular recognition of human immunoglobulin (IgG) with protein A on the cell wall of S. aureus on glass slide sensing area could result in strong surface enhanced light scattering (SELS) signals, and the SELS intensity (deltaI) increases proportionally with the concentration of S. aureus over the range of 2.5x10(5)-1.0x10(8) CFU mL(-1) with right angle light scattering (RALS) signals detection mode. In order to identify the solid support based molecular recognition between IgG with SpA, we also employed water-soluble CdS quantum dots (CdS-QDs) as a fluorescent marker for IgG by immobilizing the IgG onto the surfaces of CdS-QDs through covalent binding in order to generate recognition probes for SpA on the cell wall of S. aureus. Consequently, the fluorescent method also showed that the detection for pathogens with solid supports is reliable based on the molecular recognition of IgG with SpA.
Collapse
Affiliation(s)
- Zhong De Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | | | | | | | | |
Collapse
|
11
|
Zhu Q, Shih WY, Shih WH. Real-Time, Label-Free, All-Electrical Detection of Salmonella typhimurium Using Lead Zirconate Titanate/Gold-Coated Glass Cantilevers at any Relative Humidity. SENSORS AND ACTUATORS. B, CHEMICAL 2007; 125:379-388. [PMID: 22872784 PMCID: PMC3412147 DOI: 10.1016/j.snb.2007.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have examined non-insulated PZT/gold-coated glass cantilevers for real-time, label-free detection of Salmonella t. by partial dipping at any relative humidity. The PZT/gold-coated glass cantilevers were consisted of a 0.127 mm thick PZT layer about 0.8 mm long, 2 mm wide bonded to a 0.15 mm thick gold-coated glass layer with a 3.0 mm long gold-coated glass tip for detection. We showed that by placing the water level at the nodal point, about 0.8 mm from the free end of the gold-glass tip, there was a 1-hr window in which the resonance frequency was stable despite the water level change by evaporation at 20% relative humidity or higher. By dipping the cantilevers to their nodal point, we were able to do real-time, label-free detection without background resonance frequency corrections at any relative humidity. The partially dipped PZT/gold-coated glass cantilever exhibited mass detection sensitivity, Δm/Δf = -5×10(-11)g/Hz, and a detection concentration sensitivity, 5×10(3) cells/ml in 2 ml of liquid, which was about two orders of magnitude lower than that of a 5 MHz QCM. It was also about two orders of magnitude lower than the infection dosage and one order of magnitude lower that the detection limit of a commercial Raptor sensor.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Materials Science and Engineering
| | | | | |
Collapse
|
12
|
Zhu Q, Shih WY, Shih WH. In situ, in-liquid, all-electrical detection of Salmonella typhimurium using lead titanate zirconate/gold-coated glass cantilevers at any dipping depth. Biosens Bioelectron 2007; 22:3132-8. [PMID: 17387007 PMCID: PMC6469510 DOI: 10.1016/j.bios.2007.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 12/16/2006] [Accepted: 02/06/2007] [Indexed: 11/19/2022]
Abstract
Most biosensing techniques are indirect, slow, and require labeling. Even though silicon-based microcantilever sensors are sensitive and label-free, they are not suitable for in-liquid detection. More recently lead zirconate titanate (PZT) thin-film-based microcantilevers are shown to be sensitive and in situ. However, they require microfabrication and must be electrically insulated. In this study, we show that highly sensitive, in situ, Salmonella typhimurium detection can be achieved at 90% relative humidity using a lead zirconate titanate (PZT)/gold-coated glass cantilever 0.7 mm long with a non-piezoelectric 2.7 mm long gold-coated glass tip by partially dipping the gold-coated glass tip in the suspension at any depth without electrically insulating the PZT. In particular, we showed that at 90% relative humidity and with a dipping depth larger than 0.8mm the PZT/gold-coated glass cantilever showed virtually no background resonance frequency up-shift due to water evaporation and exhibited a mass detection sensitivity of Deltam/Deltaf=-5 x 10(-11)g/Hz. The concentration sensitivities of this PZT/gold-coated glass cantilever were 1 x 10(3) and 500 cells/ml in 2 ml of liquid with a 1 and 1.5mm dipping depth, respectively, both more than two orders of magnitude lower than the infectious dose and more than one order of magnitude lower than the detection limit of a commercial Raptor sensor.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States.
| | | | | |
Collapse
|
13
|
|
14
|
Acharya G, Chang CL, Savran C. An Optical Biosensor for Rapid and Label-Free Detection of Cells. J Am Chem Soc 2006; 128:3862-3. [PMID: 16551065 DOI: 10.1021/ja057490l] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a broadly applicable optical method for rapid and label-free detection of as few as 45 cells. In this method, bacterial cells are detected by measuring the amount of laser light transmitted through a small glass well functionalized with antibodies which specifically recognize and capture the cells. The described approach is simple, rapid, economical, and promising for portable and high-throughput detection of a wide variety of pathogenic and infectious cells.
Collapse
Affiliation(s)
- Ghanashyam Acharya
- School of Mechanical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
15
|
Floriano PN, Christodoulides N, Romanovicz D, Bernard B, Simmons GW, Cavell M, McDevitt JT. Membrane-based on-line optical analysis system for rapid detection of bacteria and spores. Biosens Bioelectron 2005; 20:2079-88. [PMID: 15741078 DOI: 10.1016/j.bios.2004.08.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 08/06/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
We report here the adaptation of our electronic microchip technology towards the development of a new method for detecting and enumerating bacterial cells and spores. This new approach is based on the immuno-localization of bacterial spores captured on a membrane filter microchip placed within a flow cell. A combination of microfluidic, optical, and software components enables the integration of staining of the bacterial species with fully automated assays. The quantitation of the analyte signal is achieved through the measurement of a collective response or alternatively through the identification and counting of individual spores and particles. This new instrument displays outstanding analytical characteristics, and presents a limit of detection of approximately 500 spores when tested with Bacillus globigii (Bg), a commonly used simulant for Bacillus anthracis (Ba), with a total analysis time of only 5 min. Additionally, the system performed well when tested with real postal dust samples spiked with Bg in the presence of other common contaminants. This new approach is highly customizable towards a large number of relevant toxic chemicals, environmental factors, and analytes of relevance to clinical chemistry applications.
Collapse
Affiliation(s)
- Pierre N Floriano
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Introduction. FRACTAL BINDING AND DISSOCIATION KINETICS FOR DIFFERENT BIOSENSOR APPLICATIONS 2005. [PMCID: PMC7152108 DOI: 10.1016/b978-044451945-0/50002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Mosier-Boss PA, Lieberman SH, Andrews JM, Rohwer FL, Wegley LE, Breitbart M. Use of fluorescently labeled phage in the detection and identification of bacterial species. APPLIED SPECTROSCOPY 2003; 57:1138-1144. [PMID: 14611044 DOI: 10.1366/00037020360696008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phages are viruses whose hosts are bacterial cells. They identify their hosts by specific receptor molecules on the outside of the host cell. Once the phages find their specific receptors, they bind to the bacterial cell and inject their nucleic acid inside the cell. The binding between phage and host can be so specific that only certain strains of a single species can be infected. In this communication, the specificity of phage P22 for Salmonella typhimurium LT2 is exploited to allow the detection of Salmonella in the presence of other bacterial species. In particular, the dsDNA of P22 is bound to SYBR gold, a highly sensitive, fluorescent nucleic acid stain. When multiple phages infect the same cell, the fluorescence emissions of the phage DNA inside the cell allow it to be imaged using an epifluorescence microscope. The advantages of using phages as the bacterial recognition element in a sensor over antibodies are discussed.
Collapse
Affiliation(s)
- P A Mosier-Boss
- SPAWAR Systems Center San Diego, Code 236, San Diego, California 92152, USA
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Experimental simulation of integrated optoelectronic sensors based on III nitrides. ACTA ACUST UNITED AC 2002. [DOI: 10.1116/1.1498276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|