1
|
Abstract
Mucopolysaccharidosis type I (MPS I), a lysosomal storage disease caused by a deficiency of α-L-iduronidase, leads to storage of the glycosaminoglycans, dermatan sulfate and heparan sulfate. Available therapies include enzyme replacement and hematopoietic stem cell transplantation. In the last two decades, newborn screening (NBS) has focused on early identification of the disorder, allowing early intervention and avoiding irreversible manifestations. Techniques developed and optimized for MPS I NBS include tandem mass-spectrometry, digital microfluidics, and glycosaminoglycan quantification. Several pilot studies have been conducted and screening programs have been implemented worldwide. NBS for MPS I has been established in Taiwan, the United States, Brazil, Mexico, and several European countries. All these programs measure α-L-iduronidase enzyme activity in dried blood spots, although there are differences in the analytical strategies employed. Screening algorithms based on published studies are discussed. However, some limitations remain: one is the high rate of false-positive results due to frequent pseudodeficiency alleles, which has been partially solved using post-analytical tools and second-tier tests; another involves the management of infants with late-onset forms or variants of uncertain significance. Nonetheless, the risk-benefit ratio is favorable. Furthermore, long-term follow-up of patients detected by neonatal screening will improve our knowledge of the natural history of the disease and inform better management.
Collapse
Affiliation(s)
- Alberto B Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| |
Collapse
|
2
|
Arunkumar N, Langan TJ, Stapleton M, Kubaski F, Mason RW, Singh R, Kobayashi H, Yamaguchi S, Suzuki Y, Orii K, Orii T, Fukao T, Tomatsu S. Newborn screening of mucopolysaccharidoses: past, present, and future. J Hum Genet 2020; 65:557-567. [PMID: 32277174 DOI: 10.1038/s10038-020-0744-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/03/2020] [Indexed: 11/09/2022]
Abstract
Mucopolysaccharidoses (MPS) are a subtype of lysosomal storage disorders (LSDs) characterized by the deficiency of the enzyme involved in the breakdown of glycosaminoglycans (GAGs). Mucopolysaccharidosis type I (MPS I, Hurler Syndrome) was endorsed by the U.S. Secretary of the Department of Health and Human Services for universal newborn screening (NBS) in February 2016. Its endorsement exemplifies the need to enhance the accuracy of diagnostic testing for disorders that are considered for NBS. The progression of MPS disorders typically incudes irreversible CNS involvement, severe bone dysplasia, and cardiac and respiratory issues. Patients with MPS have a significantly decreased quality of life if untreated and require timely diagnosis and management for optimal outcomes. NBS provides the opportunity to diagnose and initiate treatment plans for MPS patients as early as possible. Most newborns with MPS are asymptomatic at birth; therefore, it is crucial to have biomarkers that can be identified in the newborn. At present, there are tiered methods and different instrumentation available for this purpose. The screening of quick, cost-effective, sensitive, and specific biomarkers in patients with MPS at birth is important. Rapid newborn diagnosis enables treatments to maximize therapeutic efficacy and to introduce immune tolerance during the neonatal period. Currently, newborn screening for MPS I and II has been implemented and/or in pilot testing in several countries. In this review article, historical aspects of NBS for MPS and the prospect of newborn screening for MPS are described, including the potential tiers of screening.
Collapse
Affiliation(s)
- Nivethitha Arunkumar
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Health Sciences, University of Delaware, Newark, DE, USA
| | - Thomas J Langan
- Departments of Neurology Pediatrics, and Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Molly Stapleton
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Francyne Kubaski
- Medical Genetics Service, HCPA, Porto Alegre, Brazil.,Department of Genetics and Molecular Biology-PPGBM, UFRGS, Porto Alegre, Brazil.,INAGEMP, Porto Alegre, Brazil
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Hironori Kobayashi
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Kenji Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA. .,Department of Biological Sciences, University of Delaware, Newark, DE, USA. .,Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan. .,Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan. .,Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Kuchař L, Asfaw B, Rybová J, Ledvinová J. Tandem Mass Spectrometry of Sphingolipids: Applications for Diagnosis of Sphingolipidoses. Adv Clin Chem 2016; 77:177-219. [PMID: 27717417 DOI: 10.1016/bs.acc.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, mass spectrometry (MS) has become the dominant technology in lipidomic analysis. It is widely used in diagnosis and research of lipid metabolism disorders including those characterized by impairment of lysosomal functions and storage of nondegraded-degraded substrates. These rare diseases, which include sphingolipidoses, have severe and often fatal clinical consequences. Modern MS methods have contributed significantly to achieve a definitive diagnosis, which is essential in clinical practice to begin properly targeted patient care. Here we summarize MS and tandem MS methods used for qualitative and quantitative analysis of sphingolipids (SL) relative to the diagnostic process for sphingolipidoses and studies focusing on alterations in cell functions due to these disorders. This review covers the following topics: Tandem MS is sensitive and robust in determining the composition of sphingolipid classes in various biological materials. Its ability to establish SL metabolomic profiles using MS bench-top analyzers, significantly benefits the first stages of a diagnosis as well as metabolic studies of these disorders. It can thus contribute to a better understanding of the biological significance of SL.
Collapse
Affiliation(s)
- L Kuchař
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| | - B Asfaw
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Rybová
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Ledvinová
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
4
|
Three-layer poly(methyl methacrylate) microsystem for analysis of lysosomal enzymes for diagnostic purposes. Anal Chim Acta 2015; 853:702-709. [DOI: 10.1016/j.aca.2014.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022]
|
5
|
Li Y, Huang X, Harmonay L, Liu Y, Kellogg MD, Fridovich-Keil JL, Berry GT. Liquid chromatography-tandem mass spectrometry enzyme assay for UDP-galactose 4'-epimerase: use of fragment intensity ratio in differentiation of structural isomers. Clin Chem 2014; 60:783-90. [PMID: 24578239 DOI: 10.1373/clinchem.2013.219931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Distinction between asymptomatic and potentially clinically significant forms of galactosemia due to UDP-galactose 4'-epimerase (GALE) deficiency requires enzyme measurement in erythrocytes and other cells. We sought to develop a GALE assay using a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method. METHODS The reversible GALE assay was conducted with UDPGal as a substrate. The coeluting reaction product, uridine diphosphate glucose (UDPGlc), and its isomeric substrate, uridine diphosphate galactose (UDPGal), were detected by MS/MS at mass transitions 565 > 280, 565 > 241 and 565 > 403. The UDPGal was enriched in mass transition 565 > 403 compared with UDPGlc, whereas the UDPGlc was enriched in the mass transition 565 > 241 compared with UDPGal. The percentage of UDPGal in the reaction mixture was calculated by use of the ratio of ion intensities of the 2 daughter ions and a fourth-order polynomial calibrator curve. RESULTS The method yielded a mean (SD) GALE activity of 9.8 (2.2) μmol · g(-1) hemoglobin · h(-1) in erythrocyte extracts from 27 controls. The apparent Km of the substrate, UDPGal, was 0.05 mmol/L. The GALE activity ranged from 433 to 993 μmol · g(-1) protein · h(-1) in control lymphoblast extracts. In a blinded test of 22 subjects suspected of GALE deficiency, we identified 6 individuals whose residual activities were below the range of controls, compatible with intermediate GALE deficiency. CONCLUSIONS This assay can be used to distinguish the different forms of GALE deficiency. From an analytical standpoint, differentiating isomers on the basis of fragment intensity ratios should also prove useful for analogous enzymatic studies involving substrates and products that are structural isomers.
Collapse
Affiliation(s)
- Yijun Li
- The Manton Center for Orphan Disease Research, Division of Genetics, Department of Pediatrics
| | | | | | | | | | | | | |
Collapse
|
6
|
Meikle PJ, Fietz MJ, Hopwood JJ. Diagnosis of lysosomal storage disorders: current techniques and future directions. Expert Rev Mol Diagn 2014; 4:677-91. [PMID: 15347261 DOI: 10.1586/14737159.4.5.677] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysosomal storage disorders represent a group of over 45 distinct genetic diseases. The broad spectrum of clinical presentation of this group of disorders has led to the development of diagnostic protocols to facilitate their rapid and accurate diagnosis. However, with the development of new therapies, testing for many of these disorders now extends beyond diagnosis of affected individuals. The efficacy of many current and proposed therapies will rely heavily upon early detection and treatment prior to the onset of irreversible pathology. Newborn screening holds the promise of early detection. However, presymptomatic diagnosis raises a number of issues relating to patient management and treatment. Methods for prognoses and monitoring therapy in asymptomatic individuals will be required.
Collapse
Affiliation(s)
- Peter J Meikle
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia, 5006 Australia.
| | | | | |
Collapse
|
7
|
A rapid and sensitive method for measuring N-acetylglucosaminidase activity in cultured cells. PLoS One 2013; 8:e68060. [PMID: 23840811 PMCID: PMC3695942 DOI: 10.1371/journal.pone.0068060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/25/2013] [Indexed: 11/19/2022] Open
Abstract
A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG) activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB) due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4-Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG), in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB), a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in enzyme replacement therapy, gene therapy, and combination therapies.
Collapse
|
8
|
Gregorius B, Jakoby T, Schaumlöffel D, Tholey A. Monitoring of Protease Catalyzed Reactions by Quantitative MALDI MS Using Metal Labeling. Anal Chem 2013; 85:5184-90. [DOI: 10.1021/ac4005452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barbara Gregorius
- Institute for Experimental Medicine − Div. Systematic Proteome Research, Christian-Albrechts-Universität, 24105 Kiel, Germany
| | - Thomas Jakoby
- Institute for Experimental Medicine − Div. Systematic Proteome Research, Christian-Albrechts-Universität, 24105 Kiel, Germany
| | - Dirk Schaumlöffel
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement/IPREM, Université de Pau et des Pays de l’Adour/CNRS UMR 5254, Helioparc, 2, av. Pr. Angot, 64053 Pau, France
| | - Andreas Tholey
- Institute for Experimental Medicine − Div. Systematic Proteome Research, Christian-Albrechts-Universität, 24105 Kiel, Germany
| |
Collapse
|
9
|
de Ruijter J, de Ru MH, Wagemans T, Ijlst L, Lund AM, Orchard PJ, Schaefer GB, Wijburg FA, van Vlies N. Heparan sulfate and dermatan sulfate derived disaccharides are sensitive markers for newborn screening for mucopolysaccharidoses types I, II and III. Mol Genet Metab 2012; 107:705-10. [PMID: 23084433 DOI: 10.1016/j.ymgme.2012.09.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/24/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs) caused by a defect in the degradation of glycosaminoglycans (GAGs). The accumulation of GAGs in MPS patients results in extensive, severe and progressive disease. Disease modifying therapy is available for three of the MPSs and is being developed for the other types. Early initiation of treatment, before the onset of irreversible tissue damage, clearly provides a favorable disease outcome. However, early diagnosis is difficult due to the rarity of these disorders in combination with the wide variety of clinical symptoms. Newborn screening (NBS) is probably the optimal approach, and several screening techniques for different MPSs have been studied. Here we describe a relatively simple and sensitive method to measure levels of dermatan and heparan sulfate derived disaccharides in dried blood spots (DBS) with HPLC-MS/MS, and show that this reliably separates MPS I, II and MPS III newborns from controls and heterozygotes. METHODS Newborn DBS of 11 MPS I, 1 MPS II, and 6 MPS III patients, with phenotypes ranging from severe to relatively attenuated, were collected and levels of dermatan and heparan sulfate derived disaccharides in these DBS were compared with levels in DBS of newborn MPS I and MPS III heterozygotes and controls. RESULTS The levels of dermatan and heparan sulfate derived disaccharides were clearly elevated in all newborn DBS of MPS I, II and III patients when compared to controls. In contrast, DBS of MPS I and III heterozygotes showed similar disaccharide levels when compared to control DBS. CONCLUSIONS Our study demonstrates that measurement of heparan and dermatan sulfate derived disaccharides in DBS may be suitable for NBS for MPS I, II and MPS III. We hypothesize that this same approach will also detect MPS VI, and VII patients, as heparan sulfate and/or dermatan sulfate is also the primary storage products in these disorders.
Collapse
Affiliation(s)
- Jessica de Ruijter
- Department of Pediatrics and Amsterdam Lysosome Centre Sphinx, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wolfe BJ, Ghomashchi F, Kim T, Abam CA, Sadilek M, Jack R, Thompson JN, Scott CR, Gelb MH, Turecek F. New substrates and enzyme assays for the detection of mucopolysaccharidosis III (Sanfilippo Syndrome) types A, B, C, and D by tandem mass spectrometry. Bioconjug Chem 2012; 23:557-64. [PMID: 22372747 DOI: 10.1021/bc200609x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The clinical phenotype of Sanfilippo Syndrome is caused by one of four enzyme deficiencies that are associated with a defect in mucopolysaccharide metabolism. The four subtypes (A, B, C, and D) are each caused by an enzyme deficiency involved in the degradation of heparan sulfate. We have developed a highly efficient synthesis of the substrates and internal standards required for the enzymatic assay of each of the four enzymes. The synthesis of the substrates involves chemical modification of a common intermediate. The substrates and internal standards allow the measurement of the enzymes relevant to heparan N-sulfatase (type A); N-acetyl-α-glucosaminidase (type B); acetyl-CoA:α-glucosamide N-acetyltransferase (type C); and N-acetylglucosamine 6-sulfatase (type D). The internal standards are similar to the substrates and allow for the accurate quantification of the enzyme assays using tandem mass spectrometry. The synthetic substrates incorporate a coumarin moiety and can also be used in fluorometric enzyme assays. We confirm that all four substrates can detect the appropriate Sanfilippo Syndrome in fibroblast lysates, and the measured enzyme activities are distinctly lower by a factor of 10 when compared to fibroblast lysates from unaffected persons.
Collapse
Affiliation(s)
- Brian J Wolfe
- Department of Chemistry, Bagley Hall, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cai T, Zhang L, Wang H, Zhang J, Wang R, Zhang Y, Guo Y. Dual enzyme activities assay by quantitative electrospray ionization quadrupole-time-of-flight mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:521-530. [PMID: 23654197 DOI: 10.1255/ejms.1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A practical and rapid method based on electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-ToF MS) was developed for detecting activities of both acetylcholinesterase IAChEI and glutathione S-transferase (GST). The simultaneous study of these two enzyme activities is significant for studying human bio-functions, especially for those who take in toxic compounds and have a risk of disease. Here, the enzyme activities were represented by the conversion of enzymatic substrates and determined by quantitatively analyzing enzymatic substrates. Different internal standards were used to quantify each enzymatic substrate and the good linearity of calibration curves demonstrated the feasibility of the internal standards. The Michaelis-Menten constants (Km) of both GST and AChE were measured by this method and were consistent with values previously reported. Furthermore, we applied this approach to detect GST and AChE activities of whole bloods from four deceased and healthy people. The variation in enzyme activity was in accord with information from gas chromatography mass spectrometry [GC/MS). The screening of AChE and GST provided reliable results and strong forensic evidence. This method offers an alternative choice for detecting enzyme activities and is anticipated to have wide applications in pharmaceutical research and prevention in toxic compounds.
Collapse
Affiliation(s)
- Tingting Cai
- Shanghai Mass Spectrometry Center, Shanghai institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Reuser AJ, Verheijen FW, Bali D, van Diggelen OP, Germain DP, Hwu WL, Lukacs Z, Mühl A, Olivova P, Piraud M, Wuyts B, Zhang K, Keutzer J. The use of dried blood spot samples in the diagnosis of lysosomal storage disorders--current status and perspectives. Mol Genet Metab 2011; 104:144-8. [PMID: 21831684 DOI: 10.1016/j.ymgme.2011.07.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 12/22/2022]
Abstract
Dried blood spot (DBS) methods are currently available for identification of a range of lysosomal storage disorders (LSDs). These disorders are generally characterized by a deficiency of activity of a lysosomal enzyme and by a broad spectrum of phenotypes. Diagnosis of LSD patients is often delayed, which is of particular concern as therapeutic outcomes (e.g. enzyme replacement therapy) are generally more favorable in early disease stages. Experts in the field of LSDs diagnostics and screening programs convened and reviewed experiences with the use of DBS methods, and discuss the diagnostic challenges, possible applications and quality programs in this paper. Given the easy sampling and shipping and stability of samples, DBS has evident advantages over other laboratory methods and can be particularly helpful in the early identification of affected LSD patients through neonatal screening, high-risk population screening or family screening.
Collapse
Affiliation(s)
- Arnold J Reuser
- Dept. of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Functional proteomics: application of mass spectrometry to the study of enzymology in complex mixtures. Anal Bioanal Chem 2011; 402:625-45. [PMID: 21769551 DOI: 10.1007/s00216-011-5236-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/19/2022]
Abstract
This review covers recent developments in mass spectrometry-based applications dealing with functional proteomics with special emphasis on enzymology. The introduction of mass spectrometry into this research field has led to an enormous increase in knowledge in recent years. A major challenge is the identification of "biologically active substances" in complex mixtures. These biologically active substances are, on the one hand, potential regulators of enzymes. Elucidation of function and identity of those regulators may be accomplished by different strategies, which are discussed in this review. The most promising approach thereby seems to be the one-step procedure, because it enables identification of the functionality and identity of biologically active substances in parallel and thus avoids misinterpretation. On the other hand, besides the detection of regulators, the identification of endogenous substrates for known enzymes is an emerging research field, but in this case studies are quite rare. Moreover, the term biologically active substances may also encompass proteins with diverse biological functions. Elucidation of the functionality of those-so far unknown-proteins in complex mixtures is another branch of functional proteomics and those investigations will also be discussed in this review.
Collapse
|
14
|
Zhou H, Fernhoff P, Vogt RF. Newborn bloodspot screening for lysosomal storage disorders. J Pediatr 2011; 159:7-13.e1. [PMID: 21492868 DOI: 10.1016/j.jpeds.2011.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/10/2010] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Hui Zhou
- Newborn Screening Translation Research Initiative, National Foundation for the Centers for Disease Control and Prevention, Inc, Atlanta, GA 30341, USA
| | | | | |
Collapse
|
15
|
Nakamura K, Hattori K, Endo F. Newborn screening for lysosomal storage disorders. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:63-71. [DOI: 10.1002/ajmg.c.30291] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Duffey TA, Sadilek M, Scott CR, Turecek F, Gelb MH. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Anal Chem 2010; 82:9587-91. [PMID: 20961069 PMCID: PMC2980560 DOI: 10.1021/ac102090v] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new assay of N-acetylgalactosamine-4-sulfatase (aryl sulfatase B) activity in dried blood spots (DBS) for the early detection of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome) in newborn screening. The assay uses a synthetic substrate consisting of N-acetylgalactosamine-4-sulfate moiety glycosidically linked to a hydrophobic residue and furnished with a tert-butyloxycarbamido group as a marker for specific mass spectrometric fragmentation. Incubation with aryl sulfatase B present in DBS converts the substrate to a desulfated product which is detected by electrospray tandem mass spectrometry and quantified using a homologous internal standard. Assay and workup procedures were optimized to be compatible with the work flow in newborn screening laboratories. Analysis of DBS from human newborns showed clear distinction of aryl sulfatase B activity from 89 healthy individuals where it ranged between 1.4 and 16.9 μmol/(h L of blood), with an average activity of 7.4 μmol/(h L of blood), and an MPS-VI patient that had an activity of 0.12 μmol/(h L of blood). Results are also reported for the aryl sulfatase B assay in DBS from groups of normal felines and felines affected with MPS-VI.
Collapse
Affiliation(s)
- Trisha A. Duffey
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington
| | - C. Ronald Scott
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Frantisek Turecek
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Shushan B. A review of clinical diagnostic applications of liquid chromatography-tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:930-944. [PMID: 20949635 DOI: 10.1002/mas.20295] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) technology is emerging as a complementary method to traditional methodology used for clinical applications. Enhanced specificity and high-throughput capabilities are providing significant benefits to clinical diagnostic laboratories conducting routine analyses. This technology is expected to expand rapidly as scientists focus on more complicated challenges that can be solved efficiently by adding LC/MS/MS to their arsenal of techniques.
Collapse
Affiliation(s)
- Bori Shushan
- Clinical Mass Spec Consultants, Toronto, ON, Canada, M4W 2W6.
| |
Collapse
|
18
|
Abstract
Abstract
Background: Newborn screening is a state-based public health program established as a means for the early detection and treatment of certain medical conditions to minimize developmental disability and mortality. The program was initiated more than 40 years ago to detect and prevent phenylketonuria. Recent technological advances have expanded the scope of newborn screening to include more than 30 inborn errors of metabolism. Consideration is now being given to inclusion of screening for lysosomal storage disorders (LSDs).
Content: Some lysosomal storage disorders (LSDs) express early in infancy or childhood and are treatable. Initiation of treatment in presymptomatic patients or in syptomatic patients before important symptoms are present may improve the long-term outcome. Therefore, early diagnosis is critical. Based on the availability of therapy and development of a screening method, 6 of the more than 40 known LSDs are candidates for newborn screening in the US: Gaucher disease, Pompe disease, Fabry disease, Niemann-Pick disease, mucopolysaccharidosis I, and Krabbe disease. This report reviews the history of newborn screening, the technology that has allowed for expanded screening during the last decade, LSDs and their treatment, and the evolving methods that might allow additional expansion of newborn screening to include certain LSDs.
Summary: Recent and evolving technological advances may be implemented for newborn screening for LSDs. This screening will identify presymptomatic newborns, allowing for early treatment and prevention or limitation of morbidity otherwise associated with these inherited rare diseases.
Collapse
Affiliation(s)
| | - Harvey Levy
- Children’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Wang Y, Zagorevski DV, Stenken JA. In situ and multisubstrate detection of elastase enzymatic activity external to microdialysis sampling probes using LC-ESI-MS. Anal Chem 2008; 80:2050-7. [PMID: 18278883 PMCID: PMC4717840 DOI: 10.1021/ac702047w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular proteases play significant roles in mammalian development and disease. Enzymatic activity external to a microdialysis sampling probe can be determined by infusing judicious choices of substrates followed by collecting and measuring the products. Porcine pancreatic elastase was used as a model enzyme with two substrates possessing different cleavage sites, N-methoxysuccinyl-Ala-Ala-Pro-Val-7-amino-4-methylcoumarin (FL-substrate) and N-succinyl-Ala-Ala-Ala-p-nitroanilide (UV-substrate). These substrates were infused through the microdialysis sampling probe to a solution containing elastase. The resulting four products and the remaining two substrates were collected into the dialysate and were subsequently analyzed off-line using liquid chromatography-mass spectrometry (LC-MS) with electrospray ionization (ESI). All analytes were identified using extracted ion chromatograms of m/z 628 (FL-substrate), m/z 452 (UV-substrate), m/z 471 (N-methoxysuccinyl-Ala-Ala-Pro-Val, FL-NTP), m/z 332 (N-succinyl-Ala-Ala-Ala, UV-NTP), m/z 176 (7-amino-4-methylcoumarin, AMC), and m/z 139 (p-nitroaniline, pNA). FL-NTP and FL-substrate exhibited 10-fold higher ion production as compared to AMC with equimolar standards. Microdialysis sampling combined with LC-ESI-MS detection allowed for in situ determination of the enzymatic activity of a protease external to the microdialysis probe when using different peptide-based substrates.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
20
|
Turecek F, Scott CR, Gelb MH. Tandem mass spectrometry in the detection of inborn errors of metabolism for newborn screening. Methods Mol Biol 2007; 359:143-57. [PMID: 17484116 DOI: 10.1007/978-1-59745-255-7_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tandem mass spectrometry has been used for determinations of enzyme activities in biological samples. Activities in rehydrated dried blood spots of lysosomal enzymes glucocerebrosidase, acid sphingomyelinase, galactocerebroside beta-galactosidase, acid-alpha-galactosidase, acid alpha-glucosidase, and alpha-D-iduronidase are measured simultaneously by multiple-reaction monitoring of ion dissociations from cations produced by electrospray ionization of enzymatic products. Simple and inexpensive assay protocols are described that are readily adopted for handling multiple samples in 96-well microtiter plates, employing simple separation steps, and using less than or equal to 3 micromol of synthetic or commercially available substrates, and less than 25 nmol of internal standards per analysis. The assays have the potential of being used for large-scale screening of newborns for the detection of inborn errors of metabolism.
Collapse
|
21
|
Gelb MH, Turecek F, Scott CR, Chamoles NA. Direct multiplex assay of enzymes in dried blood spots by tandem mass spectrometry for the newborn screening of lysosomal storage disorders. J Inherit Metab Dis 2006; 29:397-404. [PMID: 16763908 PMCID: PMC2488386 DOI: 10.1007/s10545-006-0265-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 01/16/2006] [Indexed: 11/26/2022]
Abstract
Tandem mass spectrometry is currently used in newborn screening programmes to quantify the level of amino acids and acylcarnitines in dried blood spots for detection of metabolites associated with treatable diseases. We have developed assays for lysosomal enzymes in rehydrated dried blood spots in which a set of substrates is added and the set of corresponding enzymatic products are quantified using tandem mass spectrometry with the aid of mass-differentiated internal standards. We have developed a multiplex assay of the set of enzymes that, when deficient, cause the lysosomal storage disorders Fabry, Gaucher, Hurler, Krabbe, Niemann-Pick A/B and Pompe diseases. These diseases were selected because treatments are now available or expected to emerge shortly. The discovery that acarbose is a selective inhibitor of maltase glucoamylase allows the Pompe disease enzyme, acid alpha-glucosidase, to be selectively assayed in white blood cells and dried blood spots. When tested with dried blood spots from 40 unaffected individuals and 10-12 individuals with the lysosomal storage disorder, the tandem mass spectrometry assay led to the correct identification of the affected individuals with 100% sensitivity. Many of the reagents needed for the new assays are commercially available, and those that are not are being prepared under Good Manufacturing Procedures for approval by the FDA. Our newborn screening assay for Krabbe disease is currently being put in place at the Wadsworth Center in New York State for the analysis of approximately 1000 dried blood spots per day. Summary We have developed tandem mass spectrometry for the direct assay of lysosomal enzymes in rehydrated dried blood spots that can be implemented for newborn screening of lysosomal storage disorders. Several enzymes can be analysed by a single method (multiplex analysis) and in a high-throughput manner appropriate for newborn screening laboratories.
Collapse
Affiliation(s)
- Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
22
|
Lee MR, Jung DW, Williams D, Shin I. Efficient Solid-Phase Synthesis of Trifunctional Probes and Their Application to the Detection of Carbohydrate-Binding Proteins. Org Lett 2005; 7:5477-80. [PMID: 16288535 DOI: 10.1021/ol0523188] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] An efficient solid-phase synthesis of trifunctional probes containing a photoreactive group, a reporter tag, and a carbohydrate ligand was developed. Labeling studies with these probes demonstrate that specific lectins can be labeled with high sensitivity and selectivity. This technique serves as a powerful tool for the rapid detection and profiling of lectins.
Collapse
Affiliation(s)
- Myung-ryul Lee
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
23
|
Liesener A, Karst U. Turbulent flow chromatography for the reduction of matrix effects in electrospray ionization mass spectrometry-based enzyme assays. J Sep Sci 2005; 28:1658-65. [PMID: 16224959 DOI: 10.1002/jssc.200500090] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Turbulent flow chromatography (TFC) is presented as a means to reduce ion suppression in simultaneous multianalyte mass spectrometric bioassays. In this study, the effects of enzymes present in the sample on the signal response of five analytes were simultaneously investigated over a protein content range from 0 to 38 microg/mL by means of direct flow injection MS. As model enzymes, trypsin, thrombin, and chymotrypsin were selected. Without employment of TFC, both signal suppression and signal enhancement, depending on the nature of the analyte and the amount of matrix in the sample, were observed. Generally, these matrix effects were found to be intolerably large. The deviation from the mean signal response as a measure of deterioration was found to be between 14 and 112%. The addition of an excess of methanol as means of sample clean-up was investigated and found not to be sufficient. By employing TFC for online sample preparation, it was possible to reduce the matrix effecTs to a minimum for all model systems investigated. In case of trypsin the distortion could be lowered from 41.9 to 2.6%. Thus, TFC is considered to be a highly valuable tool for improving the sensitivity and reliability in the monitoring of enzymatic conversions by means of MS.
Collapse
Affiliation(s)
- André Liesener
- Chemical Analysis Group and MESA Research Institute, University of Twente, Enschede, The Netherlands
| | | |
Collapse
|
24
|
Norris AJ, Whitelegge JP, Yaghoubian A, Alattia JR, Privé GG, Toyokuni T, Sun H, Brooks MN, Panza L, Matto P, Compostella F, Remmel N, Klingenstein R, Sandhoff K, Fluharty C, Fluharty A, Faull KF. A novel mass spectrometric assay for the cerebroside sulfate activator protein (saposin B) and arylsulfatase A. J Lipid Res 2005; 46:2254-64. [PMID: 16061947 DOI: 10.1194/jlr.m500188-jlr200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mass spectrometric method is described for monitoring cerebrosides in the presence of excess concentrations of alkali metal salts. This method has been adapted for use in the assay of arylsulfatase A (ASA) and the cerebroside sulfate activator protein (CSAct or saposin B). Detection of the neutral glycosphingolipid cerebroside product was achieved via enhancement of ionization efficiency in the presence of lithium ions. Assay samples were extracted into the chloroform phase as for the existing assays, dried, and diluted in methanol-chloroform-containing lithium chloride. Samples were analyzed by electrospray ionization mass spectrometry with a triple quadrupole mass spectrometer in the multiple reaction monitoring tandem mass spectrometric mode. The assay has been used to demonstrate several previously unknown or ambiguous aspects of the coupled ASA/CSAct reaction, including an absolute in vitro preference for CSAct over the other saposins (A, C, and D) and a preference for the non-hydroxylated species of the sulfatide substrate over the corresponding hydroxylated species. The modified assay for the coupled ASA/CSAct reaction could find applicability in settings in which the assay could not be performed previously because of the need for radiolabeled substrate, which is now not required.
Collapse
Affiliation(s)
- Andrew J Norris
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry, and Neuropsychiatric Institute, University of California Los Angeles, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liesener A, Karst U. Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal Bioanal Chem 2005; 382:1451-64. [PMID: 16007447 DOI: 10.1007/s00216-005-3305-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
This review highlights recent advances in the application of electrospray ionisation and matrix-assisted laser desorption/ionisation mass spectrometry (MS) to study enzymatic reactions. Several assay schemes for different fields of application are presented. The employment of MS as a means of detection in pre-steady-state kinetic studies by rapid-mixing direct analysis and rapid-mixing quench flow techniques is discussed. Several steady-state kinetic studies of a broad range of different enzymatic systems are presented as well as enzyme inhibition studies for various target enzymes. As a promising new development multiplex assays, which monitor the conversion of several substrates simultaneously in one experiment, are described. This assay type has been used for competition studies, enzymatic activity screenings and for diagnostic purposes in clinical chemistry. Generally, it can be concluded that mass spectrometry offers an intriguing alternative as detection methodology in enzymatic bioassays. Its applicability for the monitoring the conversion of naturally occurring substrates and its overall versatility make MS an especially promising tool for the study of enzyme-catalysed processes.
Collapse
Affiliation(s)
- André Liesener
- Chemical Analysis Group and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500, AE Enschede, The Netherlands
| | | |
Collapse
|
26
|
Zhai H, Dorrestein PC, Chatterjee A, Begley TP, McLafferty FW. Simultaneous kinetic characterization of multiple protein forms by top down mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1052-9. [PMID: 15914018 DOI: 10.1016/j.jasms.2005.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 02/24/2005] [Accepted: 02/25/2005] [Indexed: 05/02/2023]
Abstract
Top down mass spectrometry, using a Fourier transform instrument, has unique capabilities for biomolecule kinetic studies, in that the concentration of large molecules in a reaction mixture can be monitored simultaneously from its mass spectrum produced by electrospray ionization. This is demonstrated with enzyme modifications occurring in the biosynthesis of the thiazole moiety of thiamin phosphate. The formation rate of ThiS-thiocarboxylate from ThiS was determined from the relative abundance of the corresponding m/z 10162 and 10146 isotopic peak clusters for all the observable charge states in the mass spectra measured at different reaction times. Even without measuring standard ionization efficiencies, the rate and precision of 0.018 +/- 0.004 min(-1) agree well with the 0.027 +/- 0.003 min(-1) obtained with a radiochemical assay, which requires a separate derivatization step. To illustrate the simultaneous characterization of the reaction kinetics of a native enzyme and its mutant, the imine formation rate of ThiG and its substrate DXP was compared between the native protein (M(r) = 26803.9) and its E98A (M(r) = 26745.9) or D182A (M(r) = 26759.9) mutant in the same reaction mixture. The kinetic data show clearly that neither the E98 nor the D182 residues participate in the imine formation. The high resolution and MS/MS capabilities of FTMS should make possible the extension of this kinetics approach to far more complicated systems, such as simultaneous monitoring of 24 native, intermediate, and reduced forms in the reductive unfolding of a mixture of ribonuclease A and the five isoforms of ribonuclease B. Stable intermediates with different SS bonding (same molecular weight) can be differentiated by MS/MS, while molecular ions differing by only 2 Da are distinguished clearly by synthesizing isotopically depleted proteins.
Collapse
Affiliation(s)
- Huili Zhai
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | | | |
Collapse
|
27
|
Hempen C, Liesener A, Karst U. Fluorescence and mass spectrometric detection schemes for simultaneous enzymatic conversions: Method development and comparison. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2005.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Abstract
Carbohydrate metabolism is central to the growth and development of organisms. Thousands of genes that are believed to code for proteins that build and remodel saccharides have been uncovered by genome sequencing projects, thereby necessitating higher-throughput methods to delineate the chemical and biological functions of all these proteins. Recent methods discussed in this review have begun to address this problem by the design of new activity-based probes and mass-differentiated carbohydrate libraries. In addition, a comparative view of carbohydrate-related enzymes from all three branches of life has led to the discovery of unusual enzymes to simplify the synthesis of carbohydrates such as the sugar nucleotides required by glycosyltransferases.
Collapse
Affiliation(s)
- Nicola L Pohl
- Department of Chemistry and the Plant Sciences Institute, Iowa State University, Ames, IA 50011-3111, USA.
| |
Collapse
|
29
|
|
30
|
Abstract
The lysosomal storage disorder (LSD) mucopolysaccharidosis type I (MPS I, McKusick 25280, Hurler syndrome, Hurler-Scheie syndrome, Scheie syndrome) is caused by a deficiency in the lysosomal enzyme, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients can present within a diverse clinical spectrum, ranging from classical Hurler syndrome to attenuated Scheie syndrome. Laronidase (Aldurazyme) enzyme replacement therapy has been developed as a treatment strategy for MPS I patients and has been approved for clinical practice. Here we review the pre-clinical studies and clinical trials that have been used to demonstrate that intravenous laronidase therapy is well tolerated and effective for treating MPS I patients who do not have neuronal pathology. Current challenges for a viable treatment strategy for all MPS I patients include development of an early screening protocol that identifies patients before the onset of irreversible pathology, methods to predict disease severity, appropriate treatment for neuropathology, and an effective patient monitoring regimen.
Collapse
Affiliation(s)
- Ed J Wraith
- Willink Biochemical Genetics Unit, Royal Manchester Children's Hospital, Manchester, UK
| | | | | | | | | |
Collapse
|
31
|
Fabris D. Mass spectrometric approaches for the investigation of dynamic processes in condensed phase. MASS SPECTROMETRY REVIEWS 2005; 24:30-54. [PMID: 15389863 DOI: 10.1002/mas.20007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mass spectrometry (MS) offers many advantages over other established spectroscopic techniques employed for the investigation of processes in condensed phase. The sensitivity, specificity, and speed afforded by MS-based methods enable to obtain very valuable insights into the mechanism of complex dynamic processes. Off-line methods rely on quenching to halt the progress of the reaction of interest and allow for the implementation of a broad range of analytical procedures for sample fractionation, isolation, or desalting. On the contrary, on-line methods are designed to carry out the real-time monitoring of dynamic processes through a continuous uninterrupted analysis of reaction mixtures, with the only caveat that the sample solutions be directly amenable to the available ionization technique. The utilization of rapid mixing devices in direct connection with a mass spectrometer or included in off-line schemes provides access to the initial moments of a reaction, which can offer very important information about the reaction mechanism. This report summarizes the different off- and on-line strategies developed to study chemical and biochemical reactions in solution and obtain kinetic/mechanistic information. The merits of the various experimental designs, the characteristics of the different instrumental setups, and the factors affecting time resolution are discussed with the aid of specific examples, which highlight the contributions of MS to the different facets of the investigation of dynamic processes in condensed phase.
Collapse
Affiliation(s)
- Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA.
| |
Collapse
|
32
|
Liesener A, Perchuc AM, Schöni R, Wilmer M, Karst U. Screening for proteolytic activities in snake venom by means of a multiplexing electrospray ionization mass spectrometry assay scheme. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2923-8. [PMID: 16175652 DOI: 10.1002/rcm.2136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A multiplexed mass spectrometry based assay scheme for the simultaneous determination of five different substrate/product pairs was developed as a tool for screening of proteolytic activities in snake venom fractions from Bothrops moojeni. The assay scheme was employed in the functional characterization of eight model proteases. Time-resolved reaction profiles were generated and the relative reaction progress at each time point was determined. These were used to semi-quantitatively sort the catalytic activities of each enzyme towards the respective substrates into six classes. The resulting activity pattern served as an activity fingerprint for each enzyme. The multiplex assay scheme was then applied to a screening for proteolytic activities in fractions of the pre-separated venom from B. moojeni. Activity patterns of each fraction were generated and used to sort the fractions into three different categories of activity. By comparison of the fingerprint activity patterns of the venom fractions and the model enzymes, a compound with proteolytic properties similar to activated protein C was detected.
Collapse
Affiliation(s)
- André Liesener
- University of Twente, Chemical Analysis Group and MESA+ Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Liesener A, Karst U. Assessing protease activity pattern by means of multiple substrate ESI-MS assays. Analyst 2005; 130:850-4. [PMID: 15912232 DOI: 10.1039/b502008e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a simultaneous multiple substrate enzymatic assay based on electrospray ionization mass spectrometry (ESI-MS) detection is described. This multiplexing assay scheme was employed in a parallel proteolytic enzyme activity screening. As model systems, the respective activities of trypsin, thrombin, chymotrypsin, bromelain, ficin and elastase towards seven different substrates were assessed. The resulting activity patterns were evaluated semi-quantitatively ranking the enzymatic activities in five classes of activity (very high, high, medium, low and no activity) with respect to the individual substrates. The validity of the MS-based multiplexing assay scheme was proved by comparison with the results obtained from single substrate assays detected by means of UV/vis absorption at 405 nm, showing good agreement of the resulting activity patterns and classifications.
Collapse
Affiliation(s)
- André Liesener
- University of Twente, Department of Chemical Analysis, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | | |
Collapse
|
34
|
Krabbe JG, Lingeman H, Niessen WMA, Irth H. Ligand-exchange detection of phosphorylated peptides using liquid chromatography electrospray mass spectrometry. Anal Chem 2004; 75:6853-60. [PMID: 14670045 DOI: 10.1021/ac0349476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is used to selectively detect analytes with a high affinity for metal ions. The detection method is based on the selective monitoring of a competing ligand at its specific m/z value that is released during the ligand-exchange reaction of a metal-ligand complex with analyte(s) eluting from a reversed-phase liquid chromatography column. The ligand-exchange reaction proceeds in a postcolumn reaction detection system placed prior to the inlet of the electrospray MS interface. The feasibility of metal affinity detection by ESI-MS is demonstrated using phosphorylated peptides and iron(III)methylcalcein blue as reactant, as a model system. Methylcalcein blue (MCB) released upon interaction with phosphorylated peptides is detected at m/z 278. The ligand-exchange detection is coupled to a C8 reversed-phase column to separate several nonphosphorylated enkephalins and the phosphorylated peptides pp60 c-src (P) and M2170. Detection limits of 2 microM were obtained for pp60 c-src (P) and M2170. The linearity of the detection method is tested in the range of 2-80 micromol/L phosphorylated compounds (r(2) = 0.9996), and a relative standard deviation of less than 8% (n = 3) for all MCB responses of the different concentrations of phosphorylated compounds was obtained. The presented method showed specificity for phosphorylated peptides and may prove a useful tool for studying other ligand-exchange reactions and metal-protein interactions.
Collapse
Affiliation(s)
- J G Krabbe
- Faculty of Sciences, Division of Chemistry, Department of Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
|
36
|
Li Y, Scott CR, Chamoles NA, Ghavami A, Pinto BM, Turecek F, Gelb MH. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem 2004; 50:1785-96. [PMID: 15292070 PMCID: PMC3428798 DOI: 10.1373/clinchem.2004.035907] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Newborn screening for deficiency in the lysosomal enzymes that cause Fabry, Gaucher, Krabbe, Niemann-Pick A/B, and Pompe diseases is warranted because treatment for these syndromes is now available or anticipated in the near feature. We describe a multiplex screening method for all five lysosomal enzymes that uses newborn-screening cards containing dried blood spots as the enzyme source. METHODS We used a cassette of substrates and internal standards to directly quantify the enzymatic activities, and tandem mass spectrometry for enzymatic product detection. Rehydrated dried blood spots were incubated with the enzyme substrates. We used liquid-liquid extraction followed by solid-phase extraction with silica gel to remove buffer components. Acarbose served as inhibitor of an interfering acid alpha-glucosidase present in neutrophils, which allowed the lysosomal enzyme implicated in Pompe disease to be selectively analyzed. RESULTS We analyzed dried blood spots from 5 patients with Gaucher, 5 with Niemann-Pick A/B, 11 with Pompe, 5 with Fabry, and 12 with Krabbe disease, and in all cases the enzyme activities were below the minimum activities measured in a collection of heterozygous carriers and healthy noncarrier individuals. The enzyme activities measured in 5-9 heterozygous carriers were approximately one-half those measured with 15-32 healthy individuals, but there was partial overlap of each condition between the data sets for carriers and healthy individuals. CONCLUSION For all five diseases, the affected individuals were detected. The assay can be readily automated, and the anticipated reagent and supply costs are well within the budget limits of newborn-screening centers.
Collapse
Affiliation(s)
- Yijun Li
- Department of Chemistry, University of Washington, Seattle, WA
| | - C. Ronald Scott
- Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Ahmad Ghavami
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - B. Mario Pinto
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, WA
- Department of Biochemistry, University of Washington, Seattle, WA
- Address correspondence to this author at: Department of Chemistry, Campus Box 351700, University of Washington, Seattle, WA 98195. Fax 206-685-8665;
| |
Collapse
|
37
|
Patel A, Perrin DM. Efficient Synthesis of Isotopically Pure Isotope-Coded Affinity Tagging Reagents. Bioconjug Chem 2003; 15:224-30. [PMID: 14733602 DOI: 10.1021/bc0300293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis of an isotopically pure d8-ICAT linker, N-[(5,5,6,6,8,8,9,9-2H)-13-biotinamido-4,7,10-trioxatridecanyl] tert-butyloxy carbamide (12), has been achieved in seven steps with an overall yield of 33%. Conjugation of exchange-inert d4-starting materials by classic etherification reaction yielded a pure synthon, carrying eight deuteriums that remained exchange-inert throughout subsequent reactions. This modified synthesis constitutes a significant improvement to the reported syntheses of "heavy" ICAT reagent in terms of expense, yield, and isotopic retention. This synthesis is easily adapted to incorporate additional deuterium atoms and is equally applicable for incorporation of either 13C and/or 18O. In addition, this synthesis allows for the introduction of different orthogonal functionalities and provides for a high yielding series of differentially encoded ICAT tags.
Collapse
Affiliation(s)
- Anupama Patel
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, B. C. V6T 1Z1 Canada, and PENCE Inc. (Protein Engineering Network of Centers of Excellence), 750 Heritage Medical Research Center, Edmonton, Alberta T6G-2S2 Canada
| | | |
Collapse
|
38
|
Röschinger W, Olgemöller B, Fingerhut R, Liebl B, Roscher AA. Advances in analytical mass spectrometry to improve screening for inherited metabolic diseases. Eur J Pediatr 2003; 162 Suppl 1:S67-76. [PMID: 14618396 DOI: 10.1007/s00431-003-1356-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED Gas chromatography/mass spectrometry became available more than 30 years ago and has subsequently profoundly contributed not only in the identification of a wide range of inborn errors but also as a key tool for clinical diagnostic screening of genetic metabolic disease. Due to extraordinary advances in liquid chromatography and mass spectrometry (MS) developed in the last decade, the utilisation of MS and the potential number of applications for the purpose of metabolic screening is currently undergoing considerable expansion. CONCLUSIONS This overview aims to describe only current new developments in clinically most relevant applications, in particular with focus on low molecular weight compounds.
Collapse
Affiliation(s)
- Wulf Röschinger
- Research Center, Department of Biochemical Genetics and Molecular Biology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstrasse 4, 80337, Munich, Germany.
| | | | | | | | | |
Collapse
|
39
|
Li Y, Ogata Y, Freeze HH, Scott CR, Turecek F, Gelb MH. Affinity capture and elution/electrospray ionization mass spectrometry assay of phosphomannomutase and phosphomannose isomerase for the multiplex analysis of congenital disorders of glycosylation types Ia and Ib. Anal Chem 2003; 75:42-8. [PMID: 12530817 DOI: 10.1021/ac0205053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new application of affinity capture-elution electrospray mass spectrometry (ACESI-MS) to assay the enzymes phosphomannomutase (PMM) and phosphomannose isomerase (PMI), which when deficient cause congenital disorders of glycosylation CDG-type Ia and type Ib, respectively. The novel feature of this mass-spectrometry-based assay is that it allows one to distinguish and quantify enzymatic products that are isomeric with their substrates that are present simultaneously in complex mixtures, such as cultured human cell homogenates. This is achieved by coupled assays in which the PMM and PMI primary products are in vitro subjected to another enzymatic reaction with yeast transketolase that changes the mass of the products to be detected by mass spectrometry. The affinity purification procedure is fully automated, and the mass spectrometric analysis is multiplexed in a fashion that is suitable for high-throughput applications.
Collapse
Affiliation(s)
- Yijun Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ogata Y, Scampavia L, Růzicka J, Scott CR, Gelb MH, Turecek F. Automated affinity capture-release of biotin-containing conjugates using a lab-on-valve apparatus coupled to UV/visible and electrospray ionization mass spectrometry. Anal Chem 2002; 74:4702-8. [PMID: 12349973 DOI: 10.1021/ac020039h] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new method for automated affinity capture and release of biotin-containing conjugates on immobilized streptavidin using a lab-on-valve (LOV) bead injection apparatus. The apparatus is also coupled to UV/visible and electrospray ionization mass spectrometry (ESI-MS) for monitoring the captured and released biotin-containing conjugates. Dissociation rate constants for release from streptavidin of two chromophore-tagged biotin conjugates were measured by UV/visible spectrometry and the dissociation was simultaneously monitored by ESI-MS. The LOV-ESI-MS instrument was also used for repetitive assays of lysosomal beta-galactosidase in human cell homogenates. Fast analysis in 4.5 min/full cycle and robust operation in 60 repetitive analyses are demonstrated that are promising for transfer of the LOV-ESI-MS technology into clinical practice.
Collapse
Affiliation(s)
- Yuko Ogata
- Department of Chemistry, University of Washington, Seattle 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
41
|
Basile F, Ferrer I, Furlong ET, Voorhees KJ. Simultaneous multiple substrate tag detection with ESI-ion trap MS for in vivo bacterial enzyme activity profiling. Anal Chem 2002; 74:4290-3. [PMID: 12199605 DOI: 10.1021/ac020249u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bacterial identification method in which multiple enzyme activities are measured simultaneously and in vivo with electrospray ionization-mass spectrometry (ESI-MS) is described. Whole-cell bacteria are immobilized onto a filter support and incubated with a mixture of substrates. Each substrate is chosen to measure a specific enzyme activity of a targeted bacterium and to produce a tag of unique molecular weight. After a predetermined incubation time, the solution is filtered, and the supernatant consisting of a mixture of released tags and unhydrolyzed substrates is directly analyzed, without chromatographic separation, by ESI-MS. Bacteria remain viable on the filter for further analyses. The method was tested by measuring the aminopeptidase activity of the bacteria Escherichia coli, Bacillus subtilis, Bacillus cereus, and Pseudomonas aeruginosa. The resulting aminopeptidase enzyme profiles allowed the differentiation between the four bacteria tested. The method is rapid, since a multiplex advantage is realized when assaying for multiple enzymes, and it is amenable to automation via a flow injection analysis setup.
Collapse
|
42
|
Turecek F. Mass spectrometry in coupling with affinity capture-release and isotope-coded affinity tags for quantitative protein analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:1-14. [PMID: 11813306 DOI: 10.1002/jms.275] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Affinity capture-release electrospray ionization mass spectrometry (ACESIMS) and isotope-coded affinity tags (ICAT) are two recently introduced techniques for the quantitation of protein activity and content with applications to clinical enzymology and functional proteomics, respectively. One common feature of these methods is that they use biotinylated tags that function as molecular handles for highly selective and reversible affinity capture of conjugates from complex biological mixtures such as cell homogenates and sub-cellular organelles. ACESIMS uses synthetic substrate conjugates specifically to target cellular enzymes that, when deficient, are the cause of genetic diseases. Multiplex determination of enzyme activities is used for the diagnosis of lysosomal storage diseases. The ICAT method relies on selective conjugation of cysteine thiol groups in proteins, followed by enzymatic digestion and quantitative analysis of peptide conjugates by mass spectrometry. Another common feature of the ACESIMS and ICAT approaches is that both use conjugates labeled with stable heavy isotopes as internal standards for quantitation. Selected applications of the ACESIMS and ICAT techniques are presented that include molecular-level diagnosis of genetic diseases in children and quantitative determination of protein expression in cells.
Collapse
Affiliation(s)
- Frantisek Turecek
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, USA.
| |
Collapse
|
43
|
Kelly MA, McLellan TJ, Rosner PJ. Strategic use of affinity-based mass spectrometry techniques in the drug discovery process. Anal Chem 2002; 74:1-9. [PMID: 11795774 DOI: 10.1021/ac010569y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in biomolecular mass spectrometry (Bio-MS) have made this technique an invaluable tool for analytical chemists and biochemists alike. The applicability of Bio-MS approaches in drug discovery now encompasses in vitro, cellular, and in vivo pharmacological and clinical applications in an unprecedented expansion of utility. As a result, the role of Bio-MS in pharmaceutical discovery continues to proliferate for both structural and functional characterization of biomolecules. From target characterization to lead optimization, affinity techniques have been used to purify, probe, and enrich analytes of interest. Affinity selection employed prior to MS analysis can "edit" out extraneous noise and enable the researcher to examine only what is important. These affinity-based methods can be used as an alternative strategy when classical biochemical techniques are insufficient in advancing difficult projects. We have applied various affinity techniques in conjunction with mass spectrometry throughout the drug discovery process. This perspective will describe affinity-based mass spectrometry methodologies and related concepts, illustrated with original results.
Collapse
Affiliation(s)
- Michele A Kelly
- Exploratory Medicinal Sciences, Pfizer Global R&D, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
44
|
Ge X, Sirich TL, Beyer MK, Desaire H, Leary JA. A strategy for the determination of enzyme kinetics using electrospray ionization with an ion trap mass spectrometer. Anal Chem 2001; 73:5078-82. [PMID: 11721902 DOI: 10.1021/ac0105890] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple and rapid means of enzyme kinetic analysis was achieved using electrospray ionization mass spectrometry and a one-point normalization factor. The model system used, glutathione S-transferase from porcine liver, is a two-substrate enzyme catalyzing the conjugation of glutathione with a variety of compounds containing an electrophilic center. An internal standard that is structurally similar to the product was added to the reaction quench solution, and a single-point normalization factor was used to determine the product concentration without the need of a calibration curve. Kinetic parameters, such as Km, Vmax and Ki (for thyroxine), obtained by electrospray mass spectrometry agreed with those obtained from traditional UV-vis spectroscopy, and competitive vs noncompetitive inhibition reactions could be delineated via mass spectrometry. These results suggest that our method can be applied to enzymatic processes in which spectrophotometric or spectrofluorometric assays are not feasible or when the relevant substrates do not incorporate chromophores or fluorophores. This new method is competitive with traditional UV assays in that it is facile and it involves very little analysis time.
Collapse
Affiliation(s)
- X Ge
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
45
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:976-987. [PMID: 11523099 DOI: 10.1002/jms.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
46
|
Gerber SA, Turecek F, Gelb MH. Design and synthesis of substrate and internal standard conjugates for profiling enzyme activity in the Sanfilippo syndrome by affinity chromatography/electrospray ionization mass spectrometry. Bioconjug Chem 2001; 12:603-15. [PMID: 11459466 DOI: 10.1021/bc010007l] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the design and synthesis of substrate and internal standard conjugates for application in profiling enzyme activity of the enzymes alpha-D-2-deoxy-2-N-sulfonamido-glucosamine sulfamidase, alpha-D-2-deoxy-2-N-acetyl-glucosamine hydrolase, acetyl-coenzymeA:alpha-D-2-deoxy-2-amino-glucosamine transferase, and alpha-D-2-deoxy-2-N-acetyl-glucosamine-6-sulfate sulfatase. Deficiency of any one of these enzymes results in a single clinical phenotype known as Sanfilippo syndrome. Such substrates have been proven effective in the confirmation of enzyme deficiency by a combination of affinity chromatography (AC) and electrospray ionization mass spectrometry (ESIMS), which forms the foundation for a new analytical technology (ACESIMS) of general interest and application to clinical and biomedical research.
Collapse
Affiliation(s)
- S A Gerber
- Departments of Chemistry and Biochemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | |
Collapse
|