1
|
Rapid In-Process Measurement of Live Virus Vaccine Potency Using Laser Force Cytology: Paving the Way for Rapid Vaccine Development. Vaccines (Basel) 2022; 10:vaccines10101589. [PMID: 36298454 PMCID: PMC9608199 DOI: 10.3390/vaccines10101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Vaccinations to prevent infectious diseases are given to target the body’s innate and adaptive immune systems. In most cases, the potency of a live virus vaccine (LVV) is the most critical measurement of efficacy, though in some cases the quantity of surface antigen on the virus is an equally critical quality attribute. Existing methods to measure the potency of viruses include plaque and TCID50 assays, both of which have very long lead times and cannot provide real time information on the quality of the vaccine during large-scale manufacturing. Here, we report the evaluation of LumaCyte’s Radiance Laser Force Cytology platform as a new way to measure the potency of LVVs in upstream biomanufacturing process in real time and compare this to traditional TCID50 potency. We also assess this new platform as a way to detect adventitious agents, which is a regulatory expectation for the release of commercial vaccines. In both applications, we report the ability to obtain expedited and relevant potency information with strong correlation to release potency methods. Together, our data propose the application of Laser Force Cytology as a valuable process analytical technology (PAT) for the timely measurement of critical quality attributes of LVVs.
Collapse
|
2
|
Hayes PR, Przybycien TM, Schneider JW. Viral adventitious agent detection using laser force cytology: Intrinsic cell property changes with infection and comparison to in vitro testing. Biotechnol Bioeng 2021; 119:134-144. [PMID: 34633076 DOI: 10.1002/bit.27957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 11/11/2022]
Abstract
Adventitious agent testing in biomanufacturing requires assays of broad detection capability to screen for as many infectious agents as possible. The current gold standard for general infectious adventitious virus screening is the in vitro assay in which test articles are cultured onto a panel of different cell lines and observed for cytopathic effect (CPE). However, this assay is inherently subjective due to the nature of visual observation of cell morphology and labor and time intensive, requiring highly trained personnel to identify CPE. Laser force cytology (LFC) is an alternative, automated analytical method that uses a combination of optical and fluidic forces along with imaging to objectively and quantitatively assess CPE in cell culture. Importantly, because LFC uses no labels or antibodies, the assay is appropriate for general adventitious agent testing. Using LFC, changes in cellular features associated with virally infected cells were identified using principal component analysis. Using these features of infected cells, the sensitivity and earliness of detection with LFC was directly compared with the in vitro assay for a diverse panel of viruses incubated with chinese hamster ovary (CHO), Vero, and Medical Research Council cell strain 5 (MRC-5) cells. LFC detected viral infection with a sensitivity equal to the in vitro assay on average, but in certain virus and cell combinations including mouse minute virus (MMV) and reovirus 3 in CHO cells, detection was 4 days earlier and for MMV, the limit of detection was 10-fold lower. Overall, these results demonstrate the ability of LFC to serve as a biopharmaceutical adventitious agent testing methodology with sensitivity equivalent to the in vitro assay, but in an objective and automated manner.
Collapse
Affiliation(s)
- Peter R Hayes
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Todd M Przybycien
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Lu Q, Barlow DE, Haridas D. Differential detection of immune cell activation by label-free radiation pressure force. Analyst 2021; 146:5150-5159. [PMID: 34286712 DOI: 10.1039/d1an01066b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Label-free radiation pressure force analysis using a microfluidic platform is applied to the differential detection of innate immune cell activation. Murine-derived peritoneal macrophages (IC-21) are used as a model system and the activation of IC-21 cells by lipopolysaccharide (LPS) and interferon gamma (IFN-γ) to M1 pro-inflammatory phenotype is confirmed by RNA gene sequencing and nitric oxide production. The mean cell size determined by radiation pressure force analysis increases slightly after the activation (4 to 6%) and the calculated percentage of population overlaps between the control and the activated group after 14 and 24 h stimulations are at 79% and 77%. Meanwhile the mean cell velocity decreases more significantly after the activation (14% to 15%) and the calculated percentage of population overlaps between the control and the activated group after 14 and 24 h stimulations are only at 14% and 13%. The results demonstrate that the majority of the activated cells acquire a lower velocity than the cells from the control group without changes in cell size. For comparison label-free flow cytometry analysis of living IC-21 cells under the same stimulation conditions are performed and the results show population shifts towards larger values in both forward scatter and side scatter, but the calculated percentage of population overlaps in all case are significant (70% to 83%). Cell images obtained during radiation pressure force analysis by a CCD camera, and by optical microscopy and atomic force microscopy (AFM) reveal correlations between the cell activation by LPS/IFN-γ, the increase in cell complexity and surface roughness, and enhanced back scattered light by the activated cells. The unique relationship predicted by Mie's theory between the radiation pressure force exerted on the cell and the angular distribution of the scattered light by the cell which is influenced by its size, complexity, and surface conditions, endows the cell velocity based measurement by radiation pressure force analysis with high sensitivity in differentiating immune cell activation.
Collapse
Affiliation(s)
- Qin Lu
- Naval Research Laboratory, Chemistry Division, 4555 Overlook Ave., S.W. Washington, D.C. 20375, USA.
| | - Daniel E Barlow
- Naval Research Laboratory, Chemistry Division, 4555 Overlook Ave., S.W. Washington, D.C. 20375, USA.
| | - Dhanya Haridas
- Naval Research Laboratory, Chemistry Division, 4555 Overlook Ave., S.W. Washington, D.C. 20375, USA.
| |
Collapse
|
4
|
Carey TR, Cotner KL, Li B, Sohn LL. Developments in label-free microfluidic methods for single-cell analysis and sorting. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1529. [PMID: 29687965 PMCID: PMC6200655 DOI: 10.1002/wnan.1529] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/06/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022]
Abstract
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Thomas R Carey
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
| | - Kristen L Cotner
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
| | - Brian Li
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
| | - Lydia L Sohn
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| |
Collapse
|
5
|
Hebert CG, DiNardo N, Evans ZL, Hart SJ, Hachmann AB. Rapid quantification of vesicular stomatitis virus in Vero cells using Laser Force Cytology. Vaccine 2018; 36:6061-6069. [PMID: 30219365 DOI: 10.1016/j.vaccine.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/01/2018] [Indexed: 01/06/2023]
Abstract
The ability to rapidly and accurately determine viral infectivity can help improve the speed of vaccine product development and manufacturing. Current methods to determine infectious viral titers, such as the end-point dilution (50% tissue culture infective dose, TCID50) and plaque assays are slow, labor intensive, and often subjective. In order to accelerate virus quantification, Laser Force Cytology (LFC) was used to monitor vesicular stomatitis virus (VSV) infection in Vero (African green monkey kidney) cells. LFC uses a combination of optical and fluidic forces to interrogate single cells without the use of labels or antibodies. Using a combination of variables measured by the Radiance™ LFC instrument (LumaCyte), an infection metric was developed that correlates well with the viral titer as measured by TCID50 and shortens the timeframe from infection to titer determination from 3 days to 16 h (a 4.5 fold reduction). A correlation was also developed between in-process cellular measurements and the viral titer of collected supernatant, demonstrating the potential for real-time infectivity measurements. Overall, these results demonstrate the utility of LFC as a tool for rapid infectivity measurements throughout the vaccine development process.
Collapse
Affiliation(s)
- Colin G Hebert
- LumaCyte, LLC, 1145 River Road, Suite 16, Charlottesville, VA 22901, USA
| | - Nicole DiNardo
- Thermo Fisher Scientific, Inc., 3175 Staley Road, Grand Island, NY 14072, USA
| | - Zachary L Evans
- LumaCyte, LLC, 1145 River Road, Suite 16, Charlottesville, VA 22901, USA
| | - Sean J Hart
- LumaCyte, LLC, 1145 River Road, Suite 16, Charlottesville, VA 22901, USA
| | | |
Collapse
|
6
|
Mitsunobu M, Kobayashi S, Takeyasu N, Kaneta T. Temperature-induced Coalescence of Droplets Manipulated by Optical Trapping in an Oil-in-Water Emulsion. ANAL SCI 2018; 33:709-713. [PMID: 28603190 DOI: 10.2116/analsci.33.709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Coalescence of oil droplets in an oil-in-water (O/W) emulsion was achieved with heating and optical trapping. Three types of O/W emulsions were prepared by adding a mixture of butanol and n-decane to an aqueous solution containing a cationic surfactant (cetyltrimethylammonium bromide, CTAB), an anionic surfactant (sodium dodecyl sulfate, SDS), or a neutral hydrophilic polymer (polyethylene glycol, PEG) as an emulsifier. Two oil droplets in the emulsions were randomly trapped in a square capillary tube by two laser beams in order to induce coalescence. Coalescence of the droplets could not be achieved at room temperature (25°C) regardless of the type of emulsifier. Conversely, the droplets prepared with PEG coalesced at a temperature higher than 30°C, although the droplets with ionic surfactants CTAB and SDS did not coalesce even at the elevated temperature due to their electrostatic repulsion. The size of the resultant coalesced droplet was consistent with that calculated from the size of the two droplets of oil, which indicated successful coalescence of the two droplets. We also found that the time required for the coalescence could be correlated with the temperature using an Arrhenius plot.
Collapse
Affiliation(s)
- Manami Mitsunobu
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
| | - Sakurako Kobayashi
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
| | - Nobuyuki Takeyasu
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
| | - Takashi Kaneta
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
7
|
Morawetz EW, Stange R, Kießling TR, Schnauß J, Käs JA. Optical stretching in continuous flows. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa6eb1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Roth KB, Neeves KB, Squier J, Marr DWM. Imaging of a linear diode bar for an optical cell stretcher. BIOMEDICAL OPTICS EXPRESS 2015; 6:807-14. [PMID: 25798305 PMCID: PMC4361435 DOI: 10.1364/boe.6.000807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 05/07/2023]
Abstract
We present a simplified approach for imaging a linear diode bar laser for application as an optical stretcher within a microfluidic geometry. We have recently shown that these linear sources can be used to measure cell mechanical properties; however, the source geometry creates imaging challenges. To minimize intensity losses and simplify implementation within microfluidic systems without the use of expensive objectives, we combine aspheric and cylindrical lenses to create a 1:1 image of the source at the stretcher focal plane and demonstrate effectiveness by measuring the deformation of human red blood cells and neutrophils.
Collapse
Affiliation(s)
- K. B. Roth
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401,
USA
| | - K. B. Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401,
USA
- Department of Pediatrics, University of Colorado, Denver, CO 80045,
USA
| | - J. Squier
- Deaprtment of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - D. W. M. Marr
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401,
USA
| |
Collapse
|
9
|
Jin C, McFaul SM, Duffy SP, Deng X, Tavassoli P, Black PC, Ma H. Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. LAB ON A CHIP 2014; 14:32-44. [PMID: 23963515 DOI: 10.1039/c3lc50625h] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circulating tumor cells (CTCs) are malignant cells shed into the bloodstream from a tumor that have the potential to establish metastases in different anatomical sites. The separation and subsequent characterization of these cells is emerging as an important tool for both biomarker discovery and the elucidation of mechanisms of metastasis. Established methods for separating CTCs rely on biochemical markers of epithelial cells that are known to be unreliable because of epithelial-to-mesenchymal transition, which reduces expression for epithelial markers. Emerging label-free separation methods based on the biophysical and biomechanical properties of CTCs have the potential to address this key shortcoming and present greater flexibility in the subsequent characterization of these cells. In this review we first present what is known about the biophysical and biomechanical properties of CTCs from historical studies and recent research. We then review biophysical label-free technologies that have been developed for CTC separation, including techniques based on filtration, hydrodynamic chromatography, and dielectrophoresis. Finally, we evaluate these separation methods and discuss requirements for subsequent characterization of CTCs.
Collapse
Affiliation(s)
- Chao Jin
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | | | | | |
Collapse
|
10
|
Hebert CG, Hart SJ, Terray A. Label free detection of pseudorabies virus infection in Vero cells using laser force analysis. Analyst 2014; 139:1472-81. [DOI: 10.1039/c3an01713c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Sawetzki T, Eggleton CD, Marr DWM. Cell elongation via intrinsic antipodal stretching forces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061901. [PMID: 23367970 PMCID: PMC3566237 DOI: 10.1103/physreve.86.061901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 09/03/2012] [Indexed: 05/16/2023]
Abstract
To probe the mechanical properties of cells, we investigate a technique to perform deformability-based cytometry that inherently induces normal antipodal surface forces using a single line-shaped optical trap. We show theoretically that these opposing forces are generated simultaneously over curved microscopic object surfaces with optimal magnitude at low numerical apertures, allowing the directed stretching of elastic cells with a single, weakly focused laser source. Matching these findings with concomitant experimental observations, we elongate red blood cells, effectively stretching them within the narrow confines of a steep, optically induced potential well.
Collapse
Affiliation(s)
- T Sawetzki
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | | | | |
Collapse
|
12
|
Gallagher ES, Comi TJ, Braun KL, Aspinwall CA. Online photolytic optical gating of caged fluorophores in capillary zone electrophoresis utilizing an ultraviolet light-emitting diode. Electrophoresis 2012; 33:2903-10. [PMID: 22911376 DOI: 10.1002/elps.201200279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 11/11/2022]
Abstract
Photolytic optical gating (POG) facilitates rapid, on-line and highly sensitive analyses, though POG utilizes UV lasers for sample injection. We present a low-cost, more portable alternative, employing an ultraviolet light-emitting diode (UV-LED) array to inject caged fluorescent dyes via photolysis. Utilizing the UV-LED array, labeled amino acids were injected with nanomolar limits of detection (270 ± 30 nM and 250 ± 30 nM for arginine and citrulline, respectively). When normalized for the difference in light intensity, the UV-LED array provides comparable sensitivity to POG utilizing UV lasers. Additionally, the UV-LED array yielded sufficient beam quality and stability to facilitate coupling with a Hadamard transform, resulting in increased sensitivity. This work shows, for the first time, the use of an UV-LED for online POG with comparable sensitivity to conventional laser sources but at a lower cost.
Collapse
Affiliation(s)
- Elyssia S Gallagher
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
13
|
Hebert CG, Terray A, Hart SJ. Toward Label-Free Optical Fractionation of Blood—Optical Force Measurements of Blood Cells. Anal Chem 2011; 83:5666-72. [DOI: 10.1021/ac200834u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Colin G. Hebert
- Chemistry Division, Bio/Analytical Chemistry Section, Code 6112 4555, Naval Research Laboratory, Overlook Ave. S.W., Washington, D.C. 20375, United States
| | - Alex Terray
- Chemistry Division, Bio/Analytical Chemistry Section, Code 6112 4555, Naval Research Laboratory, Overlook Ave. S.W., Washington, D.C. 20375, United States
| | - Sean J. Hart
- Chemistry Division, Bio/Analytical Chemistry Section, Code 6112 4555, Naval Research Laboratory, Overlook Ave. S.W., Washington, D.C. 20375, United States
| |
Collapse
|
14
|
Kohles SS, Liang Y, Saha AK. Volumetric stress-strain analysis of optohydrodynamically suspended biological cells. J Biomech Eng 2011; 133:011004. [PMID: 21186894 DOI: 10.1115/1.4002939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ongoing investigations are exploring the biomechanical properties of isolated and suspended biological cells in pursuit of understanding single-cell mechanobiology. An optical tweezer with minimal applied laser power has positioned biologic cells at the geometric center of a microfluidic cross-junction, creating a novel optohydrodynamic trap. The resulting fluid flow environment facilitates unique multiaxial loading of single cells with site-specific normal and shear stresses resulting in a physical albeit extensional state. A recent two-dimensional analysis has explored the cytoskeletal strain response due to these fluid-induced stresses [Wilson and Kohles, 2010, "Two-Dimensional Modeling of Nanomechanical Stresses-Strains in Healthy and Diseased Single-Cells During Microfluidic Manipulation," J Nanotechnol Eng Med, 1(2), p. 021005]. Results described a microfluidic environment having controlled nanometer and piconewton resolution. In this present study, computational fluid dynamics combined with multiphysics modeling has further characterized the applied fluid stress environment and the solid cellular strain response in three dimensions to accompany experimental cell stimulation. A volumetric stress-strain analysis was applied to representative living cell biomechanical data. The presented normal and shear stress surface maps will guide future microfluidic experiments as well as provide a framework for characterizing cytoskeletal structure influencing the stress to strain response.
Collapse
Affiliation(s)
- Sean S Kohles
- Reparative Bioengineering Laboratory, Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97207, USA.
| | | | | |
Collapse
|
15
|
Suwa M, Watarai H. Magnetoanalysis of micro/nanoparticles: A review. Anal Chim Acta 2011; 690:137-47. [DOI: 10.1016/j.aca.2011.02.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 01/31/2023]
|
16
|
Mechanical properties of cells and ageing. Ageing Res Rev 2011; 10:16-25. [PMID: 19897057 DOI: 10.1016/j.arr.2009.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/23/2022]
Abstract
Mechanical properties are fundamental properties of the cells and tissues of living organisms. The mechanical properties of a single cell as a biocomposite are determined by the interdependent combination of cellular components mechanical properties. Quantitative estimate of the cell mechanical properties depends on a cell state, method of measurement, and used theoretical model. Predominant tendency for the majority of cells with ageing is an increase of cell stiffness and a decrease of cell ability to undergo reversible large deformations. The mechanical signal transduction in old cells becomes less effective than that in young cells, and with ageing, the cells lose the ability of the rapid functional rearrangements of cellular skeleton. The article reviews the theoretical and experimental facts touching the age-related changes of the mechanical properties of cellular components and cells in the certain systems of an organism (the blood, the vascular system, the musculoskeletal system, the lens, and the epithelium). In fact, the cell mechanical parameters (including elastic modulii) can be useful as specific markers of cell ageing.
Collapse
|
17
|
Nève N, Kohles SS, Winn SR, Tretheway DC. Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers. Cell Mol Bioeng 2010; 3:213-228. [PMID: 20824110 PMCID: PMC2932633 DOI: 10.1007/s12195-010-0113-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chondrocytes and osteoblasts experience multiple stresses in vivo. The optimum mechanical conditions for cell health are not fully understood. This paper describes the optical and microfluidic mechanical manipulation of single suspended cells enabled by the μPIVOT, an integrated micron resolution particle image velocimeter (μPIV) and dual optical tweezers instrument (OT). In this study, we examine the viability and trap stiffness of cartilage cells, identify the maximum fluid-induced stresses possible in uniform and extensional flows, and compare the deformation characteristics of bone and muscle cells. These results indicate cell photodamage of chondrocytes is negligible for at least 20 min for laser powers below 30 mW, a dead cell presents less resistance to internal organelle rearrangement and deforms globally more than a viable cell, the maximum fluid-induced shear stresses are limited to ~15 mPa for uniform flows but may exceed 1 Pa for extensional flows, and osteoblasts show no deformation for shear stresses up to 250 mPa while myoblasts are more easily deformed and exhibit a modulated response to increasing stress. This suggests that global and/or local stresses can be applied to single cells without physical contact. Coupled with microfluidic sensors, these manipulations may provide unique methods to explore single cell biomechanics.
Collapse
Affiliation(s)
- Nathalie Nève
- Department of Mechanical & Materials Engineering, Portland State University, P.O. Box 751, Portland, OR 97201, USA
| | - Sean S. Kohles
- Department of Mechanical & Materials Engineering, Portland State University, P.O. Box 751, Portland, OR 97201, USA
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shelley R. Winn
- Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Derek C. Tretheway
- Department of Mechanical & Materials Engineering, Portland State University, P.O. Box 751, Portland, OR 97201, USA
| |
Collapse
|
18
|
Kim DH, Wong PK, Park J, Levchenko A, Sun Y. Microengineered platforms for cell mechanobiology. Annu Rev Biomed Eng 2009; 11:203-33. [PMID: 19400708 DOI: 10.1146/annurev-bioeng-061008-124915] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mechanical forces play important roles in the regulation of various biological processes at the molecular and cellular level, such as gene expression, adhesion, migration, and cell fate, which are essential to the maintenance of tissue homeostasis. In this review, we discuss emerging bioengineered tools enabled by microscale technologies for studying the roles of mechanical forces in cell biology. In addition to traditional mechanobiology experimental techniques, we review recent advances of microelectromechanical systems (MEMS)-based approaches for cell mechanobiology and discuss how microengineered platforms can be used to generate in vivo-like micromechanical environment in in vitro settings for investigating cellular processes in normal and pathophysiological contexts. These capabilities also have significant implications for mechanical control of cell and tissue development and cell-based regenerative therapies.
Collapse
Affiliation(s)
- Deok-Ho Kim
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | |
Collapse
|
19
|
Blakely JT, Gordon R, Sinton D. Flow-dependent optofluidic particle trapping and circulation. LAB ON A CHIP 2008; 8:1350-6. [PMID: 18651078 DOI: 10.1039/b805318a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microfluidics and fiber optics are integrated in-plane to achieve several flow-dependent particle trapping mechanisms on-chip. Each mechanism results from a combination of fluid drag and optical scattering forces. Parallel and offset fibers, orthogonally oriented to the flow, show cyclic cross-stream particle transit with flow-dependent particle trajectories and loss. Upstream-angled fibers with flow result in circulatory particle trajectories. Asymmetric angled fibers result in continuous particle circulation whereas symmetry with respect to the flow axis enables both stable trapping and circulation modes. Stable trapping of single particles, self-guided multi-particle arrays and particle assemblies are demonstrated with a single upstream-oriented fiber. Size tuning of trapped multiple particle assemblies is also presented. The planar interaction of fluid drag and optical forces results in novel possibilities for cost-effective on-chip diagnostics, mixing, flow rate monitoring, and cell analysis.
Collapse
Affiliation(s)
- J Thomas Blakely
- Department Electrical and Computer Engineering, University of Victoria, BC, CanadaV8W 3P6
| | | | | |
Collapse
|
20
|
Hudgens JW, Bergeron DE. A Hadamard transform electron ionization time-of-flight mass spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:014102. [PMID: 18248052 DOI: 10.1063/1.2838174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We describe the first Hadamard transform time-of-flight mass spectrometer (HT-TOFMS) that incorporates an electron (impact) ionization source. This implementation was realized in an existent TOF instrument using commercially available components and simple modifications to the ion source. In the present apparatus, a Hadamard mask is expressed by modulating the ion generation process within the ion source; thus, the present approach differs from previous designs that use external electrostatic devices to modulate a continuous ion stream. The present implementation may be operated in conventional TOF mode at 12.5 kHz and in HT-TOF mode at 20-40 MHz. In Hadamard mode the design can operate using any circulant simplex code, allowing the operator much flexibility for optimizing resolution and mass range and for eliminating nonstochastic fluctuations, e.g., encoding errors and signal hum. We demonstrate typical performance of the HT-TOFMS in standard and reflectron geometries using sequences of three constructions and of varied length, generating HT-TOF mass spectra of molecules that match conventional reference spectra. The auxiliary material includes an electrical schematic for the floating high-speed encoding amplifier, which is also of use in other high-speed electrostatic optics applications, and a list of 537 validated vectors comprising the first row of each circulant simplex sequence (S(n)=3-8219) derived using maximal shift register (n=2(m)-1), quadratic residue (n=4m-3), and twin prime constructions [n=p(p+2)].
Collapse
Affiliation(s)
- Jeffrey W Hudgens
- National Institute of Standards and Technology, Physical and Chemical Properties Division, 100 Bureau Drive, Stop 8380, Gaithersburg, Maryland 20899-8380, USA.
| | | |
Collapse
|
21
|
Abstract
A detection scheme that makes use of the Hadamard transform has been employed with an atmospheric-pressure ion mobility spectrometer fitted with an electrospray ionization source. The Hadamard transform was implemented through the use of a linear-feedback shift register to produce a pseudorandom sequence of 1023 points. This pseudorandom sequence was applied to the ion gate of the spectrometer, and deconvolution of the ion signal was accomplished by the Hadamard transform to reconstruct the mobility spectrum. Ion mobility spectra were collected in both a conventional and Hadamard mode, with comparisons made between the two approaches. Initial results exhibited low spectral definition, so an oversampling technique was applied to increase the number of data points across each analyte spectral peak. The use of the Hadamard transform increases the duty cycle of the instrument to 50% and results in a roughly 5-fold enhancement of the signal-to-noise ratio with a negligible loss of instrument resolution. It is also shown that any potential multiplex disadvantage, which limits the attractiveness of some high-throughput techniques, is not a limiting factor in this new implementation.
Collapse
Affiliation(s)
- Andrew W Szumlas
- Indiana University, Department of Chemistry, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
22
|
Braun KL, Hapuarachchi S, Fernandez FM, Aspinwall CA. Fast Hadamard Transform Capillary Electrophoresis for On-Line, Time-Resolved Chemical Monitoring. Anal Chem 2006; 78:1628-35. [PMID: 16503616 DOI: 10.1021/ac051710w] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new approach for collecting and deconvoluting the data in Hadamard transform capillary electrophoresis, referred to as fast Hadamard transform capillary electrophoresis (fHTCE). Using fHTCE, total analysis times can be reduced by up to 48% per multiplexed separation compared to conventional Hadamard transform capillary electrophoresis (cHTCE) while providing comparable signal-to-noise ratio enhancements. In fHTCE, the sample is injected following a pseudorandom pulsing sequence derived from the first row of a simplex matrix (S-matrix) in contrast to cHTCE, which utilizes a sequence of twice the length. In addition to the temporal savings provided by fHTCE, a 50% reduction in sample consumption is also realized due to the decreased number of sample injections. We have applied fHTCE to the analysis of mixtures of neurotransmitters and related compounds to yield improved signal-to-noise ratios with a total analysis time under 10 s. In addition, we demonstrate the capability of fHTCE to perform time-resolved monitoring of changes in the concentration of model neurochemical compounds.
Collapse
Affiliation(s)
- Kevin L Braun
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
23
|
Zhao BS, Koo YM, Chung DS. Separations based on the mechanical forces of light. Anal Chim Acta 2006; 556:97-103. [PMID: 17723334 DOI: 10.1016/j.aca.2005.06.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 06/21/2005] [Accepted: 06/26/2005] [Indexed: 11/29/2022]
Abstract
A photon as a particle has an energy and a momentum. In a matter-photon interaction, the matter and photons may exchange their momenta observing the momentum conservation law. The consequence of the momentum transfer from a photon to a matter particle is a mechanical force exerted on the particle. Several separation methods based on this force of light are reviewed. Photophoresis separations for micron-sized particles and optical force chromatography for chemical-sized molecules are discussed.
Collapse
Affiliation(s)
- Bum Suk Zhao
- School of Chemistry, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-747, Republic of Korea
| | | | | |
Collapse
|
24
|
Wong PK, Tan W, Ho CM. Cell relaxation after electrodeformation: effect of latrunculin A on cytoskeletal actin. J Biomech 2005; 38:529-35. [PMID: 15652551 DOI: 10.1016/j.jbiomech.2004.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2004] [Indexed: 10/26/2022]
Abstract
Precise measurement of the mechanical properties of a cell provides useful information about its structural organization and physiological state. It is interesting to understand the effect of individual components on the mechanical properties of the entire cell. In this study, we investigate the influence of the cytoskeletal actin on the viscoelastic properties of a cell. Actin-specific agents, including latrunculin A and jasplakinolide, are used to alter the organization of the cytoskeletal actin. Brassica oleracea protoplasts are treated with the drugs and deformed under an external electric potential. The relaxation processes of single protoplasts after electrodeformation are measured. The data are analyzed by a model-independent spectrum recovery algorithm. Two distinct characteristic time constants are obtained from the relaxation spectra. Treatment with latrunculin A increases both of the relaxation time constants. The longest relaxation times for control, latrunculin A treated, and jasplakinolide treated cells are determined to be 0.28, 1.0, and 0.21 s, respectively.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
25
|
Kaneta T, Kosai K, Imasaka T. Ultratrace analysis based on Hadamard transform capillary electrophoresis. Anal Chem 2002; 74:2257-60. [PMID: 12038749 DOI: 10.1021/ac011149b] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hadamard transform capillary electrophoresis, which is based on a multiple sample injection technique, was combined with laser-induced fluorometry and utilized in the determination of analytes at subpicomolar levels. The sensitivity was substantially improved by increasing the order, i.e., the number of elements, of the Hadamard matrix. In fact, the signal-to-noise ratio was enhanced 18-fold by the use of a matrix of order 2047. A feasibility study was carried out by computer simulation to study the detection of an average of less than a single molecule in a single injection volume. The signal peak was clearly observable even under conditions at which only 0.3 molecule is present in the volume. Thus, this approach is potentially useful for ultratrace analysis, in which conventional single-injection capillary electrophoresis cannot be applied.
Collapse
Affiliation(s)
- Takashi Kaneta
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | |
Collapse
|