1
|
Tsonev LI, Hirsh AG. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 3 - Scouting optimization strategies for separation of monoclonal antibodies by dual simultaneous independent gradients of pH & salt on a weak cation exchange stationary phase. J Chromatogr A 2024; 1730:465065. [PMID: 38879974 DOI: 10.1016/j.chroma.2024.465065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
In previous publications we have described the pISep dual simultaneous, independent gradients (DSIGs) liquid chromatography (LC) for uncoupling gradients of non-buffering solute (NaCl, urea or acetonitrile) from externally generated pH gradients. In DSIGs the shape and slope of the [salute] gradient does not depend on the shape and slope of the pH gradient. The technique allows in a single run true simultaneous two dimensional LC separation of complex protein mixtures on various stationary phases including anion, cation exchangers (AEX, CEX), reversed phase (RP), mixed mode and mixed bed. Using a humanized IgG1 (HIgG1) monoclonal antibody (MAb) and a variety of pH & [NaCl] DSIGs, we show that most of MAb isoforms can be successfully separated from each other. These experimental observations are supported by an initial theoretical argument presented here predicting an overall improvement of all MAb isoforms separation by DSIGs of pH & [NaCl]. Theoretical calculations predict that, in general, there exists an optimal non-zero isocratic salt concentration in a pH gradient separation that will resolve isoforms close in binding energy, but a wide range of salt concentrations will be required for acceptable resolution of all isoforms. Theory also predicts better separation of weaker rather than stronger binding isoforms. Experimentally, we have found that no one set of DSIGs LC conditions could optimally baseline resolve all identifiable MAb isoforms in a single run of reasonable duration. The versatility and simplicity of the pH & [NaCl] pISep DSIGs LC allows fast, automated scouting of protein separations over any range of pH from 2.4 to 10.8 and [NaCl] from 0 to 1 M without changing the chemistry of the buffering system. Due to the universal applicability of the pISep buffering system in IEX LC, the researcher is given a powerful tool to easily develop pH & [NaCl] DSIGs protocols that vary mobile phase compositions to achieve high resolution separations of targeted proteins.
Collapse
Affiliation(s)
- Latchezar I Tsonev
- CryoBioPhysica, Inc., 4620 N. Park Ave., #1502 w Chevy Chase, MD 20815, USA
| | - Allen G Hirsh
- CryoBioPhysica, Inc., 4620 N. Park Ave., #1502 w Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Karunanithy R, Holland T, Sivakumar P. Influence of Glutaraldehyde's Molecular Transformations on Spectroscopic Investigations of Its Conjugation with Amine-Modified Fe 3O 4 Microparticles in the Reaction Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5242-5251. [PMID: 33876943 DOI: 10.1021/acs.langmuir.1c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glutaraldehyde (GA) is a widely used cross-linking agent in biological research due to its superior characteristics, such as high reactivity toward proteins, high stability, and cost-effectiveness. In this regard, analyzing spectral changes initiated by various molecular forms and transformations of GA in a reaction medium and its reaction with surface functional-modified solid spheres is vital for a successful bioconjugation process targeting the biomolecules of interest. In this work, we present Fourier transform-infrared (FT-IR), Raman, and UV-visible spectroscopic analyses of glutaraldehyde-modified Fe3O4 microparticles (magnetic beads) to confirm the conjugation between GA and magnetic beads. We also studied the molecular transformations of glutaraldehyde during the reaction with amine-modified magnetic beads via investigating the reaction medium of the glutaraldehyde solution. Our FT-IR and Raman studies confirmed that glutaraldehyde was successfully coupled on the magnetic beads. Furthermore, FT-IR and UV-vis studies on the glutaraldehyde solution revealed the multiple molecular forms of GA in an aqueous medium, and they also confirmed that glutaraldehyde transforms into other molecular forms while the reaction occurs with the magnetic beads.
Collapse
Affiliation(s)
- Robinson Karunanithy
- Department of Physics, Southern Illinois University, 1245 Lincoln Dr., Neckers 483-A, Carbondale, Illinois 62901, United States
| | - Torrey Holland
- Department of Physics, Southern Illinois University, 1245 Lincoln Dr., Neckers 483-A, Carbondale, Illinois 62901, United States
| | - Poopalasingam Sivakumar
- Department of Physics, Southern Illinois University, 1245 Lincoln Dr., Neckers 483-A, Carbondale, Illinois 62901, United States
| |
Collapse
|
3
|
Farsang E, Horváth K, Beck A, Wang Q, Lauber M, Guillarme D, Fekete S. Impact of the column on effluent pH in cation exchange pH gradient chromatography, a practical study. J Chromatogr A 2020; 1626:461350. [PMID: 32797830 DOI: 10.1016/j.chroma.2020.461350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
In ionexchange chromatography, the pH gradient mode becomes more and more popular today for the analysis of therapeutic proteins as this mode can provide higher or alternative selectivity to the commonly used salt gradient mode. Ideally, a linear pH response is expected when performing linear gradients. However up to now, only a very few buffer systems have been developed and are commercially available which can perform nearly linear pH responses when flowing through a given column. It is also known that a selected buffer system (mobile phase) can work well on one column but can fail on other column. The goal of this study was to practically evaluate the effects that ionexchange columns (weak and strong exchangers) might have on effluent pH, when performing linear pH gradient separations of therapeutic monoclonal antibodies. To attain this objective, the pH was monitored on-line at the column outlet using a specific setup. To make comprehensive observations of the phenomenon, four different mobile phase conditions and five cation exchange columns (weak and strong exchangers) were employed. The obtained pH responses were systematically compared to responses measured in the absence of the columns. From this work, it has become clear that both the column and mobile phase can have significant effects on pH gradient chromatography and that their combination must be considered when developing a new method. Phase systems (column + mobile phase) providing linear pH responses are indeed the most suitable for separating mAbs with different isoelectric points and, with them, it is possible to elute mAbs across wide retention time ranges and with high selectivity.
Collapse
Affiliation(s)
- Evelin Farsang
- Department of Analytical Chemistry, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| | - Krisztián Horváth
- Department of Analytical Chemistry, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Qi Wang
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States; Current Address: Bristol Myers Squibb, 38 Jackson Rd, Devens, MA 01434, United States
| | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
4
|
Madadkar P, Sadavarte R, Ghosh R. Performance Comparison of a Laterally-Fed Membrane Chromatography (LFMC) Device with a Commercial Resin Packed Column. MEMBRANES 2019; 9:E138. [PMID: 31671843 PMCID: PMC6918161 DOI: 10.3390/membranes9110138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
Abstract
The use of conventional membrane adsorbers such as radial flow devices is largely restricted to flow-through applications, such as virus and endotoxin removal, as they fail to give acceptable resolution in bind-and-elute separations. Laterally-fed membrane chromatography or LFMC devices have been specifically developed to combine high-speed with high-resolution. In this study, an LFMC device containing a stack of strong cation exchange membranes was compared with an equivalent resin packed column. Preliminary characterization experiments showed that the LFMC device had a significantly greater number of theoretical plates per metre than the column. These devices were used to separate a ternary model protein mixture consisting of ovalbumin, conalbumin and lysozyme. The resolution obtained with the LFMC device was better than that obtained with the column. For instance, the LFMC device could resolve lysozyme dimer from lysozyme monomer, which was not possible using the column. In addition, the LFMC device could be operated at lower pressure and at significantly higher flow rates. The devices were then compared based on an application case study, i.e., preparative separation of monoclonal antibody charge variants. The LFMC device gave significantly better separation of these variants than the column.
Collapse
Affiliation(s)
- Pedram Madadkar
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Rahul Sadavarte
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
5
|
Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 1: Alternative mobile phases and fine tuning of the separation. J Pharm Biomed Anal 2019; 168:138-147. [DOI: 10.1016/j.jpba.2019.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 01/24/2023]
|
6
|
Madeira PP, Loureiro JA, Freire MG, Coutinho JAP. Solvatochromism as a new tool to distinguish structurally similar compounds. J Mol Liq 2019; 274:740-745. [PMID: 30936594 DOI: 10.1016/j.molliq.2018.11.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is here reported a new concept based on solvatochromism to distinguish structurally similar compounds in aqueous solutions by the analysis of the stabilization of electronic excited states. The sensitivity of this approach to differentiate similar organic compounds, such as structural isomers or compound differing in the number of methylene groups, or proteins with conformational changes induced by being or not bound to cofactors, differing in two amino acids substitutions, or differing in their glycosylation profile, is demonstrated. The sensitivity of the proposed approach, based on the solvatochromic method, opens the path to its use as an auxiliary analytical tool in biomedical diagnosis/prognosis or in quality control of biologic-based drugs.
Collapse
Affiliation(s)
- Pedro P Madeira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana A Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal
| | - Mara G Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Development and Validation of Salt Gradient CEX Chromatography Method for Charge Variants Separation and Quantitative Analysis of the IgG mAb-Cetuximab. Chromatographia 2018. [DOI: 10.1007/s10337-018-3627-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Rho HS, Hanke AT, Ottens M, Gardeniers HJ. A microfluidic chip with a staircase pH gradient generator, a packed column and a fraction collector for chromatofocusing of proteins. Electrophoresis 2018; 39:1031-1039. [PMID: 29345313 PMCID: PMC5947739 DOI: 10.1002/elps.201700341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/27/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
A microfluidic device for pH gradient chromatofocusing is presented, which performs creation of a micro-column, pH gradient generation, and fraction collection in a single device. Using a sieve micro-valve, anion exchange particles were packed into a microchannel in order to realize a solid-phase absorption column. To fractionate proteins according to their isoelectric points, elution buffer solutions with a stepwise pH gradient were prepared in 16 parallel mixing reactors and flowed through the micro-column, wherein a protein mixture was previously loaded. The volume of the column is only 20 nL, hence it allows extremely low sample consumption and fast analysis compared with a conventional system. We demonstrated separation of two proteins, albumin-fluorescein isothiocyanate conjugate (FITC-BSA) and R-Phycoerythrin (R-PE), by using a microcolumn of commercial charged polymeric particles (Source 15Q). The microfluidic device can be used as a rapid diagnostic tool to analyse crude mixtures of proteins or nucleic acids and determine adsorption/desorption characteristics of various biochemical products, which can be helpful for scientific fundamental understanding as well as instrumental in various industrial applications, especially in early stage screening and process development.
Collapse
Affiliation(s)
- Hoon Suk Rho
- Mesoscale Chemical Systems GroupMESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Alexander Thomas Hanke
- BioProcess Engineering groupDepartment of BiotechnologyFaculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
| | - Marcel Ottens
- BioProcess Engineering groupDepartment of BiotechnologyFaculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
| | - Han J.G.E. Gardeniers
- Mesoscale Chemical Systems GroupMESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
9
|
Lee YF, Jöhnck M, Frech C. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin. Biotechnol Prog 2018; 34:973-986. [DOI: 10.1002/btpr.2626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Feng Lee
- Institute of Biochemistry, Department of Biotechnology; University of Applied Sciences Mannheim; Mannheim Germany
| | - Matthias Jöhnck
- Department of Process Solutions, Actives & Formulation; Merck KGaA; Darmstadt Germany
| | - Christian Frech
- Institute of Biochemistry, Department of Biotechnology; University of Applied Sciences Mannheim; Mannheim Germany
| |
Collapse
|
10
|
Sahab ZJ, Semaan SM, Sang QXA. Methodology and Applications of Disease Biomarker Identification in Human Serum. Biomark Insights 2017. [DOI: 10.1177/117727190700200034] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biomarkers are biomolecules that serve as indicators of biological and pathological processes, or physiological and pharmacological responses to a drug treatment. Because of the high abundance of albumin and heterogeneity of plasma lipoproteins and glycoproteins, biomarkers are difficult to identify in human serum. Due to the clinical significance the identification of disease biomarkers in serum holds great promise for personalized medicine, especially for disease diagnosis and prognosis. This review summarizes some common and emerging proteomics techniques utilized in the separation of serum samples and identification of disease signatures. The practical application of each protein separation or identification technique is analyzed using specific examples. Biomarkers of cancers of prostate, breast, ovary, and lung in human serum have been reviewed, as well as those of heart disease, arthritis, asthma, and cystic fibrosis. Despite the advancement of technology few biomarkers have been approved by the Food and Drug Administration for disease diagnosis and prognosis due to the complexity of structure and function of protein biomarkers and lack of high sensitivity, specificity, and reproducibility for those putative biomarkers. The combination of different types of technologies and statistical analysis may provide more effective methods to identify and validate new disease biomarkers in blood.
Collapse
Affiliation(s)
- Ziad J. Sahab
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Suzan M. Semaan
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| |
Collapse
|
11
|
Tassi M, De Vos J, Chatterjee S, Sobott F, Bones J, Eeltink S. Advances in native high-performance liquid chromatography and intact mass spectrometry for the characterization of biopharmaceutical products. J Sep Sci 2017; 41:125-144. [DOI: 10.1002/jssc.201700988] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Tassi
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Jelle De Vos
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Sneha Chatterjee
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
- Astbury Centre for Structural Molecular Biology; University of Leeds; Leeds UK
- School of Molecular and Cellular Biology; University of Leeds; Leeds UK
| | - Jonathan Bones
- The National Institute for Bioprocessing Research and Training (NIBRT); Dublin Ireland
| | - Sebastiaan Eeltink
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| |
Collapse
|
12
|
Tyteca E, Veuthey JL, Desmet G, Guillarme D, Fekete S. Computer assisted liquid chromatographic method development for the separation of therapeutic proteins. Analyst 2016; 141:5488-501. [DOI: 10.1039/c6an01520d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review summarizes the use of computer assisted liquid chromatographic method development for the analytical characterization of protein biopharmaceuticals.
Collapse
Affiliation(s)
- Eva Tyteca
- Vrije Universiteit Brussel
- Department of Chemical Engineering
- B-1050 Brussels
- Belgium
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences
- University of Geneva
- University of Lausanne
- 1211 Geneva 4
- Switzerland
| | - Gert Desmet
- Vrije Universiteit Brussel
- Department of Chemical Engineering
- B-1050 Brussels
- Belgium
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- University of Lausanne
- 1211 Geneva 4
- Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences
- University of Geneva
- University of Lausanne
- 1211 Geneva 4
- Switzerland
| |
Collapse
|
13
|
Lee YF, Schmidt M, Graalfs H, Hafner M, Frech C. Modeling of dual gradient elution in ion exchange and mixed-mode chromatography. J Chromatogr A 2015; 1417:64-72. [DOI: 10.1016/j.chroma.2015.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
14
|
Fekete S, Beck A, Veuthey JL, Guillarme D. Ion-exchange chromatography for the characterization of biopharmaceuticals. J Pharm Biomed Anal 2015; 113:43-55. [PMID: 25800161 DOI: 10.1016/j.jpba.2015.02.037] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/28/2022]
Abstract
Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products.
Collapse
Affiliation(s)
- Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland.
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France(1)
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Fekete S, Beck A, Fekete J, Guillarme D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: Salt gradient approach. J Pharm Biomed Anal 2015; 102:33-44. [DOI: 10.1016/j.jpba.2014.08.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
16
|
Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach. J Pharm Biomed Anal 2015; 102:282-9. [DOI: 10.1016/j.jpba.2014.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/02/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022]
|
17
|
Talebi M, Shellie RA, Hilder EF, Lacher NA, Haddad PR. Semiautomated pH Gradient Ion-Exchange Chromatography of Monoclonal Antibody Charge Variants. Anal Chem 2014; 86:9794-9. [DOI: 10.1021/ac502372r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Talebi
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Robert A. Shellie
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Emily F. Hilder
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Nathan A. Lacher
- Analytical R&D, Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017, United States
| | - Paul R. Haddad
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| |
Collapse
|
18
|
Schmidt M, Hafner M, Frech C. Modeling of salt and pH gradient elution in ion-exchange chromatography. J Sep Sci 2014; 37:5-13. [DOI: 10.1002/jssc.201301007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Schmidt
- Institute for Biochemistry; University of Applied Sciences Mannheim; Mannheim Germany
| | - Mathias Hafner
- Institute of Molecular Biology and Cell Culture Technology; University of Applied Sciences Mannheim; Mannheim Germany
| | - Christian Frech
- Institute for Biochemistry; University of Applied Sciences Mannheim; Mannheim Germany
| |
Collapse
|
19
|
Talebi M, Nordborg A, Gaspar A, Lacher NA, Wang Q, He XZ, Haddad PR, Hilder EF. Charge heterogeneity profiling of monoclonal antibodies using low ionic strength ion-exchange chromatography and well-controlled pH gradients on monolithic columns. J Chromatogr A 2013; 1317:148-54. [DOI: 10.1016/j.chroma.2013.08.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
20
|
Zaslavsky A, Madeira P, Breydo L, Uversky VN, Chait A, Zaslavsky B. High throughput characterization of structural differences between closely related proteins in solution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:583-92. [DOI: 10.1016/j.bbapap.2012.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/29/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
|
21
|
Zhang L, Patapoff T, Farnan D, Zhang B. Improving pH gradient cation-exchange chromatography of monoclonal antibodies by controlling ionic strength. J Chromatogr A 2013; 1272:56-64. [DOI: 10.1016/j.chroma.2012.11.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/18/2012] [Accepted: 11/23/2012] [Indexed: 11/25/2022]
|
22
|
|
23
|
Characterization of zebrafish cardiac proteome using online pH gradient SCX-RP HPLC-MS/MS platform. Methods Mol Biol 2013; 1005:119-27. [PMID: 23606253 DOI: 10.1007/978-1-62703-386-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional HPLC coupled with tandem MS (MS/MS) has become a mainstream technique in the shotgun proteomics for large-scale identification of proteins from biological samples. This powerful technology provides speed, sensitivity, and dynamic range which are essential to probe complex peptide mixtures from proteomic samples. Herein we present a pH gradient SCX-RP 2D HPLC-MS/MS method designed to improve the peptide resolution and protein identification from complex proteomic samples. The comparison between the pH gradient SCX-RP 2D HPLC method and traditional salt gradient SCX-RP method was presented. A two-step sample prefractionation method utilizing microwave-assisted tryptic digestion to improve the identification of insoluble proteins was also introduced. This novel 2D HPLC-MS/MS method was applied to the heart proteomic sample of the zebrafish, Danio rerio, to provide comprehensive cardiac proteomic profiling of this important model organism for cardiovascular and environmental toxicology studies.
Collapse
|
24
|
Combining multidimensional liquid chromatography and MALDI-TOF-MS for the fingerprint analysis of secreted peptides from the unexplored sea anemone species Phymanthus crucifer. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 903:30-9. [PMID: 22824729 DOI: 10.1016/j.jchromb.2012.06.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 06/17/2012] [Accepted: 06/18/2012] [Indexed: 11/23/2022]
Abstract
Sea anemones are sources of biologically active proteins and peptides. However, up to date few peptidomic studies of these organisms are known; therefore most species and their peptide diversity remain unexplored. Contrasting to previous venom peptidomic works on sea anemones and other venomous animals, in the present study we combined pH gradient ion-exchange chromatography with gel filtration and reversed-phase chromatography, allowing the separation of the 1-10 kDa polypeptides from the secretion of the unexplored sea anemone Phymanthus crucifer (Cnidaria/Phymanthidae). This multidimensional chromatographic approach followed by MALDI-TOF-MS detection generated a peptide fingerprint comprising 504 different molecular mass values from acidic and basic peptides, being the largest number estimated for a sea anemone exudate. The peptide population within the 2.0-3.5 kDa mass range showed the highest frequency whereas the main biomarkers comprised acidic and basic peptides with molecular masses within 2.5-6.9 kDa, in contrast to the homogeneous group of 4-5 kDa biomarkers found in sea anemones such as B. granulifera and B. cangicum (Cnidaria/Actiniidae). Our study shows that sea anemone peptide fingerprinting can be greatly improved by including pH gradient ion-exchange chromatography into the multidimensional separation approach, complemented by MALDI-TOF-MS detection. This strategy allowed us to find the most abundant and unprecedented diversity of secreted components from a sea anemone exudate, indicating that the search for novel biologically active peptides from these organisms has much greater potential than previously predicted.
Collapse
|
25
|
Hirsh AG, Tsonev LI. Multiple, simultaneous, independent gradients for versatile multidimensional liquid chromatography. Part I: Theory. J Chromatogr A 2012; 1236:51-62. [DOI: 10.1016/j.chroma.2012.02.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 02/21/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
|
26
|
Chen Y, Srinivasan K, Dasgupta PK. Electrodialytic Membrane Suppressors for Ion Chromatography Make Programmable Buffer Generators. Anal Chem 2011; 84:67-75. [DOI: 10.1021/ac2023712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongjing Chen
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Kannan Srinivasan
- Thermo Fisher Scientific, 445 Lakeside Drive, Sunnyvale, California 94085, United States
| | - Purnendu K. Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
27
|
Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. J Chromatogr A 2011; 1218:8874-89. [DOI: 10.1016/j.chroma.2011.06.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/16/2011] [Accepted: 06/14/2011] [Indexed: 11/20/2022]
|
28
|
Ly L, Wasinger VC. Protein and peptide fractionation, enrichment and depletion: Tools for the complex proteome. Proteomics 2011; 11:513-34. [DOI: 10.1002/pmic.201000394] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/03/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022]
|
29
|
Prefractionation enhances loading capacity and identification of basic proteins from human breast cancer tissues. Anal Biochem 2010; 411:80-7. [PMID: 21146488 DOI: 10.1016/j.ab.2010.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/17/2010] [Accepted: 12/04/2010] [Indexed: 01/13/2023]
Abstract
Many basic proteins (pI>7) and putative disease biomarkers are not identified using conventional proteomic methods. This study applied a new method to improve the identification of such proteins. Prefractionated basic proteins were compared with total tissue lysates from human ductal carcinoma in situ tissue loaded on basic immobilized pH gradient strips prior to two-dimensional gel electrophoresis (2-DE). Extraction of alkaline proteins was achieved in less than 20 min using a chromatofocusing resin and two buffers in a microcentrifuge tube. Prefractionation showed improved resolution and visualization of low-abundance proteins on 2-DE gels, allowing proteins to be excised, accumulated, trypsin-digested, and identified by liquid chromatography-tandem mass spectrometry. Proteins identified in the prefractionated samples had a higher number of peptides and three times the number of unique basic proteins when compared with total lysates. Low-molecular-weight (LMW, <26kDa) unique alkaline proteins comprise 75% of those identified in prefractionated samples compared with 25% identified in total lysates, representing a 9-fold increase of LMW proteins due to prefractionation. Prefractionation ultimately increases loading capacity of samples onto the 2-DE gel and leads to better resolution, visualization, and identification of proteins with pI values greater than 7.
Collapse
|
30
|
Zhang J, Lanham KA, Peterson RE, Heideman W, Li L. Characterization of the adult zebrafish cardiac proteome using online pH gradient strong cation exchange-RP 2D LC coupled with ESI MS/MS. J Sep Sci 2010; 33:1462-71. [PMID: 20235133 DOI: 10.1002/jssc.200900780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
2D HPLC separations by coupling strong cation exchange (SCX) and RP fractionation have been widely used in large-scale proteomic studies. Traditionally this method is performed by salt gradient SCX separation followed by RP and MS/MS analysis. The salt gradient SCX method has been known to have low peptide and protein resolution. In this study, we implemented a pH gradient SCX-RP HPLC platform to separate proteome digests from adult zebrafish hearts, followed by ESI quadrupole-TOF MS/MS analysis. This pH gradient SCX method has improved peptide separation, as demonstrated by a greater number of peptides and proteins identified from individual SCX fractions. This pH gradient method also has better MS compatibility owing to lower salt usage. This setup allows fast microflow fractionation in SCX dimension and nanoflow RP separation in the second dimension, and can be easily implemented on conventional capillary LC ESI MS/MS systems. Using this setup, we identified 1375 proteins from adult zebrafish hearts, establishing the first reported experimental data set for the heart proteome of zebrafish. This work laid the foundation for further studies of environmental cardiac toxicology using zebrafish as a model organism.
Collapse
Affiliation(s)
- Jiang Zhang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705-2222, USA
| | | | | | | | | |
Collapse
|
31
|
Rozhkova A. Quantitative analysis of monoclonal antibodies by cation-exchange chromatofocusing. J Chromatogr A 2009; 1216:5989-94. [DOI: 10.1016/j.chroma.2009.06.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/10/2009] [Accepted: 06/12/2009] [Indexed: 11/30/2022]
|
32
|
Evaluation of a solution isoelectric focusing protocol as an alternative to ion exchange chromatography for charge-based proteome prefractionation. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:807-13. [DOI: 10.1016/j.jchromb.2009.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 12/10/2008] [Accepted: 02/07/2009] [Indexed: 11/19/2022]
|
33
|
Tomás R, Klepárník K, Foret F. Multidimensional liquid phase separations for mass spectrometry. J Sep Sci 2008; 31:1964-79. [PMID: 18615817 DOI: 10.1002/jssc.200800113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Large part of the current research in biology, medicine, and biotechnology depends on the analysis of DNA (genomics), proteins (proteomics), or metabolites (metabolomics). The advances in biotechnology also command development of adequate analytical instrumentation capable to analyze minute amounts of samples. The analysis of the content of single cells may serve as an example of ultimate analytical applications. Most of the separation techniques have been developed in the last three decades and alternative approaches are being investigated. At present, the main protocols for analyses of complex mixtures include 2-DE (IEF) followed by electrophoresis in SDS polyacrylamide gel (SDS-PAGE) and chromatographic techniques. Information-rich techniques such as MS and NMR are essential for the identification and structure analysis of the analyzed compounds. High resolution separation of the individual sample components is often a prerequisite for success. High resolution proteomic analysis in the majority of laboratories still relies on the time consuming and laborious offline methods. This review highlights some of the important aspects of 2-D separations including microfluidics.
Collapse
Affiliation(s)
- Roman Tomás
- Institute of Analytical Chemistry, Brno, Czech Republic
| | | | | |
Collapse
|
34
|
Shan L, Hribar JA, Zhou X, Anderson DJ. Gradient chromatofocusing-mass spectrometry: a new technique in protein analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1132-1137. [PMID: 18539479 DOI: 10.1016/j.jasms.2008.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/02/2008] [Accepted: 04/23/2008] [Indexed: 05/26/2023]
Abstract
A new analytical technique, gradient chromatofocusing-mass spectrometry (gCF-MS), was developed employing ion-exchange high-performance liquid chromatography (HPLC) interfaced to an electrospray-quadrupole mass spectrometer in the determination of proteins. There have been few reports, if any, of a HPLC-MS technique for proteins in which the ion-exchange column is directly interfaced to the mass spectrometer. The employment of a linear pH gradient elution scheme directly interfaced to mass spectrometry is also unique in the present work. The technique was demonstrated by the separation of six proteins (carbonic anhydrase II, enolase, beta-lactoglobulin A, lactoglobulin B, soybean trypsin inhibitor, and amyloglucosidase) employing a descending linear pH gradient from pH 9 to 2.6 on a 50 mm x 2.1 mm DEAE HPLC column using volatile buffer components. A signal enhancement solution consisting of 8% formic acid in acetonitrile was pumped post-column and was mixed 1:1 with column effluent and then directed on-line into the mass spectrometer. Molecular masses of the proteins were determined within +/-0.010% to 0.033% (+/-100 to 330 ppm) with peak height total ion current detection limits of 4 to 78 pmol of injected amounts (S/N = 3). This technique is applicable to the analysis of proteins and other charged molecules.
Collapse
Affiliation(s)
- Lian Shan
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | | | | | |
Collapse
|
35
|
Tsonev LI, Hirsh AG. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases. J Chromatogr A 2008; 1200:166-82. [DOI: 10.1016/j.chroma.2008.05.076] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/14/2008] [Accepted: 05/22/2008] [Indexed: 11/25/2022]
|
36
|
Kim H, Lubman DM. Micro-proteome analysis using micro-chromatofocusing in intact protein separations. J Chromatogr A 2008; 1194:3-10. [PMID: 18407281 PMCID: PMC2479787 DOI: 10.1016/j.chroma.2008.03.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/14/2008] [Accepted: 03/18/2008] [Indexed: 01/23/2023]
Abstract
Multi-dimensional liquid-based separation is required for fractionation and mapping of complex protein mixtures from cells. A method that has been used as the first dimension in such separations is chromatofocusing (CF), which is based on generating a pH gradient on an anion exchange column. The use of pH in the first dimension is essential where pH is a fundamental property of proteins and can provide information on post-translationally modified forms of a protein. In this work, a micro-chromatofocusing technique is introduced which can separate microgram levels of proteins from cell lysates for further analysis by LC-MS/MS. It is shown that this method can analyze 10 microg of sample and detect nearly 700-800 proteins from ovarian cancer cell line lysates.
Collapse
Affiliation(s)
- Hyeyeung Kim
- Department of Chemistry, University of Michigan, 48109, Ann Arbor, MI, U.S.A
| | - David M. Lubman
- Department of Chemistry, University of Michigan, 48109, Ann Arbor, MI, U.S.A
- Department of Pathology, University of Michigan Medical Center, 48109, Ann Arbor, MI, U.S.A
- Department of Surgery, University of Michigan Medical Center, 48109, Ann Arbor, MI, U.S.A
- Comprehensive Cancer Center, University of Michigan, 48109, Ann Arbor, MI, U.S.A
| |
Collapse
|
37
|
Ahamed T, Chilamkurthi S, Nfor BK, Verhaert PD, van Dedem GW, van der Wielen LA, Eppink MH, van de Sandt EJ, Ottens M. Selection of pH-related parameters in ion-exchange chromatography using pH-gradient operations. J Chromatogr A 2008; 1194:22-9. [DOI: 10.1016/j.chroma.2007.11.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
|
38
|
Barder TJ. HPLC in Protein Discovery. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
39
|
Sahab ZJ, Iczkowski KA, Sang QXA. Anion exchange fractionation of serum proteins versus albumin elimination. Anal Biochem 2007; 368:24-32. [PMID: 17618595 DOI: 10.1016/j.ab.2007.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 05/29/2007] [Accepted: 06/06/2007] [Indexed: 01/31/2023]
Abstract
Elimination of albumin, constituting more than 50% of total serum proteins, allows increased protein loads on immobilized pH gradient (IPG) gels and better visualization of low-abundance proteins; however, it may result in the loss of albumin-bound low-abundance proteins. In this study, we report the prefractionation of serum proteins by batch anion exchange chromatography into three fractions: one containing proteins with isoelectric points (pI values) higher than the pI of albumin, a second fraction containing proteins with pI values in the same range as the pI of albumin, and a third fraction containing proteins with pI values lower than the pI of albumin. This procedure uses common instrumentation, is carried out under denaturing conditions, and takes less than 30min. We also report the loss of a clinically established prostate cancer serum biomarker, prostate-specific antigen (PSA), after albumin is eliminated using two commercially available albumin elimination kits: one that uses Cibacron Blue F3GA, which achieves albumin depletion through dye-ligand binding, and one that uses specific albumin antibody. The loss of PSA secondary to albumin elimination exceeded that after batch anion exchange serum sample prefractionation.
Collapse
Affiliation(s)
- Ziad J Sahab
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
40
|
Ahamed T, Nfor BK, Verhaert PDEM, van Dedem GWK, van der Wielen LAM, Eppink MHM, van de Sandt EJAX, Ottens M. pH-gradient ion-exchange chromatography: an analytical tool for design and optimization of protein separations. J Chromatogr A 2007; 1164:181-8. [PMID: 17673242 DOI: 10.1016/j.chroma.2007.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 07/04/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
This work demonstrates that a highly linear, controllable and wide-ranged pH-gradient can be generated through an ion-exchange chromatography (IEC) column. Such a pH-gradient anion-exchange chromatography was evaluated with 17 model proteins and found that acidic (pI<6) and basic (pI>8) proteins elute roughly at their pI, whereas neutral proteins (pI 6-8) elute at pH 8-9 regardless their pI values. Because of the flat nature of protein titration curves from pH approximately 6 to approximately 9, neutral proteins indeed exhibit nearly zero net charge at pH approximately 9. The elution-pH in pH-gradient IEC or the titration curve, but not the pI, was identified as the key parameter for pH optimization of preparative IEC in a fast and rational way. The pH-gradient IEC was also applied and found to be an excellent analytical tool for the fractionation of crude protein mixtures.
Collapse
Affiliation(s)
- Tangir Ahamed
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jandera P. Can the theory of gradient liquid chromatography be useful in solving practical problems? J Chromatogr A 2006; 1126:195-218. [PMID: 16787650 DOI: 10.1016/j.chroma.2006.04.094] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/24/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
Advances in the theory of gradient liquid chromatography and their practical impacts are reviewed. Theoretical models describing retention in reversed-phase, normal-phase and ion-exchange modes are compared. Main attention is focused on practically useful models described by two- or three-parameter equations fitting the experimental data in the range of mobile phase composition utilized for sample migration during gradient elution. The applications of theory for gradient method development, optimization and transfer are addressed. The origins and possibilities for overcoming possible pitfalls are discussed, including the effects of the instrumental dwell volume, uptake of mobile phase components on the column and size of the sample molecules. Special attention is focused on gradient separations of large molecules.
Collapse
Affiliation(s)
- Pavel Jandera
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Nám. Cs. Legií 565, CZ-53210 Pardubice, Czech Republic.
| |
Collapse
|
42
|
Pepaj M, Wilson SR, Novotna K, Lundanes E, Greibrokk T. Two-dimensional capillary liquid chromatography: pH Gradient ion exchange and reversed phase chromatography for rapid separation of proteins. J Chromatogr A 2006; 1120:132-41. [PMID: 16516903 DOI: 10.1016/j.chroma.2006.02.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 01/24/2006] [Accepted: 02/14/2006] [Indexed: 11/18/2022]
Abstract
In the present work, an orthogonal two-dimensional (2D) capillary liquid chromatography (LC) method for fractionation and separation of proteins using wide range pH gradient ion exchange chromatography (IEC) in the first dimension and reversed phase (RP) in the second dimension, is demonstrated. In the first dimension a strong anion exchange (SAX) column subjected to a wide range (10.5-3.5) descending pH gradient was employed, while in the second dimension, a large pore (4,000 A) polystyrene-divinylbenzene (PS-DVB) RP analytical column was used for separation of the protein pH-fractions from the first dimension. The separation power of the off-line 2D method was demonstrated by fractionation and separation of human plasma proteins. Seventeen pH-fractions were manually collected and immediately separated in the second dimension using a column switching capillary RP-LC system. Totally, more than 200 protein peaks were observed in the RP chromatograms of the pH-fractions. On-line 2D analysis was performed for fractionation and separation of ten standard proteins. Two pH-fractions (basic and acidic) from the first dimension were trapped on PS-DVB RP trap columns prior to back-flushed elution onto the analytical RP column for fast separation of the proteins with UV/MS detection.
Collapse
Affiliation(s)
- Milaim Pepaj
- Department of Chemistry, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
43
|
Sahab ZJ, Suh Y, Sang QXA. Isoelectric Point-Based Prefractionation of Proteins from Crude Biological Samples Prior to Two-Dimensional Gel Electrophoresis. J Proteome Res 2005; 4:2266-72. [PMID: 16335975 DOI: 10.1021/pr0501822] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional gel electrophoresis (2-DE) is used to compare the protein profiles of different crude biological samples. Narrow pH range Immobilized pH Gradient (IPG) strips were designed to increase the resolution of these separations. To take full advantage of IPG strips, the ideal sample should be composed primarily of proteins that have isoelectric point (pI) values within the pH range of the IPG strip. Prefractionation of cell lysates from a human prostate cancer cell line cultured in the presence or absence of epigallocatechin-3-gallate was achieved in fewer than 30 min using an anion-exchange resin and two expressly designed buffers. The procedure was carried out in a centrifuge tube and standard instrumentation was used. The cell lysates were prefractionated into two fractions: proteins with pI values above 7 and between 4 and 7, respectively. The fractions were then analyzed by 2-DE, selecting appropriate pH ranges for the IPG strips, and the gels were compared with those of unprefractionated cell lysates. Protein loading capacity was optimized and resolution and visualization of the less abundant and differentially expressed proteins were greatly improved.
Collapse
Affiliation(s)
- Ziad J Sahab
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | |
Collapse
|
44
|
Andersen T, Pepaj M, Trones R, Lundanes E, Greibrokk T. Isoelectric point separation of proteins by capillary pH-gradient ion-exchange chromatography. J Chromatogr A 2004; 1025:217-26. [PMID: 14763806 DOI: 10.1016/j.chroma.2003.10.093] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present work, isoelectric point (pl) separation of proteins by pH-gradient ion-exchange chromatography (IEC) on packed capillary columns is demonstrated. The development of a miniaturized flow-through pH probe for reliable pH monitoring of the column effluent, which was an important technical challenge for adapting this technique to capillary dimensions, was solved by designing a low microliter per minute flow rate housing to a commercially available micro pH probe. Highly linear outlet pH-gradients within the pH range 8.5-4.0 were obtained when applying simple inexpensive buffers consisting solely of piperazine, N-methylpiperazine and imidazole on 10 cm x 0.32 mm i.d. fused silica capillaries packed with anion-exchange poly(styrene divinylbenzene)-based macroporous materials, i.e. 10 microm Mono P from Amersham Biosciences and 10 microm PL-SAX from PolymerLabs. Furthermore, when using a pH-gradient from 6.8 to 4.3, both columns were able to baseline separate the A and B genetic variants of beta-lactoglobulin, which differ with two amino acid residues only, but the PL-SAX column provided almost a two-fold decrease in peak widths compared to the Mono P column. The influence of varying the buffer concentration, injection volume and column temperature on the peak widths and resolution of the beta-lactoglobulins was investigated, e.g. a 100 microl sample of dilute beta-lactoglobulins was injected directly on the column with practically no increase in peak width as compared to what obtained with conventional injection volumes. Finally, a pH-gradient from 6.8 to 4.3 was used to separate proteins in skimmed bovine milk on the PL-SAX column. The milk was simply diluted 1:10 (v/v) with water and filtrated before injection.
Collapse
Affiliation(s)
- Thomas Andersen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
| | | | | | | | | |
Collapse
|
45
|
Podgornik H, Podgornik A. Separation of manganese peroxidase isoenzymes on strong anion-exchange monolithic column using pH–salt gradient. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 799:343-7. [PMID: 14670754 DOI: 10.1016/j.jchromb.2003.10.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Different chromatographic methods including chromatofocusing are used for separation of manganese peroxidase (MnP) isoforms and their isolation from the fungal growth medium. We tested strong anion exchange methacrylate based monolithic columns as a stationary phase for fast separation of MnP's. Sodium acetate buffers of two different pH values (6 and 4) were used for formation of reproducible pH gradient. The entire cycle, involving analysis and column regeneration, was completed in 3 min. Use of pH gradient showed better MnP isoform separation comparing to the salt gradient, while application of combined pH-salt gradient, resulted in further improvement.
Collapse
Affiliation(s)
- Helena Podgornik
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, Ljubljana 1000, Slovenia
| | | |
Collapse
|