1
|
Marassi V, La Rocca G, Placci A, Muntiu A, Vincenzoni F, Vitali A, Desiderio C, Maraldi T, Beretti F, Russo E, Miceli V, Conaldi PG, Papait A, Romele P, Cargnoni A, Silini AR, Alviano F, Parolini O, Giordani S, Zattoni A, Reschiglian P, Roda B. Native characterization and QC profiling of human amniotic mesenchymal stromal cell vesicular fractions for secretome-based therapy. Talanta 2024; 276:126216. [PMID: 38761653 DOI: 10.1016/j.talanta.2024.126216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Anna Placci
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Alexandra Muntiu
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), 90127, Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), 90127, Palermo, Italy
| | - Andrea Papait
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy; Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Pietro Romele
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy; Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Stefano Giordani
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy.
| |
Collapse
|
2
|
Marassi V, Maggio S, Battistelli M, Stocchi V, Zattoni A, Reschiglian P, Guescini M, Roda B. An ultracentrifugation - hollow-fiber flow field-flow fractionation orthogonal approach for the purification and mapping of extracellular vesicle subtypes. J Chromatogr A 2020; 1638:461861. [PMID: 33472105 DOI: 10.1016/j.chroma.2020.461861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/20/2020] [Accepted: 12/27/2020] [Indexed: 01/02/2023]
Abstract
In the course of their life span, cells release a multitude of different vesicles in the extracellular matrix (EVs), constitutively and/or upon stimulation, carrying signals either inside or on their membrane for intercellular communication. As a natural delivery tool, EVs present many desirable advantages, such as biocompatibility and low toxicity. However, due to the complex biogenesis of EVs and their high heterogeneity in size distribution and composition, the characterization and quantification of EVs and their subpopulations still represents an enticing analytical challenge. Centrifugation methods allow to obtain different subpopulations in an easy way from cell culture conditioned medium and biological fluids including plasma, amniotic fluid and urine, but they still present some drawbacks and limitations. An unsatisfactory isolation can limit their downstream analysis and lead to wrong conclusions regarding biological activities. Isolation and characterization of biologically relevant nanoparticles like EVs is crucial to investigate specific molecular and signaling patterns and requires new combined approaches. Our work was focused on HF5 (miniaturized, hollow-fiber flow field-flow fractionation), and its hyphenation to ultracentrifugation techniques, which are the most assessed techniques for vesicle isolation. We exploited model samples obtained from culture medium of murine myoblasts (C2C12), known to release different subsets of membrane-derived vesicles. Large and small EVs (LEVs and SEVs) were isolated by differential ultracentrifugation (UC). Through an HF5 method employing UV, fluorescence and multi-angle laser scattering as detectors, we characterized these subpopulations in terms of size, abundance and DNA/protein content; moreover, we showed that microvesicles tend to hyper-aggregate and partially release nucleic matter. The quali-quantitative information we obtained from the fractographic profiles was improved with respect to Nano Tracking Analysis (NTA) estimation. The SEV population was then further separated using density gradient centrifugation (DGC), and four fractions were submitted again to HF5-multidetection. This technique is based on a fully orthogonal principle, since F4 does not separate by density, and provided uncorrelated information for each of the fractions processed. The "second dimension" achieved with HF5 showed good promise in sorting particles with both different size and content, and allowed to identify the presence of fibrilloid nucleic matter. This analytical bidimensional approach proved to be effective for the characterization of highly complex biological samples such as mixtures of EVs and could provide purified fractions for further biological characterization.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy; byFlow srl, Bologna, Italy.
| | - Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy; byFlow srl, Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy; byFlow srl, Bologna, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy; byFlow srl, Bologna, Italy
| |
Collapse
|
3
|
Owoseni O, Zhang Y, Omarova M, Li X, Lal J, McPherson GL, Raghavan SR, Bose A, John VT. Microstructural characteristics of surfactant assembly into a gel-like mesophase for application as an oil spill dispersant. J Colloid Interface Sci 2018; 524:279-288. [PMID: 29655147 DOI: 10.1016/j.jcis.2018.03.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Polyoxyethylene (20) sorbitan monooleate (Tween 80) can be incorporated into the gel-like phase formed by L-α-phosphatidylcholine (PC) and dioctyl sulfosuccinate sodium salt (DOSS) for potential application as a gel-like dispersant for oil spill treatment. Such gel-like dispersants offer advantages over existing liquid dispersants for mitigating oil spill impacts. EXPERIMENTS Crude oil-in-saline water emulsions stabilized by the surfactant system were characterized by optical microscopy and turbidity measurements while interfacial tensions were measured by the spinning drop and pendant drop techniques. The microstructure of the gel-like surfactant mesophase was elucidated using small angle neutron scattering (SANS), cryo scanning electron microscopy (cryo-SEM), and 31P nuclear magnetic resonance (NMR) spectroscopy. FINDINGS The gel-like phase consisting of PC, DOSS and Tween 80 is positively buoyant on water and breaks down on contact with floating crude oil layers to release the surfactant components. The surfactant mixture effectively lowers the crude oil-saline water interfacial tension to the 10-2 mN/m range, producing stable crude oil-in-saline water emulsions with an average droplet size of about 7.81 µm. Analysis of SANS, cryo-SEM and NMR spectroscopy data reveals that the gel-like mesophase has a lamellar microstructure that transition from rolled lamellar sheets to onion-like, multilamellar structures with increasing Tween 80 content.
Collapse
Affiliation(s)
- Olasehinde Owoseni
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Yueheng Zhang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Marzhana Omarova
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Xin Li
- Louisiana Consortium for Neutron Scattering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jyotsana Lal
- Louisiana Consortium for Neutron Scattering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gary L McPherson
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Arijit Bose
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
4
|
Marassi V, Di Cristo L, Smith SGJ, Ortelli S, Blosi M, Costa AL, Reschiglian P, Volkov Y, Prina-Mello A. Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171113. [PMID: 29410826 PMCID: PMC5792903 DOI: 10.1098/rsos.171113] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/20/2017] [Indexed: 05/25/2023]
Abstract
Silver nanoparticle-based antimicrobials can promote a long lasting bactericidal effect without detrimental toxic side effects. However, there is not a clear and complete protocol to define and relate the properties of the particles (size, shape, surface charge, ionic content) with their specific activity. In this paper, we propose an effective multi-step approach for the identification of a 'purpose-specific active applicability window' to maximize the antimicrobial activity of medical devices containing silver nanoparticles (Ag NPs) (such as surface coaters), minimizing any consequent risk for human health (safety by design strategy). The antimicrobial activity and the cellular toxicity of four types of Ag NPs, differing in their coating composition and concentration have been quantified. Through the implementation of flow-field flow fractionation, Ag NPs have been characterized in terms of metal release, size and shape. The particles are fractionated in the process while being left unmodified, allowing for the identification of biological particle-specific contribution. Toxicity and inflammatory response in vitro have been assessed on human skin models, while antimicrobial activity has been monitored with both non-pathogenic and pathogenic Escherichia coli. The main benefit associated with such approach is the comprehensive assessment of the maximal effectiveness of candidate nanomaterials, while simultaneously indexing their properties against their safety.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry ‘G. Ciamician’, Via Selmi 2, 40126 Bologna, Italy
| | - Luisana Di Cristo
- Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College, Dublin 8, Republic of Ireland
| | - Stephen G. J. Smith
- Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College, Dublin 8, Republic of Ireland
- Department of Clinical Microbiology, Sir Patrick Dun Research Laboratory, School of Medicine, Trinity College, Dublin 8, Republic of Ireland
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Anna L. Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | | | - Yuri Volkov
- Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College, Dublin 8, Republic of Ireland
| | - Adriele Prina-Mello
- Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College, Dublin 8, Republic of Ireland
- AMBER Centre and CRANN Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
5
|
Andrade DFD, Vukosavljevic B, Benvenutti EV, Pohlmann AR, Guterres SS, Windbergs M, Beck RCR. Redispersible spray-dried lipid-core nanocapsules intended for oral delivery: the influence of the particle number on redispersibility. Pharm Dev Technol 2017; 23:414-425. [PMID: 29095657 DOI: 10.1080/10837450.2017.1400559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study proposes a new approach to produce easily redispersible spray-dried lipid-core nanocapsules (LNC) intended for oral administration, evaluating the influence of the particle number density of the fed sample. The proposed approach to develop redispersible spray-dried LNC formulations intended for oral route is innovative, evidencing the needing of an optimization of the initial particle number density in the liquid suspension of nanocapsules. A mixture of maltodextrin and L-leucine (90:10 w/w) was used as drying adjuvant. Dynamic light scattering, turbidimetry, determination of surface area and pore size distribution, electron microscopy and confocal Raman microscopy (CRM) were used to characterize the proposed system and to better understand the differences in the redispersion behavior. An easily aqueous redispersion of the spray-dried powder composed of maltodextrin and L-leucine (90:10 w/w) was obtained, depending on the particle number density. Their surface area decreased in the presence of LNC. CRM enabled the visualization of the spatial distribution of the different compounds in the powders affording to better understand the influence of the particle number density of the fed sample on their redispersion behavior. This study shows the need for optimizing initial particle number density in the liquid formulation to develop redispersible spray-dried LNC powders.
Collapse
Affiliation(s)
- Diego Fontana de Andrade
- a Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Branko Vukosavljevic
- c Department of Biopharmaceutics and Pharmaceutical Technology , Saarland University , Saarbruecken , Germany.,d Department of Drug Delivery , Helmholtz Centre for Infection Research (HZI) and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Saarbruecken , Germany
| | - Edilson Valmir Benvenutti
- b Departamento de Química Orgânica, Instituto de Química , Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Adriana Raffin Pohlmann
- a Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil.,b Departamento de Química Orgânica, Instituto de Química , Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Sílvia Stanisçuaski Guterres
- a Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Maike Windbergs
- c Department of Biopharmaceutics and Pharmaceutical Technology , Saarland University , Saarbruecken , Germany.,d Department of Drug Delivery , Helmholtz Centre for Infection Research (HZI) and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Saarbruecken , Germany
| | - Ruy Carlos Ruver Beck
- a Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| |
Collapse
|
6
|
Wang A, Li Y, Yang X, Bao M, Cheng H. The enhanced stability and biodegradation of dispersed crude oil droplets by Xanthan Gum as an additive of chemical dispersant. MARINE POLLUTION BULLETIN 2017; 118:275-280. [PMID: 28283177 DOI: 10.1016/j.marpolbul.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/20/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
It is necessary for chemical dispersant to disperse oil effectively and maintain the stability of oil droplets. In this work, Xanthan Gum (XG) was used as an environmentally friendly additive in oil dispersant formulation to enhance the stability and biodegradation of dispersed crude oil droplets. When XG was used together with chemical dispersant 9500A, the dispersion effectiveness of crude oil in artificial sea water (ASW) and the oil droplet stability were both greatly enhanced. In the presence of XG, lower concentration of 9500A was needed to achieve the effective dispersion and stabilization. In addition to the enhancement of dispersion and stabilization, it was found that the biodegradation rate of crude oil by bacteria was dramatically enhanced when a mixture of 9500A and XG was used as a dispersant. Because of the low environmental impact of XG, this would be a potential way to formulate the dispersant with lower toxicity.
Collapse
Affiliation(s)
- Aiqin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong Province, China.
| | - Xiaolong Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Hua Cheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong Province, China
| |
Collapse
|
7
|
Cascio C, Gilliland D, Rossi F, Calzolai L, Contado C. Critical experimental evaluation of key methods to detect, size and quantify nanoparticulate silver. Anal Chem 2014; 86:12143-51. [PMID: 25393334 DOI: 10.1021/ac503307r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Different analytical techniques, sedimentation flow field fractionation (SdFFF), asymmetrical flow field flow fractionation (AF4), centrifugal liquid sedimentation (CLS) and dynamic light scattering (DLS) have been used to give complementary size information about suspensions of silver nanoparticles (AgNPs) in the size range of 20-100 nm by taking advantage of the different physical principles on which are based. Particle morphology was controlled by TEM (Transmission Electron Microscopy). Both SdFFF and AF4 were able to accurately size all AgNPs; among sedimentation based techniques, CLS underestimated the average sizes of larger samples (70 and 100 nm), but it produced the best separation of bimodal mixtures Ag40/60 and Ag40/70 mix compared to SdFFF. On the contrary, DLS overestimated the average sizes of the smallest samples (20 and 30 nm) and it was unable to deal with bimodal mixtures. Quantitative mass and number particle size distributions were also calculated starting from UV-vis signals and ICP-MS data and the results evaluated as a means to address the issue of determining nanoparticle size distributions as required for implementation of European regulations relating to labeling of nanomaterials in consumer products. The results are discussed in light of possible particle aggregation state, analysis repeatability, size resolution and quantitative recoveries.
Collapse
Affiliation(s)
- Claudia Cascio
- Institute for Health and Consumer Protection, Joint Research Centre, European Commission , Via E. Fermi 2749, 21027 Ispra (VA), Italy
| | | | | | | | | |
Collapse
|
8
|
Contado C, Ravani L, Passarella M. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives. Anal Chim Acta 2013; 788:183-92. [DOI: 10.1016/j.aca.2013.05.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/19/2013] [Accepted: 05/25/2013] [Indexed: 11/30/2022]
|
9
|
Venkataraman P, Tang J, Frenkel E, McPherson GL, He J, Raghavan SR, Kolesnichenko V, Bose A, John VT. Attachment of a hydrophobically modified biopolymer at the oil-water interface in the treatment of oil spills. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3572-3580. [PMID: 23527784 DOI: 10.1021/am303000v] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The stability of crude oil droplets formed by adding chemical dispersants can be considerably enhanced by the use of the biopolymer, hydrophobically modified chitosan. Turbidimetric analyses show that emulsions of crude oil in saline water prepared using a combination of the biopolymer and the well-studied chemical dispersant (Corexit 9500A) remain stable for extended periods in comparison to emulsions stabilized by the dispersant alone. We hypothesize that the hydrophobic residues from the polymer preferentially anchor in the oil droplets, thereby forming a layer of the polymer around the droplets. The enhanced stability of the droplets is due to the polymer layer providing an increase in electrostatic and steric repulsions and thereby a large barrier to droplet coalescence. Our results show that the addition of hydrophobically modified chitosan following the application of chemical dispersant to an oil spill can potentially reduce the use of chemical dispersants. Increasing the molecular weight of the biopolymer changes the rheological properties of the oil-in-water emulsion to that of a weak gel. The ability of the biopolymer to tether the oil droplets in a gel-like matrix has potential applications in the immobilization of surface oil spills for enhanced removal.
Collapse
Affiliation(s)
- Pradeep Venkataraman
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rübsam H, Krottenthaler M, Gastl M, Becker T. An overview of separation methods in starch analysis: The importance of size exclusion chromatography and field flow fractionation. STARCH-STARKE 2012. [DOI: 10.1002/star.201100188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Detoni CB, Souto GD, da Silva ALM, Pohlmann AR, Guterres SS. Photostability and skin penetration of different E-resveratrol-loaded supramolecular structures. Photochem Photobiol 2012; 88:913-21. [PMID: 22443373 DOI: 10.1111/j.1751-1097.2012.01147.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is desirable and challenging to prevent E-resveratrol (E-RSV) from photoisomerizing to its Z-configuration to preserve its biological and pharmacological activities. The aim of this research was to evaluate the photostability of E-RSV-loaded supramolecular structures and the skin penetration profile of chemically and physically stable nanoestructured formulations. Different supramolecular structures were developed to act as carriers for E-RSV, that is, liposomes, polymeric lipid-core nanocapsules and nanospheres and solid lipid nanoparticles. The degrees of photostability of these formulations were compared with that of an ethanolic solution of E-RSV. The skin penetration profiles of the stable formulations were obtained using vertical diffusion cells (protected from light and under UVA radiation) with porcine skin as the membrane, followed by tape stripping and separation of the viable epidermis and dermis in a heated water bath. Photoisomerization was significantly delayed by the association of resveratrol with the nanocarriers independently of the supramolecular structure. Liposomes were the particles capable of maintaining E-RSV concentration for the longest time. On the other hand, E-RSV-loaded liposomes reduced in size showing low physical stability under UVA radiation. In the dark, the skin penetration profiles were very similar, but under UVA radiation the E-RSV-loaded nanocarriers showed increasing amounts in the total epidermis.
Collapse
Affiliation(s)
- Cassia Britto Detoni
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
12
|
Size separation of colloidally dispersed nanoparticles using a monolithic capillary column. J Chromatogr A 2011; 1218:5520-6. [DOI: 10.1016/j.chroma.2011.06.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 12/31/2022]
|
13
|
Yohannes G, Jussila M, Hartonen K, Riekkola ML. Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles. J Chromatogr A 2011; 1218:4104-16. [DOI: 10.1016/j.chroma.2010.12.110] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/20/2010] [Accepted: 12/26/2010] [Indexed: 12/17/2022]
|
14
|
Lespes G, Gigault J. Hyphenated analytical techniques for multidimensional characterisation of submicron particles: A review. Anal Chim Acta 2011; 692:26-41. [DOI: 10.1016/j.aca.2011.02.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/25/2022]
|
15
|
Kammer FVD, Legros S, Hofmann T, Larsen EH, Loeschner K. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2010.11.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Contado C, Pagnoni A. TiO2 in Commercial Sunscreen Lotion: Flow Field-Flow Fractionation and ICP-AES Together for Size Analysis. Anal Chem 2008; 80:7594-608. [DOI: 10.1021/ac8012626] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Catia Contado
- Department of Chemistry, University of Ferrara, Via Luigi Borsari 46, I-44100 Ferrara, Italy
| | - Antonella Pagnoni
- Department of Chemistry, University of Ferrara, Via Luigi Borsari 46, I-44100 Ferrara, Italy
| |
Collapse
|
17
|
The effect of polymeric wall on the permeability of drug-loaded nanocapsules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2008. [DOI: 10.1016/j.msec.2007.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Light-scattering and turbidimetric detection of silica colloids in size-exclusion chromatography. Anal Bioanal Chem 2008; 391:353-9. [DOI: 10.1007/s00216-008-2017-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/19/2008] [Accepted: 02/22/2008] [Indexed: 10/22/2022]
|
19
|
Zattoni A, Reschiglian P, Montalti M, Zaccheroni N, Prodi L, Picca RA, Malitesta C. Characterization of titanium dioxide nanoparticles imprinted for tyrosine by flow field-flow fractionation and spectrofluorimetric analysis. Inorganica Chim Acta 2007. [DOI: 10.1016/j.ica.2006.07.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Baalousha M, Kammer FVD, Motelica-Heino M, Hilal HS, Le Coustumer P. Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J Chromatogr A 2006; 1104:272-81. [PMID: 16360663 DOI: 10.1016/j.chroma.2005.11.095] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 11/23/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Flow-field flow fractionation (FlFFF) coupled to multi-angle laser light scattering (MALLS) was evaluated for size and shape determination of standard spherical and arbitrarily shaped natural colloids. Different fitting methods for light scattering data retrieved from MALLS were evaluated to determine the particle size of spherical standards and natural colloids. In addition, FlFFF was optimized for best fractionation in connection to MALLS, minimal colloids-membrane interaction, and minimal sample losses. FlFFF, calibrated with standard particles, was used to determine hydrodynamic diameter, or radius (D(h) or R(h)), of the fractionated colloids, whereas the MALLS was used to determine root mean square radius of gyration (R(g)) for fractionated colloids. Combining both results, by calculating the R(g)/R(h) ratio, allows an estimation of colloid deviation from the shape of homogeneous sphere. Accordingly, this study demonstrates that, FlFFF-MALLS is a valuable technique for characterizing heterogeneous and arbitrarily shaped natural colloidal particles in terms of size and shape. To check the usefulness of FlFFF-MALLS in natural colloid studies, the technique was used to investigate the sedimentation behavior of extracted soil colloidal particles. Results illustrate that, in a silty till sample, carbonates function as cement between the colloidal particles, and consequently, change their sedimentation behavior. On the other hand, carbonate dissolution generates a more homogeneous colloidal sample.
Collapse
Affiliation(s)
- M Baalousha
- University of Bordeaux 1, Center of Development of Applied Geology, Avenue des Facultés, 33400 Talence, France.
| | | | | | | | | |
Collapse
|
21
|
Blo G, Ceccarini A, Conato C, Contado C, Fagioli F, Fuoco R, Pagnoni A, Dondi F. Development of an SdFFF–ETAAS hyphenated technique for dimensional and elemental characterization of colloids. Anal Bioanal Chem 2006; 384:922-30. [PMID: 16432721 DOI: 10.1007/s00216-005-0266-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/28/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Direct hyphenation of electrothermal atomic-absorption spectroscopy (ETAAS) to sedimentation field-flow fractionation (SdFFF) has been developed to enable elemental characterization of submicron particles as a function of size. This hyphenation is particularly suitable for characterizing colloidal particles of environmental interest, for example water-borne particles. The interface is an automatic capillary injection device (CID) which enables direct introduction of large and variable volumes of colloidal particle suspensions into a hot graphite furnace, thus preconcentrating the colloidal particles on the furnace walls. The method was validated by determination of Fe in certified submicron Fe2O3. The procedure was set up by first optimizing the SdFFF fractionation under programmed field conditions, thus enabling optimum fractionation of particle size. The ETAAS procedure was then tested to determine whether it could be used for direct analysis of Fe2O3 slurries without the need for a mineralization step. CID coupled to ETAAS was subsequently exploited for its ability to enhance the sensitivity, because of the increased injection volume. Statistical tests and data handling were conducted to prove the suitability of the ETAAS-CID module. Finally, off-line and on-line ETAAS-CID-SdFFF hyphenation were investigated. These experiments emphasized the advantages of the on-line coupling, because it enables synchronized sampling, enrichment, and elemental analysis of the flowing eluate. The benefits of the proposed hyphenation are the high specificity of analytical detection, increased sensitivity, reduction of analysis time, and minimum sample handling and contamination.
Collapse
Affiliation(s)
- G Blo
- Department of Chemistry, University of Ferrara, via L. Borsari 46, 44100, Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
v d Kammer F, Baborowski M, Friese K. Application of a high-performance liquid chromatography fluorescence detector as a nephelometric turbidity detector following Field-Flow Fractionation to analyse size distributions of environmental colloids. J Chromatogr A 2005; 1100:81-9. [PMID: 16330282 DOI: 10.1016/j.chroma.2005.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/07/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
A new operation mode for HPLC-type fluorescence detectors is presented and evaluated using synthetic and environmental particles in the colloidal size range. By applying identical wavelengths for excitation and emission a nephelometric turbidity or single angle light scattering detector is created which can be easily coupled to flow or sedimentation Field-Flow Fractionation (Flow FFF or Sed FFF) for the analysis of colloidal dispersions. The results are compared with standard UV-vis detection methods. Signals obtained are given as a function of particle size and selected detection wavelength. Conclusions can be drawn which affect the current practice of FFF but also for other techniques as groundwater sampling and laboratory column experiments when turbidity is measured in nephelometric mode and in small sample volumes or at low flow rates.
Collapse
Affiliation(s)
- F v d Kammer
- Department of Geological Science, Environmental Geosciences Group, Vienna University, Wien, Austria.
| | | | | |
Collapse
|