1
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
2
|
Liao Y, Jing T, Zhang F, He P. In Situ Monitoring of Extracellular K + Using the Potentiometric Mode of Scanning Electrochemical Microscopy with a Carbon-Based Potassium Ion-Selective Tip. Anal Chem 2022; 94:4078-4086. [PMID: 35213803 DOI: 10.1021/acs.analchem.2c00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of potassium channels can be related to the occurrence and development of tumors. Their change would affect K+ outflow. Thus, in situ monitoring of extracellular K+ shows a great significance. Herein, the dual-functional K+ ion-selective electrode as the scanning electrochemical microscopy (SECM) tip (K+-ISE SECM tip) has been developed for in situ monitoring of the extracellular K+. Based on multi-wall carbon nanotubes as a transduction layer, the K+-ISE SECM tip realizes both the plotting of approach curves to position the tip for in situ detection and the recording of potential responses. It shows a near Nernstian response, good selectivity, and excellent stability. Based on these characteristics, it was used to in situ monitor K+ concentrations ([K+]o) of three breast cancer cell lines (MCF-7, MDA-MB-231, and SK-BR-3 cells) at 3 μm above the cell, and [K+]o of MDA-MB-231 cells show the highest value, followed by MCF-7 cells and SK-BR-3 cells. K+ outflow induced by electrical stimulation or pH changes of the culture environment (Δ[K+]o) was further determined, and the possible mechanism of K+ outflow was investigated with 4-aminopyridin (4-AP). MCF-7 cells present the largest value of Δ[K+]o, followed by MDA-MB-231 cells and SK-BR-3 cells at all the stimulation potentials, and pH 6.50 shows the greatest impact on K+ outflow of the three cell lines. The pretreatment of 4-AP changed K+ outflow, probably due to the regulation of voltage-gated channels. These findings provide insight into a deep understanding of the microenvironment influence on K+ outflow, thereby reflecting the possible mechanism of potassium channels.
Collapse
Affiliation(s)
- Yuxian Liao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Ting Jing
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| |
Collapse
|
3
|
Conzuelo F, Schulte A, Schuhmann W. Biological imaging with scanning electrochemical microscopy. Proc Math Phys Eng Sci 2018; 474:20180409. [PMID: 30839832 PMCID: PMC6237495 DOI: 10.1098/rspa.2018.0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022] Open
Abstract
Scanning electrochemical microscopy (SECM) is a powerful and versatile technique for visualizing the local electrochemical activity of a surface as an ultramicroelectrode tip is moved towards or over a sample of interest using precise positioning systems. In comparison with other scanning probe techniques, SECM not only enables topographical surface mapping but also gathers chemical information with high spatial resolution. Considerable progress has been made in the analysis of biological samples, including living cells and immobilized biomacromolecules such as enzymes, antibodies and DNA fragments. Moreover, combinations of SECM with comple-mentary analytical tools broadened its applicability and facilitated multi-functional analysis with extended life science capabilities. The aim of this review is to present a brief topical overview on recent applications of biological SECM, with particular emphasis on important technical improvements of this surface imaging technique, recommended applications and future trends.
Collapse
Affiliation(s)
- Felipe Conzuelo
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
4
|
Izquierdo J, Knittel P, Kranz C. Scanning electrochemical microscopy: an analytical perspective. Anal Bioanal Chem 2017; 410:307-324. [PMID: 29214533 DOI: 10.1007/s00216-017-0742-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Scanning electrochemical microscopy (SECM) has evolved from an electrochemical specialist tool to a broadly used electroanalytical surface technique, which has experienced exciting developments for nanoscale electrochemical studies in recent years. Several companies now offer commercial instruments, and SECM has been used in a broad range of applications. SECM research is frequently interdisciplinary, bridging areas ranging from electrochemistry, nanotechnology, and materials science to biomedical research. Although SECM is considered a modern electroanalytical technique, it appears that less attention is paid to so-called analytical figures of merit, which are essential also in electroanalytical chemistry. Besides instrumental developments, this review focuses on aspects such as reliability, repeatability, and reproducibility of SECM data. The review is intended to spark discussion within the community on this topic, but also to raise awareness of the challenges faced during the evaluation of quantitative SECM data.
Collapse
Affiliation(s)
- Javier Izquierdo
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter Knittel
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Fraunhofer Institute for Applied Solid State Physics, Tullastraße 72, 79108, Freiburg, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chem Rev 2016; 116:13234-13278. [PMID: 27736057 DOI: 10.1021/acs.chemrev.6b00067] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David Polcari
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Philippe Dauphin-Ducharme
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Janine Mauzeroll
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| |
Collapse
|
6
|
Etienne M, Rocca E, Chahboun N, Veys-Renaux D. Local Evolution of pH with Time Determined by Shear Force-based Scanning Electrochemical Microscopy: Surface Reactivity of Anodized Aluminium. ELECTROANAL 2016. [DOI: 10.1002/elan.201600294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mathieu Etienne
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement-UMR; 7564 CNRS - Université de Lorraine; 405, rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Emmanuel Rocca
- Institut Jean Lamour-UMR; 7198 CNRS - Université de Lorraine; BP 70239 54506 Vandoeuvre-lès-Nancy France
| | - Najat Chahboun
- Institut Jean Lamour-UMR; 7198 CNRS - Université de Lorraine; BP 70239 54506 Vandoeuvre-lès-Nancy France
- Messier-Bugatti-Dowty; 1-9 rue Antoine Saint-Exupéry 67120 Molsheim Cedex Molsheim Cede France
| | - Delphine Veys-Renaux
- Institut Jean Lamour-UMR; 7198 CNRS - Université de Lorraine; BP 70239 54506 Vandoeuvre-lès-Nancy France
| |
Collapse
|
7
|
Ummadi JG, Downs C, Joshi VS, Ferracane J, Koley D. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass. Anal Chem 2016; 88:3218-26. [PMID: 26861499 PMCID: PMC4873256 DOI: 10.1021/acs.analchem.5b04614] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.
Collapse
Affiliation(s)
- Jyothir Ganesh Ummadi
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Corey Downs
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Vrushali S. Joshi
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jack Ferracane
- Department of Restorative Dentistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
8
|
Harris D, Ummadi JG, Thurber AR, Allau Y, Verba C, Colwell F, Torres ME, Koley D. Real-time monitoring of calcification process by Sporosarcina pasteurii biofilm. Analyst 2016; 141:2887-95. [DOI: 10.1039/c6an00007j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical and morphological mapping of live bacterial assisted calcium carbonate precipitation using scanning electrochemical microscope (SECM).
Collapse
Affiliation(s)
- Dustin Harris
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| | | | - Andrew R. Thurber
- College of Earth
- Ocean and Atmospheric Sciences
- Oregon State University
- Corvallis
- USA
| | - Yvan Allau
- College of Earth
- Ocean and Atmospheric Sciences
- Oregon State University
- Corvallis
- USA
| | - Circe Verba
- Department of Energy
- National Energy Technology Laboratory
- Albany
- USA
| | - Frederick Colwell
- College of Earth
- Ocean and Atmospheric Sciences
- Oregon State University
- Corvallis
- USA
| | - Marta E. Torres
- College of Earth
- Ocean and Atmospheric Sciences
- Oregon State University
- Corvallis
- USA
| | - Dipankar Koley
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| |
Collapse
|
9
|
Perry AR, Lazenby RA, Adobes-Vidal M, Peruffo M, McKelvey K, Snowden ME, Unwin PR. Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) as a new local dissolution kinetic probe: application to salicylic acid dissolution in aqueous solution. CrystEngComm 2015; 17:7835-7843. [PMID: 39086503 PMCID: PMC11288246 DOI: 10.1039/c5ce00138b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/25/2015] [Indexed: 08/02/2024]
Abstract
Dissolution kinetics of the (110) face of salicylic acid in aqueous solution is determined by hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) using a 2.5 μm diameter platinum ultramicroelectrode (UME). The method operates by translating the probe UME towards the surface at a series of positions across the crystal and inducing dissolution via the reduction of protons to hydrogen, which titrates the weak acid and promotes the dissolution reaction, but only when the UME is close to the crystal. Most importantly, as dissolution is only briefly and transiently induced at each location, the initial dissolution kinetics of an as-grown single crystal surface can be measured, rather than a surface which has undergone significant dissolution (pitting), as in other techniques. Mass transport and kinetics in the system are modelled using finite element method simulations which allows dissolution rate constants to be evaluated. It is found that the kinetics of an 'as-grown' crystal are much slower than for a surface that has undergone partial bulk dissolution (mimicking conventional techniques), which can be attributed to a dramatic change in surface morphology as identified by atomic force microscopy (AFM). The 'as-grown' (110) surface presents extended terrace structures to the solution which evidently dissolve slowly, whereas a partially dissolved surface has extensive etch features and step sites which greatly enhance dissolution kinetics. This means that crystals such as salicylic acid will show time-dependent dissolution kinetics (fluxes) that are strongly dependent on crystal history, and this needs to be taken into account to fully understand dissolution.
Collapse
Affiliation(s)
- Amelia R Perry
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Robert A Lazenby
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Maria Adobes-Vidal
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Massimo Peruffo
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Kim McKelvey
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Michael E Snowden
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
10
|
Dauphin-Ducharme P, Binns WJ, Snowden ME, Shoesmith DW, Mauzeroll J. Determination of the local corrosion rate of magnesium alloys using a shear force mounted scanning microcapillary method. Faraday Discuss 2015; 180:331-45. [DOI: 10.1039/c4fd00276h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The successful development of scanning probe techniques to characterize corrosion in situ using multifunctional probes is intrinsically tied to surface topography signal decoupling from the measured electrochemical fluxes. One viable strategy is the shear force controlled scanning microcapillary method. Using this method, pulled quartz micropipettes with an aperture of 500 nm diameter were used to resolve small and large variations in topography in order to quantify the local corrosion rate of microgalvanically and galvanically corroded Mg alloys. To achieve topography monitoring of corroded surfaces, shear force feedback was employed to position the micropipette at a reproducible working height above the substrate. We present proof of concept measurements over a galvanic couple of a magnesium alloy (AE44) and mild steel along with a microgalvanically corroded ZEK100 Mg alloy, which illustrates the ability of shear force to track small (1.4 μm) and large (700 μm) topographic variations from high aspect ratio features. Furthermore, we demonstrate the robustness of the technique by acquiring topographic data for 4 mm along the magnesium–steel galvanic couple sample and a 250 × 30 μm topography map over the ZEK100 Mg alloy. All topography results were benchmarked using standard optical microscopies (profilometry and confocal laser scanning microscopy).
Collapse
Affiliation(s)
| | - W. Jeffrey Binns
- Department of Chemistry and Surface Science Western
- Western University
- London
- Canada
| | | | - David W. Shoesmith
- Department of Chemistry and Surface Science Western
- Western University
- London
- Canada
| | | |
Collapse
|
11
|
Dauphin-Ducharme P, Asmussen RM, Shoesmith DW, Mauzeroll J. In-situ Mg2+ release monitored during magnesium alloy corrosion. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Development of Nano-Disc electrodes for Application as Shear Force Sensitive Electrochemical Probes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Oulkadi D, Banon S, Mustin C, Etienne M. Local pH measurement at wet mineral-bacteria/air interface. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
14
|
Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel. J Dent 2014; 42 Suppl 1:S21-9. [DOI: 10.1016/s0300-5712(14)50004-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Kranz C. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques. Analyst 2014; 139:336-52. [DOI: 10.1039/c3an01651j] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Kinnear SL, McKelvey K, Snowden ME, Peruffo M, Colburn AW, Unwin PR. Dual-barrel conductance micropipet as a new approach to the study of ionic crystal dissolution kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15565-72. [PMID: 24224979 DOI: 10.1021/la403630u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10(-5) cm s(-1) (equivalent surface dissolution flux ca. 0.5 μmol cm(-2) s(-1) into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future.
Collapse
Affiliation(s)
- Sophie L Kinnear
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Tefashe UM, Wittstock G. Quantitative characterization of shear force regulation for scanning electrochemical microscopy. CR CHIM 2013. [DOI: 10.1016/j.crci.2012.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Etienne M, Layoussifi B, Giornelli T, Jacquet D. SECM-based automate equipped with a shearforce detection for the characterization of large and complex samples. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2011.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
19
|
Pähler M, Schuhmann W, Gratzl M. Simultaneous visualization of surface topography and concentration field by means of scanning electrochemical microscopy using a single electrochemical probe and impedance spectroscopy. Chemphyschem 2011; 12:2798-805. [PMID: 22002894 DOI: 10.1002/cphc.201100428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/05/2011] [Indexed: 11/09/2022]
Abstract
Scanning electrochemical microscopy visualizes concentration profiles. To determine the location of the probe relative to topographical features of the substrate, knowledge of the probe-to-sample distance at each probe position is required. The use of electrochemical impedance spectroscopy for obtaining information on the substrate-to-probe distance and on the concentration of interest using the electrochemical probe alone is suggested. By tuning the frequencies of interrogation, the probe-to-substrate distance can be derived followed by interrogation of processes that carry information on concentration at lower frequencies. These processes may include charge-transfer relaxation, diffusional relaxation at the electrode, and open-circuit potential at zero frequency. A potentiometric chloride sensing microprobe is used herein to reconstruct both topography and the concentration field at a microscopic diffusional source of chloride.
Collapse
Affiliation(s)
- Maike Pähler
- Analytische Chemie-Elektroanalytik & Sensorik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | |
Collapse
|
20
|
|
21
|
Huang VM, Wu SL, Orazem ME, Pébère N, Tribollet B, Vivier V. Local electrochemical impedance spectroscopy: A review and some recent developments. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Pust SE, Maier W, Wittstock G. Investigation of Localized Catalytic and Electrocatalytic Processes and Corrosion Reactions with Scanning Electrochemical Microscopy (SECM). ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.2008.5426] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractScanning electrochemical microscopy (SECM) has developed into a very versatile tool for the investigation of solid-liquid, liquid-liquid and liquid-gas interfaces. The arrangement of an ultramicroelectrode (UME) in close proximity to the interface under study allows the application of a large variety of different experimental schemes. The most important have been named feedback mode, generation-collection mode, redox competition mode and direct mode. Quantitative descriptions are available for the UME signal, depending on different sample properties and experimental variables. Therefore, SECM has been established as an indispensible tool in many areas of fundamental electrochemical research. Currently, it also spreads as an important new method to solve more applied problems, in which inhomogeneous current distributions are typically observed on different length scales. Prominent examples include devices for electrochemical energy conversion such as fuel cells and batteries as well as localized corrosion phenomena. However, the direct local investigation of such systems is often impossible. Instead, suitable reaction schemes, sample environments, model samples and even new operation modes have to be introduced in order to obtain results that are relevant to the practical application. This review outlines and compares the theoretical basis of the different SECM working modes and reviews the application in the area of electrochemical energy conversion and localized corrosion with a special emphasis on the problems encountered when working with practical samples.
Collapse
|
23
|
Cougnon C, Bauer-Espindola K, Fabre DS, Mauzeroll J. Development of a phase-controlled constant-distance scanning electrochemical microscope. Anal Chem 2009; 81:3654-9. [PMID: 19326905 DOI: 10.1021/ac802211u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present shear-force constant-distance scanning electrochemical microscope regulates tip-to-substrate distance using a phase-controlled feedback mechanism that is more sensitive than the amplitude-controlled constant-distance scanning electrochemical microscopes. Phase control responds faster to frequency perturbation and presents enhance sensitivity during distance curves under constant-distance mode.
Collapse
Affiliation(s)
- Charles Cougnon
- UCO2M, UMR CNRS 6011, Université du Maine, Avenue O. Messiaen, 72085 Le Mans, France
| | | | | | | |
Collapse
|
24
|
Csoka B, Mekhalif Z. Carbon paste-based ion-selective dual function microelectrodes for SECM measurements. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
|
26
|
Affiliation(s)
- Johan Bobacka
- Åbo Akademi University, Process Chemistry Centre, c/o Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku-Åbo, Finland; Faculty of Material Science and Ceramics, AGH-University of Science and Technology, Al. Mickiewicza 30, PL-30059 Cracow, Poland; and Åbo Akademi University, Process Chemistry Centre, c/o Center for Process Analytical Chemistry and Sensor Technology (ProSens), Biskopsgatan 8, FI-20500 Turku-Åbo, Finland
| | - Ari Ivaska
- Åbo Akademi University, Process Chemistry Centre, c/o Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku-Åbo, Finland; Faculty of Material Science and Ceramics, AGH-University of Science and Technology, Al. Mickiewicza 30, PL-30059 Cracow, Poland; and Åbo Akademi University, Process Chemistry Centre, c/o Center for Process Analytical Chemistry and Sensor Technology (ProSens), Biskopsgatan 8, FI-20500 Turku-Åbo, Finland
| | - Andrzej Lewenstam
- Åbo Akademi University, Process Chemistry Centre, c/o Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku-Åbo, Finland; Faculty of Material Science and Ceramics, AGH-University of Science and Technology, Al. Mickiewicza 30, PL-30059 Cracow, Poland; and Åbo Akademi University, Process Chemistry Centre, c/o Center for Process Analytical Chemistry and Sensor Technology (ProSens), Biskopsgatan 8, FI-20500 Turku-Åbo, Finland
| |
Collapse
|
27
|
Lu X, Wang Q, Liu X. Review: Recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics. Anal Chim Acta 2007; 601:10-25. [PMID: 17904468 DOI: 10.1016/j.aca.2007.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/09/2007] [Accepted: 08/12/2007] [Indexed: 10/22/2022]
Abstract
Scanning electrochemical microscopy (SECM) has been proven to be a valuable technique for the quantitative investigation and surface analysis of a wide range of processes that occur at interfaces. In particular, there is a great deal of interest in studying the kinetics of charge transfer characteristics at the solid/liquid and liquid/liquid interface. This overview outlines recent advances and applications of SECM to the investigation of charge transfer reactions at the solid/liquid interface and liquid/liquid interface.
Collapse
Affiliation(s)
- Xiaoquan Lu
- College of Chemistry and Chemical Engineer, Northwest Normal University, Lanzhou, 730070, PR China
| | | | | |
Collapse
|
28
|
|
29
|
Shin H, Hesketh PJ, Mizaikoff B, Kranz C. Batch Fabrication of Atomic Force Microscopy Probes with Recessed Integrated Ring Microelectrodes at a Wafer Level. Anal Chem 2007; 79:4769-77. [PMID: 17521168 DOI: 10.1021/ac070598u] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A batch fabrication process at the wafer-level integrating ring microelectrodes into atomic force microscopy (AFM) tips is presented. The fabrication process results in bifunctional scanning probes combining atomic force microscopy with scanning electrochemical microscopy (AFM-SECM) with a ring microelectrode integrated at a defined distance above the apex of the AFM tip. Silicon carbide is used as AFM tip material, resulting in reduced mechanical tip wear for extended usage. The presented approach for the probe fabrication is based on batch processing using standard microfabrication techniques, which provides bifunctional scanning probes at a wafer scale and at low cost. Additional benefits of batch fabrication include the high processing reproducibility, uniformity, and tuning of the physical properties of the cantilever for optimized AFM dynamic mode operation. The performance of batch-fabricated bifunctional probes was demonstrated by simultaneous imaging micropatterned platinum structures at a silicon dioxide substrate in intermittent (dynamic) and contact mode, respectively, and feedback mode SECM. In both, intermittent and contact mode, the bifunctional probes provided reliable correlated electrochemical and topographical data. In addition, simulations of the diffusion-limited steady-state currents at the integrated electrode using finite element methods were performed for characterizing the developed probes.
Collapse
Affiliation(s)
- Heungjoo Shin
- School of Chemistry and Biochemistry, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
30
|
Wittstock G, Burchardt M, Pust SE, Shen Y, Zhao C. Scanning electrochemical microscopy for direct imaging of reaction rates. Angew Chem Int Ed Engl 2007; 46:1584-617. [PMID: 17285666 DOI: 10.1002/anie.200602750] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Not only in electrochemistry but also in biology and in membrane transport, localized processes at solid-liquid or liquid-liquid interfaces play an important role at defect sites, pores, or individual cells, but are difficult to characterize by integral investigation. Scanning electrochemical microscopy is suitable for such investigations. After two decades of development, this method is based on a solid theoretical foundation and a large number of demonstrated applications. It offers the possibility of directly imaging heterogeneous reaction rates and locally modifying substrates by electrochemically generated reagents. The applications range from classical electrochemical problems, such as the investigation of localized corrosion and electrocatalytic reactions in fuel cells, sensor surfaces, biochips, and microstructured analysis systems, to mass transport through synthetic membranes, skin and tissue, as well as intercellular communication processes. Moreover, processes can be studied that occur at liquid surfaces and liquid-liquid interfaces.
Collapse
Affiliation(s)
- Gunther Wittstock
- Carl von Ossietzky Universität Oldenburg, Institut für Reine und Angewandte Chemie und Institut für Chemie und Biologie des Meeres, 26111 Oldenburg, Germany.
| | | | | | | | | |
Collapse
|
31
|
Wittstock G, Burchardt M, Pust S, Shen Y, Zhao C. Elektrochemische Rastermikroskopie zur direkten Abbildung von Reaktionsgeschwindigkeiten. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200602750] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Wittstock G, Burchardt M, Kirchner CN. Chapter 37 Scanning electrochemical microscopy in biosensor research. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0166-526x(06)49037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
33
|
|
34
|
Etienne M, Dierkes P, Erichsen T, Schuhmann W, Fritsch I. Constant-Distance Mode Scanning Potentiometry. High Resolution pH Measurements in Three-Dimensions. ELECTROANAL 2007. [DOI: 10.1002/elan.200603735] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Etienne M, Anderson EC, Evans SR, Schuhmann W, Fritsch I. Feedback-Independent Pt Nanoelectrodes for Shear Force-Based Constant-Distance Mode Scanning Electrochemical Microscopy. Anal Chem 2006; 78:7317-24. [PMID: 17037938 DOI: 10.1021/ac061310o] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new generation of platinum nanoelectrodes for constant-distance mode scanning electrochemical microscopy (CD-SECM) has been prepared, characterized, and used for high spatial resolution electrochemical measurements and visualization of electrochemically induced concentration gradients in microcavities. The probes have long (1-2 cm), narrow quartz tips that were conically polished and have a Pt nanoelectrode that is slightly offset from center. Because of the size and location of the electrode on the probe, it does not exhibit SECM feedback while approaching the analyzed sample surfaces even to distances within a few hundred nanometers. The probe was positioned near the surface while scanning and performing electrochemical measurements through use of nonoptical shear force control of the tip-to-sample distance. Test structures consisted of cylindrically shaped microcavities that are 50 microm in diameter with three individually addressable electrodes: a gold disk at 8-microm depth, a crescent-shaped gold ring at 4-microm depth along the wall, and a top gold electrode at the rim. Different electrodes within the microcavity were used to reduce and oxidize redox species in 250 microL of a solution of 5 mM hexaamineruthenium(III) chloride and 0.1 M potassium chloride, protected from evaporation by mineral oil, while the SECM tip followed the topography of the structures and monitored the current from the oxidation of [Ru(NH3)6]2+. Electrochemically generated concentration profiles were obtained from these complex test structures that are not possible with any other SECM technology at this time.
Collapse
Affiliation(s)
- Mathieu Etienne
- Analytical Chemistry, Elektroanalytik & Sensorik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
36
|
Amemiya S, Guo J, Xiong H, Gross DA. Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond. Anal Bioanal Chem 2006; 386:458-71. [PMID: 16855816 DOI: 10.1007/s00216-006-0510-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 04/19/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Recent applications of scanning electrochemical microscopy (SECM) to studies of single biological cells are reviewed. This scanning probe microscopic technique allows the imaging of an individual cell on the basis of not only its surface topography but also such cellular activities as photosynthesis, respiration, electron transfer, single vesicular exocytosis and membrane transport. The operational principles of SECM are also introduced in the context of these biological applications. Recent progress in techniques for high-resolution SECM imaging are also reviewed. Future directions, such as single-channel detection by SECM, high-resolution imaging with nanometer-sized probes, and combined SECM techniques for multidimensional imaging are also discussed.
Collapse
Affiliation(s)
- Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.
| | | | | | | |
Collapse
|
37
|
Kurulugama RT, Wipf DO, Takacs SA, Pongmayteegul S, Garris PA, Baur JE. Scanning Electrochemical Microscopy of Model Neurons: Constant Distance Imaging. Anal Chem 2005; 77:1111-7. [PMID: 15858993 DOI: 10.1021/ac048571n] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Undifferentiated and differentiated PC12 cells were imaged with the constant-distance mode of scanning electrochemical microscopy (SECM) using carbon ring and carbon fiber tips. Two types of feedback signals were used for distance control: the electrolysis current of a mediator (constant-current mode) and the impedance measured by the SECM tip (constant-impedance mode). The highest resolution was achieved using carbon ring electrodes with the constant-current mode. However, the constant-impedance mode has the important advantages that topography and faradaic current can be measured simultaneously, and because no mediator is required, the imaging can take place directly in the cell growth media. It was found that vesicular release events do not measurably alter the impedance, but the depolarizing solution, 105 mM K+, produces a dramatic impedance change such that constant-distance imaging cannot be performed during application of the stimulus. However, by operating the tip in the constant-height mode, cell morphology (via a change in impedance) and vesicular release could be detected simultaneously while moving the tip across the cell. This work represents a significant improvement over previous SECM imaging of model neurons, and it demonstrates that the combination of amperometry and constant-impedance SECM has the potential to be a powerful tool for investigating the spatial distribution of neurotransmitter release in vitro.
Collapse
Affiliation(s)
- Ruwan T Kurulugama
- Departments of Chemistry and Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| | | | | | | | | | | |
Collapse
|
38
|
Schröck K, Schulte A, Schuhmann W. Visualization of the Reaction Zones Between Two Miscible Solutions with Potentiometric and Amperometric Microsensors. ELECTROANAL 2005. [DOI: 10.1002/elan.200403186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|